1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
#[macro_use]
extern crate bitflags;
mod channel;
mod coefficient;
// Export Channel outside.
pub use channel::Channel;
use coefficient::{Coefficient, MixingCoefficient};
use std::default::Default;
use std::fmt::Debug;
use std::ops::{AddAssign, Mul};
// A mixer mixing M-channel input data to N-channel output data.
// T::Coef is an associated type defined in MixingCoefficient, which indicates the type of the
// mixing coefficient that would be used for type T. When T is f32, the T::Coef is f32. When T
// is i16, the T::Coef is i32. When mixing data, a temporary variable with type T::Coef would be
// created to hold the mixing result. Since the type of input and output audio data is T,
// the methods provided from MixingCoefficient trait would be used to convert the value between
// type T and T::Coef.
#[derive(Debug)]
pub struct Mixer<T>
where
T: Copy + Debug + MixingCoefficient,
T::Coef: AddAssign + Copy + Debug + Default + Mul<T::Coef, Output = T::Coef>,
{
coefficient: Coefficient<T>,
}
impl<T> Mixer<T>
where
T: Copy + Debug + MixingCoefficient,
T::Coef: AddAssign + Copy + Debug + Default + Mul<T::Coef, Output = T::Coef>,
{
pub fn new(input_channels: &[Channel], output_channels: &[Channel]) -> Self {
Self {
coefficient: Coefficient::create(input_channels, output_channels),
}
}
// To mix M-channel audio input data to N-channel output data, the data in output-channel i
// is the sum of product of data in input-channel j and the coefficient for mixing from
// input-channel j to output-channel i, for all j in M channels. That is,
// output_data(i) = Σ coefficient(j, i) * input_data(j), for all j in [0, M),
// where i is in [0, N) and coefficient is a function returning mixing coefficient from
// input channel j to output channel i.
pub fn mix(&self, input_buffer: &[T], output_buffer: &mut [T]) {
assert_eq!(
input_buffer.len(),
self.input_channels().len(),
"input slice must have the same size as the input channel's one."
);
assert_eq!(
output_buffer.len(),
self.output_channels().len(),
"output slice must have the same size as the output channel's one."
);
for (i, output) in output_buffer.iter_mut().enumerate() {
// T must implement Default that returns a zero value from default().
let mut value = T::Coef::default(); // Create a zero value.
for (j, input) in input_buffer.iter().enumerate() {
// T::Coef needs to implement `AddAssign` and `Mul` to make `+=` and `*` work.
// T needs to implement `Copy` so `*input` can be copied.
value += self.coefficient.get(j, i) * T::to_coefficient_value(*input);
}
*output = T::from_coefficient_value(
value,
self.coefficient.would_overflow_from_coefficient_value(),
);
}
}
pub fn input_channels(&self) -> &[Channel] {
&self.coefficient.input_channels()
}
pub fn output_channels(&self) -> &[Channel] {
&self.coefficient.output_channels()
}
}
|