summaryrefslogtreecommitdiffstats
path: root/third_party/rust/cranelift-codegen-meta/src/shared/immediates.rs
blob: 0aa4129daf33cd5a34cf9ca2c3c5035c5e1d9b55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use crate::cdsl::operands::{EnumValues, OperandKind, OperandKindFields};

use std::collections::HashMap;

pub(crate) struct Immediates {
    /// A 64-bit immediate integer operand.
    ///
    /// This type of immediate integer can interact with SSA values with any IntType type.
    pub imm64: OperandKind,

    /// An unsigned 8-bit immediate integer operand.
    ///
    /// This small operand is used to indicate lane indexes in SIMD vectors and immediate bit
    /// counts on shift instructions.
    pub uimm8: OperandKind,

    /// An unsigned 32-bit immediate integer operand.
    pub uimm32: OperandKind,

    /// An unsigned 128-bit immediate integer operand.
    ///
    /// This operand is used to pass entire 128-bit vectors as immediates to instructions like
    /// const.
    pub uimm128: OperandKind,

    /// A constant stored in the constant pool.
    ///
    /// This operand is used to pass constants to instructions like vconst while storing the
    /// actual bytes in the constant pool.
    pub pool_constant: OperandKind,

    /// A 32-bit immediate signed offset.
    ///
    /// This is used to represent an immediate address offset in load/store instructions.
    pub offset32: OperandKind,

    /// A 32-bit immediate floating point operand.
    ///
    /// IEEE 754-2008 binary32 interchange format.
    pub ieee32: OperandKind,

    /// A 64-bit immediate floating point operand.
    ///
    /// IEEE 754-2008 binary64 interchange format.
    pub ieee64: OperandKind,

    /// An immediate boolean operand.
    ///
    /// This type of immediate boolean can interact with SSA values with any BoolType type.
    pub boolean: OperandKind,

    /// A condition code for comparing integer values.
    ///
    /// This enumerated operand kind is used for the `icmp` instruction and corresponds to the
    /// condcodes::IntCC` Rust type.
    pub intcc: OperandKind,

    /// A condition code for comparing floating point values.
    ///
    /// This enumerated operand kind is used for the `fcmp` instruction and corresponds to the
    /// `condcodes::FloatCC` Rust type.
    pub floatcc: OperandKind,

    /// Flags for memory operations like `load` and `store`.
    pub memflags: OperandKind,

    /// A register unit in the current target ISA.
    pub regunit: OperandKind,

    /// A trap code indicating the reason for trapping.
    ///
    /// The Rust enum type also has a `User(u16)` variant for user-provided trap codes.
    pub trapcode: OperandKind,

    /// A code indicating the arithmetic operation to perform in an atomic_rmw memory access.
    pub atomic_rmw_op: OperandKind,
}

fn new_imm(format_field_name: &'static str, rust_type: &'static str) -> OperandKind {
    OperandKind::new(format_field_name, rust_type, OperandKindFields::ImmValue)
}
fn new_enum(
    format_field_name: &'static str,
    rust_type: &'static str,
    values: EnumValues,
) -> OperandKind {
    OperandKind::new(
        format_field_name,
        rust_type,
        OperandKindFields::ImmEnum(values),
    )
}

impl Immediates {
    pub fn new() -> Self {
        Self {
            imm64: new_imm("imm", "ir::immediates::Imm64").with_doc("A 64-bit immediate integer."),
            uimm8: new_imm("imm", "ir::immediates::Uimm8")
                .with_doc("An 8-bit immediate unsigned integer."),
            uimm32: new_imm("imm", "ir::immediates::Uimm32")
                .with_doc("A 32-bit immediate unsigned integer."),
            uimm128: new_imm("imm", "ir::Immediate")
                .with_doc("A 128-bit immediate unsigned integer."),
            pool_constant: new_imm("constant_handle", "ir::Constant")
                .with_doc("A constant stored in the constant pool."),
            offset32: new_imm("offset", "ir::immediates::Offset32")
                .with_doc("A 32-bit immediate signed offset."),
            ieee32: new_imm("imm", "ir::immediates::Ieee32")
                .with_doc("A 32-bit immediate floating point number."),
            ieee64: new_imm("imm", "ir::immediates::Ieee64")
                .with_doc("A 64-bit immediate floating point number."),
            boolean: new_imm("imm", "bool").with_doc("An immediate boolean."),
            intcc: {
                let mut intcc_values = HashMap::new();
                intcc_values.insert("eq", "Equal");
                intcc_values.insert("ne", "NotEqual");
                intcc_values.insert("sge", "SignedGreaterThanOrEqual");
                intcc_values.insert("sgt", "SignedGreaterThan");
                intcc_values.insert("sle", "SignedLessThanOrEqual");
                intcc_values.insert("slt", "SignedLessThan");
                intcc_values.insert("uge", "UnsignedGreaterThanOrEqual");
                intcc_values.insert("ugt", "UnsignedGreaterThan");
                intcc_values.insert("ule", "UnsignedLessThanOrEqual");
                intcc_values.insert("ult", "UnsignedLessThan");
                intcc_values.insert("of", "Overflow");
                intcc_values.insert("nof", "NotOverflow");
                new_enum("cond", "ir::condcodes::IntCC", intcc_values)
                    .with_doc("An integer comparison condition code.")
            },

            floatcc: {
                let mut floatcc_values = HashMap::new();
                floatcc_values.insert("ord", "Ordered");
                floatcc_values.insert("uno", "Unordered");
                floatcc_values.insert("eq", "Equal");
                floatcc_values.insert("ne", "NotEqual");
                floatcc_values.insert("one", "OrderedNotEqual");
                floatcc_values.insert("ueq", "UnorderedOrEqual");
                floatcc_values.insert("lt", "LessThan");
                floatcc_values.insert("le", "LessThanOrEqual");
                floatcc_values.insert("gt", "GreaterThan");
                floatcc_values.insert("ge", "GreaterThanOrEqual");
                floatcc_values.insert("ult", "UnorderedOrLessThan");
                floatcc_values.insert("ule", "UnorderedOrLessThanOrEqual");
                floatcc_values.insert("ugt", "UnorderedOrGreaterThan");
                floatcc_values.insert("uge", "UnorderedOrGreaterThanOrEqual");
                new_enum("cond", "ir::condcodes::FloatCC", floatcc_values)
                    .with_doc("A floating point comparison condition code")
            },

            memflags: new_imm("flags", "ir::MemFlags").with_doc("Memory operation flags"),
            regunit: new_imm("regunit", "isa::RegUnit")
                .with_doc("A register unit in the target ISA"),
            trapcode: {
                let mut trapcode_values = HashMap::new();
                trapcode_values.insert("stk_ovf", "StackOverflow");
                trapcode_values.insert("heap_oob", "HeapOutOfBounds");
                trapcode_values.insert("int_ovf", "IntegerOverflow");
                trapcode_values.insert("int_divz", "IntegerDivisionByZero");
                new_enum("code", "ir::TrapCode", trapcode_values).with_doc("A trap reason code.")
            },
            atomic_rmw_op: {
                let mut atomic_rmw_op_values = HashMap::new();
                atomic_rmw_op_values.insert("add", "Add");
                atomic_rmw_op_values.insert("sub", "Sub");
                atomic_rmw_op_values.insert("and", "And");
                atomic_rmw_op_values.insert("or", "Or");
                atomic_rmw_op_values.insert("xor", "Xor");
                atomic_rmw_op_values.insert("xchg", "Xchg");
                new_enum("op", "ir::AtomicRmwOp", atomic_rmw_op_values)
                    .with_doc("Atomic Read-Modify-Write Ops")
            },
        }
    }
}