1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
|
use {IntoBuf, Buf, BufMut};
use buf::Iter;
use debug;
use std::{cmp, fmt, mem, hash, ops, slice, ptr, usize};
use std::borrow::{Borrow, BorrowMut};
use std::io::Cursor;
use std::sync::atomic::{self, AtomicUsize, AtomicPtr};
use std::sync::atomic::Ordering::{Relaxed, Acquire, Release, AcqRel};
use std::iter::{FromIterator, Iterator};
/// A reference counted contiguous slice of memory.
///
/// `Bytes` is an efficient container for storing and operating on contiguous
/// slices of memory. It is intended for use primarily in networking code, but
/// could have applications elsewhere as well.
///
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
/// `Bytes` objects to point to the same underlying memory. This is managed by
/// using a reference count to track when the memory is no longer needed and can
/// be freed.
///
/// ```
/// use bytes::Bytes;
///
/// let mut mem = Bytes::from(&b"Hello world"[..]);
/// let a = mem.slice(0, 5);
///
/// assert_eq!(&a[..], b"Hello");
///
/// let b = mem.split_to(6);
///
/// assert_eq!(&mem[..], b"world");
/// assert_eq!(&b[..], b"Hello ");
/// ```
///
/// # Memory layout
///
/// The `Bytes` struct itself is fairly small, limited to a pointer to the
/// memory and 4 `usize` fields used to track information about which segment of
/// the underlying memory the `Bytes` handle has access to.
///
/// The memory layout looks like this:
///
/// ```text
/// +-------+
/// | Bytes |
/// +-------+
/// / \_____
/// | \
/// v v
/// +-----+------------------------------------+
/// | Arc | | Data | |
/// +-----+------------------------------------+
/// ```
///
/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
/// slice and a pointer to the start of the region visible by the handle.
/// `Bytes` also tracks the length of its view into the memory.
///
/// # Sharing
///
/// The memory itself is reference counted, and multiple `Bytes` objects may
/// point to the same region. Each `Bytes` handle point to different sections within
/// the memory region, and `Bytes` handle may or may not have overlapping views
/// into the memory.
///
///
/// ```text
///
/// Arc ptrs +---------+
/// ________________________ / | Bytes 2 |
/// / +---------+
/// / +-----------+ | |
/// |_________/ | Bytes 1 | | |
/// | +-----------+ | |
/// | | | ___/ data | tail
/// | data | tail |/ |
/// v v v v
/// +-----+---------------------------------+-----+
/// | Arc | | | | |
/// +-----+---------------------------------+-----+
/// ```
///
/// # Mutating
///
/// While `Bytes` handles may potentially represent overlapping views of the
/// underlying memory slice and may not be mutated, `BytesMut` handles are
/// guaranteed to be the only handle able to view that slice of memory. As such,
/// `BytesMut` handles are able to mutate the underlying memory. Note that
/// holding a unique view to a region of memory does not mean that there are no
/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying
/// memory.
///
/// # Inline bytes
///
/// As an optimization, when the slice referenced by a `Bytes` or `BytesMut`
/// handle is small enough [^1], `with_capacity` will avoid the allocation by
/// inlining the slice directly in the handle. In this case, a clone is no
/// longer "shallow" and the data will be copied. Converting from a `Vec` will
/// never use inlining.
///
/// [^1]: Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems.
///
pub struct Bytes {
inner: Inner,
}
/// A unique reference to a contiguous slice of memory.
///
/// `BytesMut` represents a unique view into a potentially shared memory region.
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
/// allocations.
///
/// For more detail, see [Bytes](struct.Bytes.html).
///
/// # Growth
///
/// One key difference from `Vec<u8>` is that most operations **do not
/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
/// world");` could panic if `my_bytes` does not have enough capacity. Before
/// writing to the buffer, ensure that there is enough remaining capacity by
/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
/// is preferable.
///
/// The only exception is `extend` which implicitly reserves required capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(64);
///
/// buf.put(b'h');
/// buf.put(b'e');
/// buf.put("llo");
///
/// assert_eq!(&buf[..], b"hello");
///
/// // Freeze the buffer so that it can be shared
/// let a = buf.freeze();
///
/// // This does not allocate, instead `b` points to the same memory.
/// let b = a.clone();
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
pub struct BytesMut {
inner: Inner,
}
// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated
// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions
// that mutate the underlying buffer are only performed when the data range
// being mutated is only available via a single `BytesMut` handle.
//
// # Data storage modes
//
// The goal of `bytes` is to be as efficient as possible across a wide range of
// potential usage patterns. As such, `bytes` needs to be able to handle buffers
// that are never shared, shared on a single thread, and shared across many
// threads. `bytes` also needs to handle both tiny buffers as well as very large
// buffers. For example, [Cassandra](http://cassandra.apache.org) values have
// been known to be in the hundreds of megabyte, and HTTP header values can be a
// few characters in size.
//
// To achieve high performance in these various situations, `Bytes` and
// `BytesMut` use different strategies for storing the buffer depending on the
// usage pattern.
//
// ## Delayed `Arc` allocation
//
// When a `Bytes` or `BytesMut` is first created, there is only one outstanding
// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is
// not used and the buffer is backed by a `Vec<u8>` directly. Using an
// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being
// shared, that allocation is avoided.
//
// When sharing does become necessary (`clone`, `split_to`, `split_off`), that
// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved
// into an `Arc` and both the original handle and the new handle use the same
// buffer via the `Arc`.
//
// * `Arc` is being used to signify an atomically reference counted cell. We
// don't use the `Arc` implementation provided by `std` and instead use our own.
// This ends up simplifying a number of the `unsafe` code snippets.
//
// ## Inlining small buffers
//
// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit
// systems, this ends up being 32 bytes, which is actually a lot of storage for
// cases where `Bytes` is being used to represent small byte strings, such as
// HTTP header names and values.
//
// To avoid any allocation at all in these cases, `Bytes` will use the struct
// itself for storing the buffer, reserving 1 byte for meta data. This means
// that, on 64 bit systems, 31 byte buffers require no allocation at all.
//
// The byte used for metadata stores a 2 bits flag used to indicate that the
// buffer is stored inline as well as 6 bits for tracking the buffer length (the
// return value of `Bytes::len`).
//
// ## Static buffers
//
// `Bytes` can also represent a static buffer, which is created with
// `Bytes::from_static`. No copying or allocations are required for tracking
// static buffers. The pointer to the `&'static [u8]`, the length, and a flag
// tracking that the `Bytes` instance represents a static buffer is stored in
// the `Bytes` struct.
//
// # Struct layout
//
// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the
// data fields as well as all of the function implementations.
//
// The `Inner` struct is carefully laid out in order to support the
// functionality described above as well as being as small as possible. Size is
// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes
// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header
// map structure.
//
// The `Inner` struct contains the following fields:
//
// * `ptr: *mut u8`
// * `len: usize`
// * `cap: usize`
// * `arc: AtomicPtr<Shared>`
//
// ## `ptr: *mut u8`
//
// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`,
// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr`
// may have been shifted to point somewhere inside the buffer.
//
// When in "inlined" mode, `ptr` is used as part of the inlined buffer.
//
// ## `len: usize`
//
// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is
// always the `Vec`'s length. The slice represented by `ptr` and `len` should
// (ideally) always be initialized memory.
//
// When in "inlined" mode, `len` is used as part of the inlined buffer.
//
// ## `cap: usize`
//
// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is
// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len`
// may or may not be initialized memory.
//
// When in "inlined" mode, `cap` is used as part of the inlined buffer.
//
// ## `arc: AtomicPtr<Shared>`
//
// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this
// will be the pointer to the `Arc` structure tracking the ref count for the
// underlying buffer. When the pointer is null, then the `Arc` has not been
// allocated yet and `self` is the only outstanding handle for the underlying
// buffer.
//
// The lower two bits of `arc` are used to track the storage mode of `Inner`.
// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11`
// indicates vector storage, not yet promoted to Arc. Since pointers to
// allocated structures are aligned, the lower two bits of a pointer will always
// be 0. This allows disambiguating between a pointer and the two flags.
//
// When in "inlined" mode, the least significant byte of `arc` is also used to
// store the length of the buffer view (vs. the capacity, which is a constant).
//
// The rest of `arc`'s bytes are used as part of the inline buffer, which means
// that those bytes need to be located next to the `ptr`, `len`, and `cap`
// fields, which make up the rest of the inline buffer. This requires special
// casing the layout of `Inner` depending on if the target platform is bit or
// little endian.
//
// On little endian platforms, the `arc` field must be the first field in the
// struct. On big endian platforms, the `arc` field must be the last field in
// the struct. Since a deterministic struct layout is required, `Inner` is
// annotated with `#[repr(C)]`.
//
// # Thread safety
//
// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done
// by bumping the buffer ref count and returning a new struct pointing to the
// same buffer. However, the `Arc` structure is lazily allocated. This means
// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone`
// function can be called concurrently from multiple threads. This is why an
// `AtomicPtr` is used for the `arc` field vs. a `*const`.
//
// Care is taken to ensure that the need for synchronization is minimized. Most
// operations do not require any synchronization.
//
#[cfg(target_endian = "little")]
#[repr(C)]
struct Inner {
// WARNING: Do not access the fields directly unless you know what you are
// doing. Instead, use the fns. See implementation comment above.
arc: AtomicPtr<Shared>,
ptr: *mut u8,
len: usize,
cap: usize,
}
#[cfg(target_endian = "big")]
#[repr(C)]
struct Inner {
// WARNING: Do not access the fields directly unless you know what you are
// doing. Instead, use the fns. See implementation comment above.
ptr: *mut u8,
len: usize,
cap: usize,
arc: AtomicPtr<Shared>,
}
// Thread-safe reference-counted container for the shared storage. This mostly
// the same as `std::sync::Arc` but without the weak counter. The ref counting
// fns are based on the ones found in `std`.
//
// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends
// up making the overall code simpler and easier to reason about. This is due to
// some of the logic around setting `Inner::arc` and other ways the `arc` field
// is used. Using `Arc` ended up requiring a number of funky transmutes and
// other shenanigans to make it work.
struct Shared {
vec: Vec<u8>,
original_capacity_repr: usize,
ref_count: AtomicUsize,
}
// Buffer storage strategy flags.
const KIND_ARC: usize = 0b00;
const KIND_INLINE: usize = 0b01;
const KIND_STATIC: usize = 0b10;
const KIND_VEC: usize = 0b11;
const KIND_MASK: usize = 0b11;
// The max original capacity value. Any `Bytes` allocated with a greater initial
// capacity will default to this.
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
// The original capacity algorithm will not take effect unless the originally
// allocated capacity was at least 1kb in size.
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
// The original capacity is stored in powers of 2 starting at 1kb to a max of
// 64kb. Representing it as such requires only 3 bits of storage.
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
// When the storage is in the `Vec` representation, the pointer can be advanced
// at most this value. This is due to the amount of storage available to track
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
// bits.
const VEC_POS_OFFSET: usize = 5;
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
const NOT_VEC_POS_MASK: usize = 0b11111;
// Bit op constants for extracting the inline length value from the `arc` field.
const INLINE_LEN_MASK: usize = 0b11111100;
const INLINE_LEN_OFFSET: usize = 2;
// Byte offset from the start of `Inner` to where the inline buffer data
// starts. On little endian platforms, the first byte of the struct is the
// storage flag, so the data is shifted by a byte. On big endian systems, the
// data starts at the beginning of the struct.
#[cfg(target_endian = "little")]
const INLINE_DATA_OFFSET: isize = 1;
#[cfg(target_endian = "big")]
const INLINE_DATA_OFFSET: isize = 0;
#[cfg(target_pointer_width = "64")]
const PTR_WIDTH: usize = 64;
#[cfg(target_pointer_width = "32")]
const PTR_WIDTH: usize = 32;
// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the
// metadata.
#[cfg(target_pointer_width = "64")]
const INLINE_CAP: usize = 4 * 8 - 1;
#[cfg(target_pointer_width = "32")]
const INLINE_CAP: usize = 4 * 4 - 1;
/*
*
* ===== Bytes =====
*
*/
impl Bytes {
/// Creates a new `Bytes` with the specified capacity.
///
/// The returned `Bytes` will be able to hold at least `capacity` bytes
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
/// then `BytesMut` will not allocate.
///
/// It is important to note that this function does not specify the length
/// of the returned `Bytes`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut bytes = Bytes::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.extend_from_slice(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> Bytes {
Bytes {
inner: Inner::with_capacity(capacity),
}
}
/// Creates a new empty `Bytes`.
///
/// This will not allocate and the returned `Bytes` handle will be empty.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert_eq!(&b[..], b"");
/// ```
#[inline]
pub fn new() -> Bytes {
Bytes::with_capacity(0)
}
/// Creates a new `Bytes` from a static slice.
///
/// The returned `Bytes` will point directly to the static slice. There is
/// no allocating or copying.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from_static(b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
#[inline]
pub fn from_static(bytes: &'static [u8]) -> Bytes {
Bytes {
inner: Inner::from_static(bytes),
}
}
/// Returns the number of bytes contained in this `Bytes`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns true if the `Bytes` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert!(b.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Returns a slice of self for the index range `[begin..end)`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice(2, 5);
///
/// assert_eq!(&b[..], b"llo");
/// ```
///
/// # Panics
///
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
/// will panic.
pub fn slice(&self, begin: usize, end: usize) -> Bytes {
assert!(begin <= end);
assert!(end <= self.len());
if end - begin <= INLINE_CAP {
return Bytes::from(&self[begin..end]);
}
let mut ret = self.clone();
unsafe {
ret.inner.set_end(end);
ret.inner.set_start(begin);
}
ret
}
/// Returns a slice of self for the index range `[begin..self.len())`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)` and is equivalent to `self.slice(begin,
/// self.len())`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice_from(6);
///
/// assert_eq!(&b[..], b"world");
/// ```
///
/// # Panics
///
/// Requires that `begin <= self.len()`, otherwise slicing will panic.
pub fn slice_from(&self, begin: usize) -> Bytes {
self.slice(begin, self.len())
}
/// Returns a slice of self for the index range `[0..end)`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)` and is equivalent to `self.slice(0, end)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice_to(5);
///
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Requires that `end <= self.len()`, otherwise slicing will panic.
pub fn slice_to(&self, end: usize) -> Bytes {
self.slice(0, end)
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
/// contains elements `[at, len)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_off(5);
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b" world");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_off(&mut self, at: usize) -> Bytes {
assert!(at <= self.len());
if at == self.len() {
return Bytes::new();
}
if at == 0 {
return mem::replace(self, Bytes::new());
}
Bytes {
inner: self.inner.split_off(at),
}
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned
/// `Bytes` contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_to(5);
///
/// assert_eq!(&a[..], b" world");
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_to(&mut self, at: usize) -> Bytes {
assert!(at <= self.len());
if at == self.len() {
return mem::replace(self, Bytes::new());
}
if at == 0 {
return Bytes::new();
}
Bytes {
inner: self.inner.split_to(at),
}
}
#[deprecated(since = "0.4.1", note = "use split_to instead")]
#[doc(hidden)]
pub fn drain_to(&mut self, at: usize) -> Bytes {
self.split_to(at)
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
self.inner.truncate(len);
}
/// Shortens the buffer, dropping the first `cnt` bytes and keeping the
/// rest.
///
/// This is the same function as `Buf::advance`, and in the next breaking
/// release of `bytes`, this implementation will be removed in favor of
/// having `Bytes` implement `Buf`.
///
/// # Panics
///
/// This function panics if `cnt` is greater than `self.len()`
#[inline]
pub fn advance(&mut self, cnt: usize) {
assert!(cnt <= self.len(), "cannot advance past `remaining`");
unsafe { self.inner.set_start(cnt); }
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Attempts to convert into a `BytesMut` handle.
///
/// This will only succeed if there are no other outstanding references to
/// the underlying chunk of memory. `Bytes` handles that contain inlined
/// bytes will always be convertable to `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"Mary had a little lamb, little lamb, little lamb..."[..]);
///
/// // Create a shallow clone
/// let b = a.clone();
///
/// // This will fail because `b` shares a reference with `a`
/// let a = a.try_mut().unwrap_err();
///
/// drop(b);
///
/// // This will succeed
/// let mut a = a.try_mut().unwrap();
///
/// a[0] = b'b';
///
/// assert_eq!(&a[..4], b"bary");
/// ```
pub fn try_mut(mut self) -> Result<BytesMut, Bytes> {
if self.inner.is_mut_safe() {
Ok(BytesMut { inner: self.inner })
} else {
Err(self)
}
}
/// Appends given bytes to this object.
///
/// If this `Bytes` object has not enough capacity, it is resized first.
/// If it is shared (`refcount > 1`), it is copied first.
///
/// This operation can be less effective than the similar operation on
/// `BytesMut`, especially on small additions.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from("aabb");
/// buf.extend_from_slice(b"ccdd");
/// buf.extend_from_slice(b"eeff");
///
/// assert_eq!(b"aabbccddeeff", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
if extend.is_empty() {
return;
}
let new_cap = self.len().checked_add(extend.len()).expect("capacity overflow");
let result = match mem::replace(self, Bytes::new()).try_mut() {
Ok(mut bytes_mut) => {
bytes_mut.extend_from_slice(extend);
bytes_mut
},
Err(bytes) => {
let mut bytes_mut = BytesMut::with_capacity(new_cap);
bytes_mut.put_slice(&bytes);
bytes_mut.put_slice(extend);
bytes_mut
}
};
mem::replace(self, result.freeze());
}
}
impl IntoBuf for Bytes {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl<'a> IntoBuf for &'a Bytes {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl Clone for Bytes {
fn clone(&self) -> Bytes {
Bytes {
inner: unsafe { self.inner.shallow_clone(false) },
}
}
}
impl AsRef<[u8]> for Bytes {
#[inline]
fn as_ref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl ops::Deref for Bytes {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl From<BytesMut> for Bytes {
fn from(src: BytesMut) -> Bytes {
src.freeze()
}
}
impl From<Vec<u8>> for Bytes {
fn from(src: Vec<u8>) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl From<String> for Bytes {
fn from(src: String) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl<'a> From<&'a [u8]> for Bytes {
fn from(src: &'a [u8]) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl<'a> From<&'a str> for Bytes {
fn from(src: &'a str) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl FromIterator<u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
let iter = into_iter.into_iter();
let (min, maybe_max) = iter.size_hint();
let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min));
for i in iter {
out.reserve(1);
out.put(i);
}
out
}
}
impl FromIterator<u8> for Bytes {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
BytesMut::from_iter(into_iter).freeze()
}
}
impl PartialEq for Bytes {
fn eq(&self, other: &Bytes) -> bool {
self.inner.as_ref() == other.inner.as_ref()
}
}
impl PartialOrd for Bytes {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.inner.as_ref())
}
}
impl Ord for Bytes {
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
self.inner.as_ref().cmp(other.inner.as_ref())
}
}
impl Eq for Bytes {
}
impl Default for Bytes {
#[inline]
fn default() -> Bytes {
Bytes::new()
}
}
impl fmt::Debug for Bytes {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
}
}
impl hash::Hash for Bytes {
fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for Bytes {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl IntoIterator for Bytes {
type Item = u8;
type IntoIter = Iter<Cursor<Bytes>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl<'a> IntoIterator for &'a Bytes {
type Item = u8;
type IntoIter = Iter<Cursor<&'a Bytes>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl Extend<u8> for Bytes {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
let iter = iter.into_iter();
let (lower, upper) = iter.size_hint();
// Avoid possible conversion into mut if there's nothing to add
if let Some(0) = upper {
return;
}
let mut bytes_mut = match mem::replace(self, Bytes::new()).try_mut() {
Ok(bytes_mut) => bytes_mut,
Err(bytes) => {
let mut bytes_mut = BytesMut::with_capacity(bytes.len() + lower);
bytes_mut.put_slice(&bytes);
bytes_mut
}
};
bytes_mut.extend(iter);
mem::replace(self, bytes_mut.freeze());
}
}
impl<'a> Extend<&'a u8> for Bytes {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
self.extend(iter.into_iter().map(|b| *b))
}
}
/*
*
* ===== BytesMut =====
*
*/
impl BytesMut {
/// Creates a new `BytesMut` with the specified capacity.
///
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
/// then `BytesMut` will not allocate.
///
/// It is important to note that this function does not specify the length
/// of the returned `BytesMut`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.put(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> BytesMut {
BytesMut {
inner: Inner::with_capacity(capacity),
}
}
/// Creates a new `BytesMut` with default capacity.
///
/// Resulting object has length 0 and unspecified capacity.
/// This function does not allocate.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::new();
///
/// assert_eq!(0, bytes.len());
///
/// bytes.reserve(2);
/// bytes.put_slice(b"xy");
///
/// assert_eq!(&b"xy"[..], &bytes[..]);
/// ```
#[inline]
pub fn new() -> BytesMut {
BytesMut::with_capacity(0)
}
/// Returns the number of bytes contained in this `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns true if the `BytesMut` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert!(b.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert_eq!(b.capacity(), 64);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Converts `self` into an immutable `Bytes`.
///
/// The conversion is zero cost and is used to indicate that the slice
/// referenced by the handle will no longer be mutated. Once the conversion
/// is done, the handle can be cloned and shared across threads.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
/// use std::thread;
///
/// let mut b = BytesMut::with_capacity(64);
/// b.put("hello world");
/// let b1 = b.freeze();
/// let b2 = b1.clone();
///
/// let th = thread::spawn(move || {
/// assert_eq!(&b1[..], b"hello world");
/// });
///
/// assert_eq!(&b2[..], b"hello world");
/// th.join().unwrap();
/// ```
#[inline]
pub fn freeze(self) -> Bytes {
Bytes { inner: self.inner }
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned
/// `BytesMut` contains elements `[at, capacity)`.
///
/// This is an `O(1)` operation that just increases the reference count
/// and sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_off(5);
///
/// a[0] = b'j';
/// b[0] = b'!';
///
/// assert_eq!(&a[..], b"jello");
/// assert_eq!(&b[..], b"!world");
/// ```
///
/// # Panics
///
/// Panics if `at > capacity`.
pub fn split_off(&mut self, at: usize) -> BytesMut {
BytesMut {
inner: self.inner.split_off(at),
}
}
/// Removes the bytes from the current view, returning them in a new
/// `BytesMut` handle.
///
/// Afterwards, `self` will be empty, but will retain any additional
/// capacity that it had before the operation. This is identical to
/// `self.split_to(self.len())`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(1024);
/// buf.put(&b"hello world"[..]);
///
/// let other = buf.take();
///
/// assert!(buf.is_empty());
/// assert_eq!(1013, buf.capacity());
///
/// assert_eq!(other, b"hello world"[..]);
/// ```
pub fn take(&mut self) -> BytesMut {
let len = self.len();
self.split_to(len)
}
#[deprecated(since = "0.4.1", note = "use take instead")]
#[doc(hidden)]
pub fn drain(&mut self) -> BytesMut {
self.take()
}
/// Splits the buffer into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
/// contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_to(5);
///
/// a[0] = b'!';
/// b[0] = b'j';
///
/// assert_eq!(&a[..], b"!world");
/// assert_eq!(&b[..], b"jello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_to(&mut self, at: usize) -> BytesMut {
BytesMut {
inner: self.inner.split_to(at),
}
}
#[deprecated(since = "0.4.1", note = "use split_to instead")]
#[doc(hidden)]
pub fn drain_to(&mut self, at: usize) -> BytesMut {
self.split_to(at)
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
self.inner.truncate(len);
}
/// Shortens the buffer, dropping the first `cnt` bytes and keeping the
/// rest.
///
/// This is the same function as `Buf::advance`, and in the next breaking
/// release of `bytes`, this implementation will be removed in favor of
/// having `BytesMut` implement `Buf`.
///
/// # Panics
///
/// This function panics if `cnt` is greater than `self.len()`
#[inline]
pub fn advance(&mut self, cnt: usize) {
assert!(cnt <= self.len(), "cannot advance past `remaining`");
unsafe { self.inner.set_start(cnt); }
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Resizes the buffer so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the buffer is extended by the
/// difference with each additional byte set to `value`. If `new_len` is
/// less than `len`, the buffer is simply truncated.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::new();
///
/// buf.resize(3, 0x1);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
///
/// buf.resize(2, 0x2);
/// assert_eq!(&buf[..], &[0x1, 0x1]);
///
/// buf.resize(4, 0x3);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
/// ```
pub fn resize(&mut self, new_len: usize, value: u8) {
self.inner.resize(new_len, value);
}
/// Sets the length of the buffer.
///
/// This will explicitly set the size of the buffer without actually
/// modifying the data, so it is up to the caller to ensure that the data
/// has been initialized.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut b = BytesMut::from(&b"hello world"[..]);
///
/// unsafe {
/// b.set_len(5);
/// }
///
/// assert_eq!(&b[..], b"hello");
///
/// unsafe {
/// b.set_len(11);
/// }
///
/// assert_eq!(&b[..], b"hello world");
/// ```
///
/// # Panics
///
/// This method will panic if `len` is out of bounds for the underlying
/// slice or if it comes after the `end` of the configured window.
pub unsafe fn set_len(&mut self, len: usize) {
self.inner.set_len(len)
}
/// Reserves capacity for at least `additional` more bytes to be inserted
/// into the given `BytesMut`.
///
/// More than `additional` bytes may be reserved in order to avoid frequent
/// reallocations. A call to `reserve` may result in an allocation.
///
/// Before allocating new buffer space, the function will attempt to reclaim
/// space in the existing buffer. If the current handle references a small
/// view in the original buffer and all other handles have been dropped,
/// and the requested capacity is less than or equal to the existing
/// buffer's capacity, then the current view will be copied to the front of
/// the buffer and the handle will take ownership of the full buffer.
///
/// # Examples
///
/// In the following example, a new buffer is allocated.
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello"[..]);
/// buf.reserve(64);
/// assert!(buf.capacity() >= 69);
/// ```
///
/// In the following example, the existing buffer is reclaimed.
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(128);
/// buf.put(&[0; 64][..]);
///
/// let ptr = buf.as_ptr();
/// let other = buf.take();
///
/// assert!(buf.is_empty());
/// assert_eq!(buf.capacity(), 64);
///
/// drop(other);
/// buf.reserve(128);
///
/// assert_eq!(buf.capacity(), 128);
/// assert_eq!(buf.as_ptr(), ptr);
/// ```
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
/// Appends given bytes to this object.
///
/// If this `BytesMut` object has not enough capacity, it is resized first.
/// So unlike `put_slice` operation, `extend_from_slice` does not panic.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(0);
/// buf.extend_from_slice(b"aaabbb");
/// buf.extend_from_slice(b"cccddd");
///
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
self.reserve(extend.len());
self.put_slice(extend);
}
/// Combine splitted BytesMut objects back as contiguous.
///
/// If `BytesMut` objects were not contiguous originally, they will be extended.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(64);
/// buf.extend_from_slice(b"aaabbbcccddd");
///
/// let splitted = buf.split_off(6);
/// assert_eq!(b"aaabbb", &buf[..]);
/// assert_eq!(b"cccddd", &splitted[..]);
///
/// buf.unsplit(splitted);
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn unsplit(&mut self, other: BytesMut) {
let ptr;
if other.is_empty() {
return;
}
if self.is_empty() {
*self = other;
return;
}
unsafe {
ptr = self.inner.ptr.offset(self.inner.len as isize);
}
if ptr == other.inner.ptr &&
self.inner.kind() == KIND_ARC &&
other.inner.kind() == KIND_ARC
{
debug_assert_eq!(self.inner.arc.load(Acquire),
other.inner.arc.load(Acquire));
// Contiguous blocks, just combine directly
self.inner.len += other.inner.len;
self.inner.cap += other.inner.cap;
}
else {
self.extend_from_slice(&other);
}
}
}
impl BufMut for BytesMut {
#[inline]
fn remaining_mut(&self) -> usize {
self.capacity() - self.len()
}
#[inline]
unsafe fn advance_mut(&mut self, cnt: usize) {
let new_len = self.len() + cnt;
// This call will panic if `cnt` is too big
self.inner.set_len(new_len);
}
#[inline]
unsafe fn bytes_mut(&mut self) -> &mut [u8] {
let len = self.len();
// This will never panic as `len` can never become invalid
&mut self.inner.as_raw()[len..]
}
#[inline]
fn put_slice(&mut self, src: &[u8]) {
assert!(self.remaining_mut() >= src.len());
let len = src.len();
unsafe {
self.bytes_mut()[..len].copy_from_slice(src);
self.advance_mut(len);
}
}
#[inline]
fn put_u8(&mut self, n: u8) {
self.inner.put_u8(n);
}
#[inline]
fn put_i8(&mut self, n: i8) {
self.put_u8(n as u8);
}
}
impl IntoBuf for BytesMut {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl<'a> IntoBuf for &'a BytesMut {
type Buf = Cursor<&'a BytesMut>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl AsRef<[u8]> for BytesMut {
#[inline]
fn as_ref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl ops::Deref for BytesMut {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_ref()
}
}
impl AsMut<[u8]> for BytesMut {
fn as_mut(&mut self) -> &mut [u8] {
self.inner.as_mut()
}
}
impl ops::DerefMut for BytesMut {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.inner.as_mut()
}
}
impl From<Vec<u8>> for BytesMut {
fn from(src: Vec<u8>) -> BytesMut {
BytesMut {
inner: Inner::from_vec(src),
}
}
}
impl From<String> for BytesMut {
fn from(src: String) -> BytesMut {
BytesMut::from(src.into_bytes())
}
}
impl<'a> From<&'a [u8]> for BytesMut {
fn from(src: &'a [u8]) -> BytesMut {
let len = src.len();
if len == 0 {
BytesMut::new()
} else if len <= INLINE_CAP {
unsafe {
let mut inner: Inner = mem::uninitialized();
// Set inline mask
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
inner.set_inline_len(len);
inner.as_raw()[0..len].copy_from_slice(src);
BytesMut {
inner: inner,
}
}
} else {
BytesMut::from(src.to_vec())
}
}
}
impl<'a> From<&'a str> for BytesMut {
fn from(src: &'a str) -> BytesMut {
BytesMut::from(src.as_bytes())
}
}
impl From<Bytes> for BytesMut {
fn from(src: Bytes) -> BytesMut {
src.try_mut()
.unwrap_or_else(|src| BytesMut::from(&src[..]))
}
}
impl PartialEq for BytesMut {
fn eq(&self, other: &BytesMut) -> bool {
self.inner.as_ref() == other.inner.as_ref()
}
}
impl PartialOrd for BytesMut {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.inner.as_ref())
}
}
impl Ord for BytesMut {
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
self.inner.as_ref().cmp(other.inner.as_ref())
}
}
impl Eq for BytesMut {
}
impl Default for BytesMut {
#[inline]
fn default() -> BytesMut {
BytesMut::new()
}
}
impl fmt::Debug for BytesMut {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
}
}
impl hash::Hash for BytesMut {
fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for BytesMut {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl BorrowMut<[u8]> for BytesMut {
fn borrow_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl fmt::Write for BytesMut {
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
if self.remaining_mut() >= s.len() {
self.put_slice(s.as_bytes());
Ok(())
} else {
Err(fmt::Error)
}
}
#[inline]
fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
fmt::write(self, args)
}
}
impl Clone for BytesMut {
fn clone(&self) -> BytesMut {
BytesMut::from(&self[..])
}
}
impl IntoIterator for BytesMut {
type Item = u8;
type IntoIter = Iter<Cursor<BytesMut>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl<'a> IntoIterator for &'a BytesMut {
type Item = u8;
type IntoIter = Iter<Cursor<&'a BytesMut>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl Extend<u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
for b in iter {
unsafe {
self.bytes_mut()[0] = b;
self.advance_mut(1);
}
}
}
}
impl<'a> Extend<&'a u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
self.extend(iter.into_iter().map(|b| *b))
}
}
/*
*
* ===== Inner =====
*
*/
impl Inner {
#[inline]
fn from_static(bytes: &'static [u8]) -> Inner {
let ptr = bytes.as_ptr() as *mut u8;
Inner {
// `arc` won't ever store a pointer. Instead, use it to
// track the fact that the `Bytes` handle is backed by a
// static buffer.
arc: AtomicPtr::new(KIND_STATIC as *mut Shared),
ptr: ptr,
len: bytes.len(),
cap: bytes.len(),
}
}
#[inline]
fn from_vec(mut src: Vec<u8>) -> Inner {
let len = src.len();
let cap = src.capacity();
let ptr = src.as_mut_ptr();
mem::forget(src);
let original_capacity_repr = original_capacity_to_repr(cap);
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
Inner {
arc: AtomicPtr::new(arc as *mut Shared),
ptr: ptr,
len: len,
cap: cap,
}
}
#[inline]
fn with_capacity(capacity: usize) -> Inner {
if capacity <= INLINE_CAP {
unsafe {
// Using uninitialized memory is ~30% faster
let mut inner: Inner = mem::uninitialized();
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
inner
}
} else {
Inner::from_vec(Vec::with_capacity(capacity))
}
}
/// Return a slice for the handle's view into the shared buffer
#[inline]
fn as_ref(&self) -> &[u8] {
unsafe {
if self.is_inline() {
slice::from_raw_parts(self.inline_ptr(), self.inline_len())
} else {
slice::from_raw_parts(self.ptr, self.len)
}
}
}
/// Return a mutable slice for the handle's view into the shared buffer
#[inline]
fn as_mut(&mut self) -> &mut [u8] {
debug_assert!(!self.is_static());
unsafe {
if self.is_inline() {
slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len())
} else {
slice::from_raw_parts_mut(self.ptr, self.len)
}
}
}
/// Return a mutable slice for the handle's view into the shared buffer
/// including potentially uninitialized bytes.
#[inline]
unsafe fn as_raw(&mut self) -> &mut [u8] {
debug_assert!(!self.is_static());
if self.is_inline() {
slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP)
} else {
slice::from_raw_parts_mut(self.ptr, self.cap)
}
}
/// Insert a byte into the next slot and advance the len by 1.
#[inline]
fn put_u8(&mut self, n: u8) {
if self.is_inline() {
let len = self.inline_len();
assert!(len < INLINE_CAP);
unsafe {
*self.inline_ptr().offset(len as isize) = n;
}
self.set_inline_len(len + 1);
} else {
assert!(self.len < self.cap);
unsafe {
*self.ptr.offset(self.len as isize) = n;
}
self.len += 1;
}
}
#[inline]
fn len(&self) -> usize {
if self.is_inline() {
self.inline_len()
} else {
self.len
}
}
/// Pointer to the start of the inline buffer
#[inline]
unsafe fn inline_ptr(&self) -> *mut u8 {
(self as *const Inner as *mut Inner as *mut u8)
.offset(INLINE_DATA_OFFSET)
}
#[inline]
fn inline_len(&self) -> usize {
let p: &usize = unsafe { mem::transmute(&self.arc) };
(p & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET
}
/// Set the length of the inline buffer. This is done by writing to the
/// least significant byte of the `arc` field.
#[inline]
fn set_inline_len(&mut self, len: usize) {
debug_assert!(len <= INLINE_CAP);
let p = self.arc.get_mut();
*p = ((*p as usize & !INLINE_LEN_MASK) | (len << INLINE_LEN_OFFSET)) as _;
}
/// slice.
#[inline]
unsafe fn set_len(&mut self, len: usize) {
if self.is_inline() {
assert!(len <= INLINE_CAP);
self.set_inline_len(len);
} else {
assert!(len <= self.cap);
self.len = len;
}
}
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
fn capacity(&self) -> usize {
if self.is_inline() {
INLINE_CAP
} else {
self.cap
}
}
fn split_off(&mut self, at: usize) -> Inner {
let mut other = unsafe { self.shallow_clone(true) };
unsafe {
other.set_start(at);
self.set_end(at);
}
return other
}
fn split_to(&mut self, at: usize) -> Inner {
let mut other = unsafe { self.shallow_clone(true) };
unsafe {
other.set_end(at);
self.set_start(at);
}
return other
}
fn truncate(&mut self, len: usize) {
if len <= self.len() {
unsafe { self.set_len(len); }
}
}
fn resize(&mut self, new_len: usize, value: u8) {
let len = self.len();
if new_len > len {
let additional = new_len - len;
self.reserve(additional);
unsafe {
let dst = self.as_raw()[len..].as_mut_ptr();
ptr::write_bytes(dst, value, additional);
self.set_len(new_len);
}
} else {
self.truncate(new_len);
}
}
unsafe fn set_start(&mut self, start: usize) {
// Setting the start to 0 is a no-op, so return early if this is the
// case.
if start == 0 {
return;
}
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
assert!(start <= INLINE_CAP);
let len = self.inline_len();
if len <= start {
self.set_inline_len(0);
} else {
// `set_start` is essentially shifting data off the front of the
// view. Inlined buffers only track the length of the slice.
// So, to update the start, the data at the new starting point
// is copied to the beginning of the buffer.
let new_len = len - start;
let dst = self.inline_ptr();
let src = (dst as *const u8).offset(start as isize);
ptr::copy(src, dst, new_len);
self.set_inline_len(new_len);
}
} else {
assert!(start <= self.cap);
if kind == KIND_VEC {
// Setting the start when in vec representation is a little more
// complicated. First, we have to track how far ahead the
// "start" of the byte buffer from the beginning of the vec. We
// also have to ensure that we don't exceed the maximum shift.
let (mut pos, prev) = self.uncoordinated_get_vec_pos();
pos += start;
if pos <= MAX_VEC_POS {
self.uncoordinated_set_vec_pos(pos, prev);
} else {
// The repr must be upgraded to ARC. This will never happen
// on 64 bit systems and will only happen on 32 bit systems
// when shifting past 134,217,727 bytes. As such, we don't
// worry too much about performance here.
let _ = self.shallow_clone(true);
}
}
// Updating the start of the view is setting `ptr` to point to the
// new start and updating the `len` field to reflect the new length
// of the view.
self.ptr = self.ptr.offset(start as isize);
if self.len >= start {
self.len -= start;
} else {
self.len = 0;
}
self.cap -= start;
}
}
unsafe fn set_end(&mut self, end: usize) {
debug_assert!(self.is_shared());
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if self.is_inline() {
assert!(end <= INLINE_CAP);
let new_len = cmp::min(self.inline_len(), end);
self.set_inline_len(new_len);
} else {
assert!(end <= self.cap);
self.cap = end;
self.len = cmp::min(self.len, end);
}
}
/// Checks if it is safe to mutate the memory
fn is_mut_safe(&mut self) -> bool {
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
// Inlined buffers can always be mutated as the data is never shared
// across handles.
true
} else if kind == KIND_VEC {
true
} else if kind == KIND_STATIC {
false
} else {
// Otherwise, the underlying buffer is potentially shared with other
// handles, so the ref_count needs to be checked.
unsafe { (**self.arc.get_mut()).is_unique() }
}
}
/// Increments the ref count. This should only be done if it is known that
/// it can be done safely. As such, this fn is not public, instead other
/// fns will use this one while maintaining the guarantees.
/// Parameter `mut_self` should only be set to `true` if caller holds
/// `&mut self` reference.
///
/// "Safely" is defined as not exposing two `BytesMut` values that point to
/// the same byte window.
///
/// This function is thread safe.
unsafe fn shallow_clone(&self, mut_self: bool) -> Inner {
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
//
// Additionally, if kind is STATIC, then Arc is *never* changed, making
// it safe and faster to check for it now before an atomic acquire.
if self.is_inline_or_static() {
// In this case, a shallow_clone still involves copying the data.
let mut inner: Inner = mem::uninitialized();
ptr::copy_nonoverlapping(
self,
&mut inner,
1,
);
inner
} else {
self.shallow_clone_sync(mut_self)
}
}
#[cold]
unsafe fn shallow_clone_sync(&self, mut_self: bool) -> Inner {
// The function requires `&self`, this means that `shallow_clone`
// could be called concurrently.
//
// The first step is to load the value of `arc`. This will determine
// how to proceed. The `Acquire` ordering synchronizes with the
// `compare_and_swap` that comes later in this function. The goal is
// to ensure that if `arc` is currently set to point to a `Shared`,
// that the current thread acquires the associated memory.
let arc = self.arc.load(Acquire);
let kind = arc as usize & KIND_MASK;
if kind == KIND_ARC {
self.shallow_clone_arc(arc)
} else {
assert!(kind == KIND_VEC);
self.shallow_clone_vec(arc as usize, mut_self)
}
}
unsafe fn shallow_clone_arc(&self, arc: *mut Shared) -> Inner {
debug_assert!(arc as usize & KIND_MASK == KIND_ARC);
let old_size = (*arc).ref_count.fetch_add(1, Relaxed);
if old_size == usize::MAX {
abort();
}
Inner {
arc: AtomicPtr::new(arc),
.. *self
}
}
#[cold]
unsafe fn shallow_clone_vec(&self, arc: usize, mut_self: bool) -> Inner {
// If the buffer is still tracked in a `Vec<u8>`. It is time to
// promote the vec to an `Arc`. This could potentially be called
// concurrently, so some care must be taken.
debug_assert!(arc & KIND_MASK == KIND_VEC);
let original_capacity_repr =
(arc as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
// The vec offset cannot be concurrently mutated, so there
// should be no danger reading it.
let off = (arc as usize) >> VEC_POS_OFFSET;
// First, allocate a new `Shared` instance containing the
// `Vec` fields. It's important to note that `ptr`, `len`,
// and `cap` cannot be mutated without having `&mut self`.
// This means that these fields will not be concurrently
// updated and since the buffer hasn't been promoted to an
// `Arc`, those three fields still are the components of the
// vector.
let shared = Box::new(Shared {
vec: rebuild_vec(self.ptr, self.len, self.cap, off),
original_capacity_repr: original_capacity_repr,
// Initialize refcount to 2. One for this reference, and one
// for the new clone that will be returned from
// `shallow_clone`.
ref_count: AtomicUsize::new(2),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert!(0 == (shared as usize & 0b11));
// If there are no references to self in other threads,
// expensive atomic operations can be avoided.
if mut_self {
self.arc.store(shared, Relaxed);
return Inner {
arc: AtomicPtr::new(shared),
.. *self
};
}
// Try compare & swapping the pointer into the `arc` field.
// `Release` is used synchronize with other threads that
// will load the `arc` field.
//
// If the `compare_and_swap` fails, then the thread lost the
// race to promote the buffer to shared. The `Acquire`
// ordering will synchronize with the `compare_and_swap`
// that happened in the other thread and the `Shared`
// pointed to by `actual` will be visible.
let actual = self.arc.compare_and_swap(arc as *mut Shared, shared, AcqRel);
if actual as usize == arc {
// The upgrade was successful, the new handle can be
// returned.
return Inner {
arc: AtomicPtr::new(shared),
.. *self
};
}
// The upgrade failed, a concurrent clone happened. Release
// the allocation that was made in this thread, it will not
// be needed.
let shared = Box::from_raw(shared);
mem::forget(*shared);
// Buffer already promoted to shared storage, so increment ref
// count.
self.shallow_clone_arc(actual)
}
#[inline]
fn reserve(&mut self, additional: usize) {
let len = self.len();
let rem = self.capacity() - len;
if additional <= rem {
// The handle can already store at least `additional` more bytes, so
// there is no further work needed to be done.
return;
}
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
let new_cap = len + additional;
// Promote to a vector
let mut v = Vec::with_capacity(new_cap);
v.extend_from_slice(self.as_ref());
self.ptr = v.as_mut_ptr();
self.len = v.len();
self.cap = v.capacity();
// Since the minimum capacity is `INLINE_CAP`, don't bother encoding
// the original capacity as INLINE_CAP
self.arc = AtomicPtr::new(KIND_VEC as *mut Shared);
mem::forget(v);
return;
}
if kind == KIND_VEC {
// If there's enough free space before the start of the buffer, then
// just copy the data backwards and reuse the already-allocated
// space.
//
// Otherwise, since backed by a vector, use `Vec::reserve`
unsafe {
let (off, prev) = self.uncoordinated_get_vec_pos();
// Only reuse space if we stand to gain at least capacity/2
// bytes of space back
if off >= additional && off >= (self.cap / 2) {
// There's space - reuse it
//
// Just move the pointer back to the start after copying
// data back.
let base_ptr = self.ptr.offset(-(off as isize));
ptr::copy(self.ptr, base_ptr, self.len);
self.ptr = base_ptr;
self.uncoordinated_set_vec_pos(0, prev);
// Length stays constant, but since we moved backwards we
// can gain capacity back.
self.cap += off;
} else {
// No space - allocate more
let mut v = rebuild_vec(self.ptr, self.len, self.cap, off);
v.reserve(additional);
// Update the info
self.ptr = v.as_mut_ptr().offset(off as isize);
self.len = v.len() - off;
self.cap = v.capacity() - off;
// Drop the vec reference
mem::forget(v);
}
return;
}
}
let arc = *self.arc.get_mut();
debug_assert!(kind == KIND_ARC);
// Reserving involves abandoning the currently shared buffer and
// allocating a new vector with the requested capacity.
//
// Compute the new capacity
let mut new_cap = len + additional;
let original_capacity;
let original_capacity_repr;
unsafe {
original_capacity_repr = (*arc).original_capacity_repr;
original_capacity = original_capacity_from_repr(original_capacity_repr);
// First, try to reclaim the buffer. This is possible if the current
// handle is the only outstanding handle pointing to the buffer.
if (*arc).is_unique() {
// This is the only handle to the buffer. It can be reclaimed.
// However, before doing the work of copying data, check to make
// sure that the vector has enough capacity.
let v = &mut (*arc).vec;
if v.capacity() >= new_cap {
// The capacity is sufficient, reclaim the buffer
let ptr = v.as_mut_ptr();
ptr::copy(self.ptr, ptr, len);
self.ptr = ptr;
self.cap = v.capacity();
return;
}
// The vector capacity is not sufficient. The reserve request is
// asking for more than the initial buffer capacity. Allocate more
// than requested if `new_cap` is not much bigger than the current
// capacity.
//
// There are some situations, using `reserve_exact` that the
// buffer capacity could be below `original_capacity`, so do a
// check.
new_cap = cmp::max(
cmp::max(v.capacity() << 1, new_cap),
original_capacity);
} else {
new_cap = cmp::max(new_cap, original_capacity);
}
}
// Create a new vector to store the data
let mut v = Vec::with_capacity(new_cap);
// Copy the bytes
v.extend_from_slice(self.as_ref());
// Release the shared handle. This must be done *after* the bytes are
// copied.
release_shared(arc);
// Update self
self.ptr = v.as_mut_ptr();
self.len = v.len();
self.cap = v.capacity();
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
self.arc = AtomicPtr::new(arc as *mut Shared);
// Forget the vector handle
mem::forget(v);
}
/// Returns true if the buffer is stored inline
#[inline]
fn is_inline(&self) -> bool {
self.kind() == KIND_INLINE
}
#[inline]
fn is_inline_or_static(&self) -> bool {
// The value returned by `kind` isn't itself safe, but the value could
// inform what operations to take, and unsafely do something without
// synchronization.
//
// KIND_INLINE and KIND_STATIC will *never* change, so branches on that
// information is safe.
let kind = self.kind();
kind == KIND_INLINE || kind == KIND_STATIC
}
/// Used for `debug_assert` statements. &mut is used to guarantee that it is
/// safe to check VEC_KIND
#[inline]
fn is_shared(&mut self) -> bool {
match self.kind() {
KIND_VEC => false,
_ => true,
}
}
/// Used for `debug_assert` statements
#[inline]
fn is_static(&mut self) -> bool {
match self.kind() {
KIND_STATIC => true,
_ => false,
}
}
#[inline]
fn kind(&self) -> usize {
// This function is going to probably raise some eyebrows. The function
// returns true if the buffer is stored inline. This is done by checking
// the least significant bit in the `arc` field.
//
// Now, you may notice that `arc` is an `AtomicPtr` and this is
// accessing it as a normal field without performing an atomic load...
//
// Again, the function only cares about the least significant bit, and
// this bit is set when `Inner` is created and never changed after that.
// All platforms have atomic "word" operations and won't randomly flip
// bits, so even without any explicit atomic operations, reading the
// flag will be correct.
//
// This function is very critical performance wise as it is called for
// every operation. Performing an atomic load would mess with the
// compiler's ability to optimize. Simple benchmarks show up to a 10%
// slowdown using a `Relaxed` atomic load on x86.
#[cfg(target_endian = "little")]
#[inline]
fn imp(arc: &AtomicPtr<Shared>) -> usize {
unsafe {
let p: &u8 = mem::transmute(arc);
(*p as usize) & KIND_MASK
}
}
#[cfg(target_endian = "big")]
#[inline]
fn imp(arc: &AtomicPtr<Shared>) -> usize {
unsafe {
let p: &usize = mem::transmute(arc);
*p & KIND_MASK
}
}
imp(&self.arc)
}
#[inline]
fn uncoordinated_get_vec_pos(&mut self) -> (usize, usize) {
// Similar to above, this is a pretty crazed function. This should only
// be called when in the KIND_VEC mode. This + the &mut self argument
// guarantees that there is no possibility of concurrent calls to this
// function.
let prev = unsafe {
let p: &AtomicPtr<Shared> = &self.arc;
let p: &usize = mem::transmute(p);
*p
};
(prev >> VEC_POS_OFFSET, prev)
}
#[inline]
fn uncoordinated_set_vec_pos(&mut self, pos: usize, prev: usize) {
// Once more... crazy
debug_assert!(pos <= MAX_VEC_POS);
unsafe {
let p: &mut AtomicPtr<Shared> = &mut self.arc;
let p: &mut usize = mem::transmute(p);
*p = (pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK);
}
}
}
fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
unsafe {
let ptr = ptr.offset(-(off as isize));
len += off;
cap += off;
Vec::from_raw_parts(ptr, len, cap)
}
}
impl Drop for Inner {
fn drop(&mut self) {
let kind = self.kind();
if kind == KIND_VEC {
let (off, _) = self.uncoordinated_get_vec_pos();
// Vector storage, free the vector
let _ = rebuild_vec(self.ptr, self.len, self.cap, off);
} else if kind == KIND_ARC {
release_shared(*self.arc.get_mut());
}
}
}
fn release_shared(ptr: *mut Shared) {
// `Shared` storage... follow the drop steps from Arc.
unsafe {
if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
atomic::fence(Acquire);
// Drop the data
Box::from_raw(ptr);
}
}
impl Shared {
fn is_unique(&self) -> bool {
// The goal is to check if the current handle is the only handle
// that currently has access to the buffer. This is done by
// checking if the `ref_count` is currently 1.
//
// The `Acquire` ordering synchronizes with the `Release` as
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
// operation guarantees that any mutations done in other threads
// are ordered before the `ref_count` is decremented. As such,
// this `Acquire` will guarantee that those mutations are
// visible to the current thread.
self.ref_count.load(Acquire) == 1
}
}
fn original_capacity_to_repr(cap: usize) -> usize {
let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
cmp::min(width, MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH)
}
fn original_capacity_from_repr(repr: usize) -> usize {
if repr == 0 {
return 0;
}
1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
}
#[test]
fn test_original_capacity_to_repr() {
for &cap in &[0, 1, 16, 1000] {
assert_eq!(0, original_capacity_to_repr(cap));
}
for &cap in &[1024, 1025, 1100, 2000, 2047] {
assert_eq!(1, original_capacity_to_repr(cap));
}
for &cap in &[2048, 2049] {
assert_eq!(2, original_capacity_to_repr(cap));
}
// TODO: more
for &cap in &[65536, 65537, 68000, 1 << 17, 1 << 18, 1 << 20, 1 << 30] {
assert_eq!(7, original_capacity_to_repr(cap), "cap={}", cap);
}
}
#[test]
fn test_original_capacity_from_repr() {
assert_eq!(0, original_capacity_from_repr(0));
assert_eq!(1024, original_capacity_from_repr(1));
assert_eq!(1024 * 2, original_capacity_from_repr(2));
assert_eq!(1024 * 4, original_capacity_from_repr(3));
assert_eq!(1024 * 8, original_capacity_from_repr(4));
assert_eq!(1024 * 16, original_capacity_from_repr(5));
assert_eq!(1024 * 32, original_capacity_from_repr(6));
assert_eq!(1024 * 64, original_capacity_from_repr(7));
}
unsafe impl Send for Inner {}
unsafe impl Sync for Inner {}
/*
*
* ===== PartialEq / PartialOrd =====
*
*/
impl PartialEq<[u8]> for BytesMut {
fn eq(&self, other: &[u8]) -> bool {
&**self == other
}
}
impl PartialOrd<[u8]> for BytesMut {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
(**self).partial_cmp(other)
}
}
impl PartialEq<BytesMut> for [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<str> for BytesMut {
fn eq(&self, other: &str) -> bool {
&**self == other.as_bytes()
}
}
impl PartialOrd<str> for BytesMut {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<Vec<u8>> for BytesMut {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == &other[..]
}
}
impl PartialOrd<Vec<u8>> for BytesMut {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
(**self).partial_cmp(&other[..])
}
}
impl PartialEq<BytesMut> for Vec<u8> {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for Vec<u8> {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for BytesMut {
fn eq(&self, other: &String) -> bool {
*self == &other[..]
}
}
impl PartialOrd<String> for BytesMut {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for String {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for String {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
where BytesMut: PartialEq<T>
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
where BytesMut: PartialOrd<T>
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(*other)
}
}
impl<'a> PartialEq<BytesMut> for &'a [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<BytesMut> for &'a [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<BytesMut> for &'a str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<BytesMut> for &'a str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<[u8]> for Bytes {
fn eq(&self, other: &[u8]) -> bool {
self.inner.as_ref() == other
}
}
impl PartialOrd<[u8]> for Bytes {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other)
}
}
impl PartialEq<Bytes> for [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<str> for Bytes {
fn eq(&self, other: &str) -> bool {
self.inner.as_ref() == other.as_bytes()
}
}
impl PartialOrd<str> for Bytes {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<Vec<u8>> for Bytes {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == &other[..]
}
}
impl PartialOrd<Vec<u8>> for Bytes {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(&other[..])
}
}
impl PartialEq<Bytes> for Vec<u8> {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for Vec<u8> {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for Bytes {
fn eq(&self, other: &String) -> bool {
*self == &other[..]
}
}
impl PartialOrd<String> for Bytes {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for String {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for String {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<Bytes> for &'a [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<Bytes> for &'a [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<Bytes> for &'a str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<Bytes> for &'a str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
where Bytes: PartialEq<T>
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
where Bytes: PartialOrd<T>
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(&**other)
}
}
impl PartialEq<BytesMut> for Bytes
{
fn eq(&self, other: &BytesMut) -> bool {
&other[..] == &self[..]
}
}
impl PartialEq<Bytes> for BytesMut
{
fn eq(&self, other: &Bytes) -> bool {
&other[..] == &self[..]
}
}
// While there is `std::process:abort`, it's only available in Rust 1.17, and
// our minimum supported version is currently 1.15. So, this acts as an abort
// by triggering a double panic, which always aborts in Rust.
struct Abort;
impl Drop for Abort {
fn drop(&mut self) {
panic!();
}
}
#[inline(never)]
#[cold]
fn abort() {
let _a = Abort;
panic!();
}
|