summaryrefslogtreecommitdiffstats
path: root/third_party/python/ecdsa/PKG-INFO
blob: 06619f96632291c4b57472ba73ece37e93c2b852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
Metadata-Version: 2.1
Name: ecdsa
Version: 0.15
Summary: ECDSA cryptographic signature library (pure python)
Home-page: http://github.com/warner/python-ecdsa
Author: Brian Warner
Author-email: warner@lothar.com
License: MIT
Description: # Pure-Python ECDSA
        
        [![build status](https://travis-ci.org/warner/python-ecdsa.png)](http://travis-ci.org/warner/python-ecdsa)
        [![Coverage Status](https://coveralls.io/repos/warner/python-ecdsa/badge.svg)](https://coveralls.io/r/warner/python-ecdsa)
        [![condition coverage](https://img.shields.io/badge/condition%20coverage-81%25-yellow)](https://travis-ci.org/warner/python-ecdsa/jobs/626479178#L776)
        [![Latest Version](https://img.shields.io/pypi/v/ecdsa.svg?style=flat)](https://pypi.python.org/pypi/ecdsa/)
        
        
        This is an easy-to-use implementation of ECDSA cryptography (Elliptic Curve
        Digital Signature Algorithm), implemented purely in Python, released under
        the MIT license. With this library, you can quickly create keypairs (signing
        key and verifying key), sign messages, and verify the signatures. The keys
        and signatures are very short, making them easy to handle and incorporate
        into other protocols.
        
        ## Features
        
        This library provides key generation, signing, and verifying, for five
        popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192,
        224, 256, 384, and 521 bits. The "short names" for these curves, as known by
        the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`,
        `secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the
        256-bit curve `secp256k1` used by Bitcoin. There is also support for the
        regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The
        "short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`,
        `brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`,
        `brainpoolP512r1`.
        No other curves are included, but it is not too hard to add support for more
        curves over prime fields.
        
        ## Dependencies
        
        This library uses only Python and the 'six' package. It is compatible with
        Python 2.6, 2.7 and 3.3+. It also supports execution on the alternative
        implementations like pypy and pypy3.
        
        If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic.
        Either of them can be installed after this library is installed,
        `python-ecdsa` will detect their presence on start-up and use them
        automatically.
        
        To run the OpenSSL compatibility tests, the 'openssl' tool must be in your
        `PATH`. This release has been tested successfully against OpenSSL 0.9.8o,
        1.0.0a, 1.0.2f and 1.1.1d (among others).
        
        
        ## Installation
        
        This library is available on PyPI, it's recommended to install it using `pip`:
        
        ```
        pip install ecdsa
        ```
        
        In case higher performance is wanted and using native code is not a problem,
        it's possible to specify installation together with `gmpy2`:
        
        ```
        pip install ecdsa[gmpy2]
        ```
        
        or (slower, legacy option):
        ```
        pip install ecdsa[gmpy]
        ```
        
        ## Speed
        
        The following table shows how long this library takes to generate keypairs
        (`keygen`), to sign data (`sign`), and to verify those signatures (`verify`).
        All those values are in seconds.
        For convenience, the inverses of those values are also provided:
        how many keys per second can be generated (`keygen/s`), how many signatures
        can be made per second (`sign/s`) and how many signatures can be verified
        per second (`verify/s`). The size of raw signature (generally the smallest
        way a signature can be encoded) is also provided in the `siglen` column.
        Use `tox -e speed` to generate this table on your own computer.
        On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance:
        
        ```
                          siglen    keygen   keygen/s      sign     sign/s    verify   verify/s
                NIST192p:     48   0.00035s   2893.02   0.00038s   2620.53   0.00069s   1458.92
                NIST224p:     56   0.00043s   2307.11   0.00048s   2092.00   0.00088s   1131.33
                NIST256p:     64   0.00056s   1793.70   0.00061s   1639.87   0.00113s    883.79
                NIST384p:     96   0.00116s    864.33   0.00124s    806.29   0.00233s    429.87
                NIST521p:    132   0.00221s    452.16   0.00234s    427.31   0.00460s    217.19
               SECP256k1:     64   0.00056s   1772.65   0.00061s   1628.73   0.00110s    912.13
         BRAINPOOLP160r1:     40   0.00026s   3801.86   0.00029s   3401.11   0.00052s   1930.47
         BRAINPOOLP192r1:     48   0.00034s   2925.73   0.00038s   2634.34   0.00070s   1438.06
         BRAINPOOLP224r1:     56   0.00044s   2287.98   0.00048s   2083.87   0.00088s   1137.52
         BRAINPOOLP256r1:     64   0.00056s   1774.11   0.00061s   1628.25   0.00112s    890.71
         BRAINPOOLP320r1:     80   0.00081s   1238.18   0.00087s   1146.71   0.00151s    661.95
         BRAINPOOLP384r1:     96   0.00117s    855.47   0.00124s    804.56   0.00241s    414.83
         BRAINPOOLP512r1:    128   0.00223s    447.99   0.00234s    427.49   0.00437s    229.09
        
                               ecdh     ecdh/s
                NIST192p:   0.00110s    910.70
                NIST224p:   0.00143s    701.17
                NIST256p:   0.00178s    560.44
                NIST384p:   0.00383s    261.03
                NIST521p:   0.00745s    134.23
               SECP256k1:   0.00168s    596.23
         BRAINPOOLP160r1:   0.00085s   1174.02
         BRAINPOOLP192r1:   0.00113s    883.47
         BRAINPOOLP224r1:   0.00145s    687.82
         BRAINPOOLP256r1:   0.00195s    514.03
         BRAINPOOLP320r1:   0.00277s    360.80
         BRAINPOOLP384r1:   0.00412s    242.58
         BRAINPOOLP512r1:   0.00787s    127.12
        ```
        
        To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`.
        On the same machine I'm getting the following performance with `gmpy2`:
        ```
                          siglen    keygen   keygen/s      sign     sign/s    verify   verify/s
                NIST192p:     48   0.00017s   5945.50   0.00018s   5544.66   0.00033s   3002.54
                NIST224p:     56   0.00021s   4742.14   0.00022s   4463.52   0.00044s   2248.59
                NIST256p:     64   0.00024s   4155.73   0.00025s   3994.28   0.00047s   2105.34
                NIST384p:     96   0.00041s   2415.06   0.00043s   2316.41   0.00085s   1177.18
                NIST521p:    132   0.00072s   1391.14   0.00074s   1359.63   0.00140s    716.31
               SECP256k1:     64   0.00024s   4216.50   0.00025s   3994.52   0.00047s   2120.57
         BRAINPOOLP160r1:     40   0.00014s   7038.99   0.00015s   6501.55   0.00029s   3397.79
         BRAINPOOLP192r1:     48   0.00017s   5983.18   0.00018s   5626.08   0.00035s   2843.62
         BRAINPOOLP224r1:     56   0.00021s   4727.54   0.00022s   4464.86   0.00043s   2326.84
         BRAINPOOLP256r1:     64   0.00024s   4221.00   0.00025s   4010.26   0.00049s   2046.40
         BRAINPOOLP320r1:     80   0.00032s   3142.14   0.00033s   3009.15   0.00061s   1652.88
         BRAINPOOLP384r1:     96   0.00041s   2415.98   0.00043s   2340.35   0.00083s   1198.77
         BRAINPOOLP512r1:    128   0.00064s   1567.27   0.00066s   1526.33   0.00127s    788.51
        
                               ecdh     ecdh/s
                NIST192p:   0.00051s   1960.26
                NIST224p:   0.00067s   1502.97
                NIST256p:   0.00073s   1376.12
                NIST384p:   0.00132s    758.68
                NIST521p:   0.00231s    433.23
               SECP256k1:   0.00072s   1387.18
         BRAINPOOLP160r1:   0.00042s   2366.60
         BRAINPOOLP192r1:   0.00049s   2026.80
         BRAINPOOLP224r1:   0.00067s   1486.52
         BRAINPOOLP256r1:   0.00076s   1310.31
         BRAINPOOLP320r1:   0.00101s    986.16
         BRAINPOOLP384r1:   0.00131s    761.35
         BRAINPOOLP512r1:   0.00211s    473.30
        ```
        
        (there's also `gmpy` version, execute it using `tox -e speedgmpy`)
        
        For comparison, a highly optimised implementation (including curve-specific
        assembly for some curves), like the one in OpenSSL 1.1.1d, provides following
        performance numbers on the same machine.
        Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it:
        ```
                                      sign    verify    sign/s verify/s
         192 bits ecdsa (nistp192)   0.0002s   0.0002s   4785.6   5380.7
         224 bits ecdsa (nistp224)   0.0000s   0.0001s  22475.6   9822.0
         256 bits ecdsa (nistp256)   0.0000s   0.0001s  45069.6  14166.6
         384 bits ecdsa (nistp384)   0.0008s   0.0006s   1265.6   1648.1
         521 bits ecdsa (nistp521)   0.0003s   0.0005s   3753.1   1819.5
         256 bits ecdsa (brainpoolP256r1)   0.0003s   0.0003s   2983.5   3333.2
         384 bits ecdsa (brainpoolP384r1)   0.0008s   0.0007s   1258.8   1528.1
         512 bits ecdsa (brainpoolP512r1)   0.0015s   0.0012s    675.1    860.1
        
                                       op      op/s
         192 bits ecdh (nistp192)   0.0002s   4853.4
         224 bits ecdh (nistp224)   0.0001s  15252.1
         256 bits ecdh (nistp256)   0.0001s  18436.3
         384 bits ecdh (nistp384)   0.0008s   1292.7
         521 bits ecdh (nistp521)   0.0003s   2884.7
         256 bits ecdh (brainpoolP256r1)   0.0003s   3066.5
         384 bits ecdh (brainpoolP384r1)   0.0008s   1298.0
         512 bits ecdh (brainpoolP512r1)   0.0014s    694.8
        ```
        
        Keys and signature can be serialized in different ways (see Usage, below).
        For a NIST192p key, the three basic representations require strings of the
        following lengths (in bytes):
        
            to_string:  signkey= 24, verifykey= 48, signature=48
            compressed: signkey=n/a, verifykey= 25, signature=n/a
            DER:        signkey=106, verifykey= 80, signature=55
            PEM:        signkey=278, verifykey=162, (no support for PEM signatures)
        
        ## History
        
        In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a
        [message to sci.crypt][1], available from his [download site][2]. In 2010,
        Brian Warner wrote a wrapper around this code, to make it a bit easier and
        safer to use. Hubert Kario then included an implementation of elliptic curve
        cryptography that uses Jacobian coordinates internally, improving performance
        about 20-fold. You are looking at the README for this wrapper.
        
        [1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html
        [2]: http://webpages.charter.net/curryfans/peter/downloads.html
        
        ## Testing
        
        To run the full test suite, do this:
        
            tox -e coverage
        
        On an Intel Core i7 4790K @ 4.0GHz, the tests take about 16 seconds to execute.
        The test suite uses
        [`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some
        inherent variability in the test suite execution time.
        
        One part of `test_pyecdsa.py` checks compatibility with OpenSSL, by
        running the "openssl" CLI tool, make sure it's in your `PATH` if you want
        to test compatibility with it.
        
        ## Security
        
        This library was not designed with security in mind. If you are processing
        data that needs to be protected we suggest you use a quality wrapper around
        OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such
        a wrapper. The primary use-case of this library is as a portable library for
        interoperability testing and as a teaching tool.
        
        **This library does not protect against side channel attacks.**
        
        Do not allow attackers to measure how long it takes you to generate a keypair
        or sign a message. Do not allow attackers to run code on the same physical
        machine when keypair generation or signing is taking place (this includes
        virtual machines). Do not allow attackers to measure how much power your
        computer uses while generating the keypair or signing a message. Do not allow
        attackers to measure RF interference coming from your computer while generating
        a keypair or signing a message. Note: just loading the private key will cause
        keypair generation. Other operations or attack vectors may also be
        vulnerable to attacks. **For a sophisticated attacker observing just one
        operation with a private key will be sufficient to completely
        reconstruct the private key**.
        
        Please also note that any Pure-python cryptographic library will be vulnerable
        to the same side channel attacks. This is because Python does not provide
        side-channel secure primitives (with the exception of
        [`hmac.compare_digest()`][3]), making side-channel secure programming
        impossible.
        
        This library depends upon a strong source of random numbers. Do not use it on
        a system where `os.urandom()` does not provide cryptographically secure
        random numbers.
        
        [3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest
        
        ## Usage
        
        You start by creating a `SigningKey`. You can use this to sign data, by passing
        in data as a byte string and getting back the signature (also a byte string).
        You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`.
        The `VerifyingKey` can be used to verify a signature, by passing it both the
        data string and the signature byte string: it either returns True or raises
        `BadSignatureError`.
        
        ```python
        from ecdsa import SigningKey
        sk = SigningKey.generate() # uses NIST192p
        vk = sk.verifying_key
        signature = sk.sign(b"message")
        assert vk.verify(signature, b"message")
        ```
        
        Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like
        NIST192p (the default one). Longer curves are more secure, but take longer to
        use, and result in longer keys and signatures.
        
        ```python
        from ecdsa import SigningKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        vk = sk.verifying_key
        signature = sk.sign(b"message")
        assert vk.verify(signature, b"message")
        ```
        
        The `SigningKey` can be serialized into several different formats: the shortest
        is to call `s=sk.to_string()`, and then re-create it with
        `SigningKey.from_string(s, curve)` . This short form does not record the
        curve, so you must be sure to pass to `from_string()` the same curve you used
        for the original key. The short form of a NIST192p-based signing key is just 24
        bytes long. If a point encoding is invalid or it does not lie on the specified
        curve, `from_string()` will raise `MalformedPointError`.
        
        ```python
        from ecdsa import SigningKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        sk_string = sk.to_string()
        sk2 = SigningKey.from_string(sk_string, curve=NIST384p)
        print(sk_string.hex())
        print(sk2.to_string().hex())
        ```
        
        Note: while the methods are called `to_string()` the type they return is
        actually `bytes`, the "string" part is leftover from Python 2.
        
        `sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same
        formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored
        `"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format
        is a shorter binary form of the same data.
        `SigningKey.from_pem()/.from_der()` will undo this serialization. These
        formats include the curve name, so you do not need to pass in a curve
        identifier to the deserializer. In case the file is malformed `from_der()`
        and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`.
        
        ```python
        from ecdsa import SigningKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        sk_pem = sk.to_pem()
        sk2 = SigningKey.from_pem(sk_pem)
        # sk and sk2 are the same key
        ```
        
        Likewise, the `VerifyingKey` can be serialized in the same way:
        `vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and
        `to_der()/from_der()`. The same `curve=` argument is needed for
        `VerifyingKey.from_string()`.
        
        ```python
        from ecdsa import SigningKey, VerifyingKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        vk = sk.verifying_key
        vk_string = vk.to_string()
        vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)
        # vk and vk2 are the same key
        
        from ecdsa import SigningKey, VerifyingKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        vk = sk.verifying_key
        vk_pem = vk.to_pem()
        vk2 = VerifyingKey.from_pem(vk_pem)
        # vk and vk2 are the same key
        ```
        
        There are a couple of different ways to compute a signature. Fundamentally,
        ECDSA takes a number that represents the data being signed, and returns a
        pair of numbers that represent the signature. The `hashfunc=` argument to
        `sk.sign()` and `vk.verify()` is used to turn an arbitrary string into
        fixed-length digest, which is then turned into a number that ECDSA can sign,
        and both sign and verify must use the same approach. The default value is
        `hashlib.sha1`, but if you use NIST256p or a longer curve, you can use
        `hashlib.sha256` instead.
        
        There are also multiple ways to represent a signature. The default
        `sk.sign()` and `vk.verify()` methods present it as a short string, for
        simplicity and minimal overhead. To use a different scheme, use the
        `sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper
        functions in the `ecdsa.util` module that can be useful here.
        
        It is also possible to create a `SigningKey` from a "seed", which is
        deterministic. This can be used in protocols where you want to derive
        consistent signing keys from some other secret, for example when you want
        three separate keys and only want to store a single master secret. You should
        start with a uniformly-distributed unguessable seed with about `curve.baselen`
        bytes of entropy, and then use one of the helper functions in `ecdsa.util` to
        convert it into an integer in the correct range, and then finally pass it
        into `SigningKey.from_secret_exponent()`, like this:
        
        ```python
        import os
        from ecdsa import NIST384p, SigningKey
        from ecdsa.util import randrange_from_seed__trytryagain
        
        def make_key(seed):
          secexp = randrange_from_seed__trytryagain(seed, NIST384p.order)
          return SigningKey.from_secret_exponent(secexp, curve=NIST384p)
        
        seed = os.urandom(NIST384p.baselen) # or other starting point
        sk1a = make_key(seed)
        sk1b = make_key(seed)
        # note: sk1a and sk1b are the same key
        assert sk1a.to_string() == sk1b.to_string()
        sk2 = make_key(b"2-"+seed)  # different key
        assert sk1a.to_string() != sk2.to_string()
        ```
        
        In case the application will verify a lot of signatures made with a single
        key, it's possible to precompute some of the internal values to make
        signature verification significantly faster. The break-even point occurs at
        about 100 signatures verified.
        
        To perform precomputation, you can call the `precompute()` method
        on `VerifyingKey` instance:
        ```python
        from ecdsa import SigningKey, NIST384p
        sk = SigningKey.generate(curve=NIST384p)
        vk = sk.verifying_key
        vk.precompute()
        signature = sk.sign(b"message")
        assert vk.verify(signature, b"message")
        ```
        
        Once `precompute()` was called, all signature verifications with this key will
        be faster to execute.
        
        ## OpenSSL Compatibility
        
        To produce signatures that can be verified by OpenSSL tools, or to verify
        signatures that were produced by those tools, use:
        
        ```python
        # openssl ecparam -name prime256v1 -genkey -out sk.pem
        # openssl ec -in sk.pem -pubout -out vk.pem
        # echo "data for signing" > data
        # openssl dgst -sha256 -sign sk.pem -out data.sig data
        # openssl dgst -sha256 -verify vk.pem -signature data.sig data
        # openssl dgst -sha256 -prverify sk.pem -signature data.sig data
        
        import hashlib
        from ecdsa import SigningKey, VerifyingKey
        from ecdsa.util import sigencode_der, sigdecode_der
        
        with open("vk.pem") as f:
           vk = VerifyingKey.from_pem(f.read())
        
        with open("data", "rb") as f:
           data = f.read()
        
        with open("data.sig", "rb") as f:
           signature = f.read()
        
        assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)
        
        with open("sk.pem") as f:
           sk = SigningKey.from_pem(f.read(), hashlib.sha256)
        
        new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)
        
        with open("data.sig2", "wb") as f:
           f.write(new_signature)
        
        # openssl dgst -sha256 -verify vk.pem -signature data.sig2 data
        ```
        
        Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the
        `sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for
        respectively writing and reading the signatures.
        
        The keys also can be written in format that openssl can handle:
        
        ```python
        from ecdsa import SigningKey, VerifyingKey
        
        with open("sk.pem") as f:
            sk = SigningKey.from_pem(f.read())
        with open("sk.pem", "wb") as f:
            f.write(sk.to_pem())
        
        with open("vk.pem") as f:
            vk = VerifyingKey.from_pem(f.read())
        with open("vk.pem", "wb") as f:
            f.write(vk.to_pem())
        ```
        
        ## Entropy
        
        Creating a signing key with `SigningKey.generate()` requires some form of
        entropy (as opposed to
        `from_secret_exponent`/`from_string`/`from_der`/`from_pem`,
        which are deterministic and do not require an entropy source). The default
        source is `os.urandom()`, but you can pass any other function that behaves
        like `os.urandom` as the `entropy=` argument to do something different. This
        may be useful in unit tests, where you want to achieve repeatable results. The
        `ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong
        pseudo-random stream from it:
        
        ```python
        from ecdsa.util import PRNG
        from ecdsa import SigningKey
        rng1 = PRNG(b"seed")
        sk1 = SigningKey.generate(entropy=rng1)
        rng2 = PRNG(b"seed")
        sk2 = SigningKey.generate(entropy=rng2)
        # sk1 and sk2 are the same key
        ```
        
        Likewise, ECDSA signature generation requires a random number, and each
        signature must use a different one (using the same number twice will
        immediately reveal the private signing key). The `sk.sign()` method takes an
        `entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`.
        
        ## Deterministic Signatures
        
        If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`,
        the code will generate a deterministic signature instead of a random one.
        This uses the algorithm from RFC6979 to safely generate a unique `k` value,
        derived from the private key and the message being signed. Each time you sign
        the same message with the same key, you will get the same signature (using
        the same `k`).
        
        This may become the default in a future version, as it is not vulnerable to
        failures of the entropy source.
        
        ## Examples
        
        Create a NIST192p keypair and immediately save both to disk:
        
        ```python
        from ecdsa import SigningKey
        sk = SigningKey.generate()
        vk = sk.verifying_key
        with open("private.pem", "wb") as f:
            f.write(sk.to_pem())
        with open("public.pem", "wb") as f:
            f.write(vk.to_pem())
        ```
        
        Load a signing key from disk, use it to sign a message (using SHA-1), and write
        the signature to disk:
        
        ```python
        from ecdsa import SigningKey
        with open("private.pem") as f:
            sk = SigningKey.from_pem(f.read())
        with open("message", "rb") as f:
            message = f.read()
        sig = sk.sign(message)
        with open("signature", "wb") as f:
            f.write(sig)
        ```
        
        Load the verifying key, message, and signature from disk, and verify the
        signature (assume SHA-1 hash):
        
        ```python
        from ecdsa import VerifyingKey, BadSignatureError
        vk = VerifyingKey.from_pem(open("public.pem").read())
        with open("message", "rb") as f:
            message = f.read()
        with open("signature", "rb") as f:
            sig = f.read()
        try:
            vk.verify(sig, message)
            print "good signature"
        except BadSignatureError:
            print "BAD SIGNATURE"
        ```
        
        Create a NIST521p keypair:
        
        ```python
        from ecdsa import SigningKey, NIST521p
        sk = SigningKey.generate(curve=NIST521p)
        vk = sk.verifying_key
        ```
        
        Create three independent signing keys from a master seed:
        
        ```python
        from ecdsa import NIST192p, SigningKey
        from ecdsa.util import randrange_from_seed__trytryagain
        
        def make_key_from_seed(seed, curve=NIST192p):
            secexp = randrange_from_seed__trytryagain(seed, curve.order)
            return SigningKey.from_secret_exponent(secexp, curve)
        
        sk1 = make_key_from_seed("1:%s" % seed)
        sk2 = make_key_from_seed("2:%s" % seed)
        sk3 = make_key_from_seed("3:%s" % seed)
        ```
        
        Load a verifying key from disk and print it using hex encoding in
        uncompressed and compressed format (defined in X9.62 and SEC1 standards):
        
        ```python
        from ecdsa import VerifyingKey
        
        with open("public.pem") as f:
            vk = VerifyingKey.from_pem(f.read())
        
        print("uncompressed: {0}".format(vk.to_string("uncompressed").hex()))
        print("compressed: {0}".format(vk.to_string("compressed").hex()))
        ```
        
        Load a verifying key from a hex string from compressed format, output
        uncompressed:
        
        ```python
        from ecdsa import VerifyingKey, NIST256p
        
        comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759'
        vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p)
        print(vk.to_string("uncompressed").hex())
        ```
        
        ECDH key exchange with remote party
        
        ```python
        from ecdsa import ECDH, NIST256p
        
        ecdh = ECDH(curve=NIST256p)
        ecdh.generate_private_key()
        local_public_key = ecdh.get_public_key()
        #send `local_public_key` to remote party and receive `remote_public_key` from remote party
        with open("remote_public_key.pem") as e:
            remote_public_key = e.read()
        ecdh.load_received_public_key_pem(remote_public_key)
        secret = ecdh.generate_sharedsecret_bytes()
        ```
        
Platform: UNKNOWN
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Requires-Python: >=2.6, !=3.0.*, !=3.1.*, !=3.2.*
Description-Content-Type: text/markdown
Provides-Extra: gmpy2
Provides-Extra: gmpy