summaryrefslogtreecommitdiffstats
path: root/third_party/rust/crossbeam-utils-0.6.5/src/atomic/atomic_cell.rs
blob: 31ad7d354ec5a11f91856484a0f9c603b18f3804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
use core::cell::UnsafeCell;
use core::fmt;
use core::mem;
use core::ptr;
use core::slice;
use core::sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};

use Backoff;

/// A thread-safe mutable memory location.
///
/// This type is equivalent to [`Cell`], except it can also be shared among multiple threads.
///
/// Operations on `AtomicCell`s use atomic instructions whenever possible, and synchronize using
/// global locks otherwise. You can call [`AtomicCell::<T>::is_lock_free()`] to check whether
/// atomic instructions or locks will be used.
///
/// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html
/// [`AtomicCell::<T>::is_lock_free()`]: struct.AtomicCell.html#method.is_lock_free
pub struct AtomicCell<T> {
    /// The inner value.
    ///
    /// If this value can be transmuted into a primitive atomic type, it will be treated as such.
    /// Otherwise, all potentially concurrent operations on this data will be protected by a global
    /// lock.
    value: UnsafeCell<T>,
}

unsafe impl<T: Send> Send for AtomicCell<T> {}
unsafe impl<T: Send> Sync for AtomicCell<T> {}

impl<T> AtomicCell<T> {
    /// Creates a new atomic cell initialized with `val`.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(7);
    /// ```
    pub fn new(val: T) -> AtomicCell<T> {
        AtomicCell {
            value: UnsafeCell::new(val),
        }
    }

    /// Returns a mutable reference to the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let mut a = AtomicCell::new(7);
    /// *a.get_mut() += 1;
    ///
    /// assert_eq!(a.load(), 8);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.value.get() }
    }

    /// Unwraps the atomic cell and returns its inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let mut a = AtomicCell::new(7);
    /// let v = a.into_inner();
    ///
    /// assert_eq!(v, 7);
    /// ```
    pub fn into_inner(self) -> T {
        self.value.into_inner()
    }

    /// Returns `true` if operations on values of this type are lock-free.
    ///
    /// If the compiler or the platform doesn't support the necessary atomic instructions,
    /// `AtomicCell<T>` will use global locks for every potentially concurrent atomic operation.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// // This type is internally represented as `AtomicUsize` so we can just use atomic
    /// // operations provided by it.
    /// assert_eq!(AtomicCell::<usize>::is_lock_free(), true);
    ///
    /// // A wrapper struct around `isize`.
    /// struct Foo {
    ///     bar: isize,
    /// }
    /// // `AtomicCell<Foo>` will be internally represented as `AtomicIsize`.
    /// assert_eq!(AtomicCell::<Foo>::is_lock_free(), true);
    ///
    /// // Operations on zero-sized types are always lock-free.
    /// assert_eq!(AtomicCell::<()>::is_lock_free(), true);
    ///
    /// // Very large types cannot be represented as any of the standard atomic types, so atomic
    /// // operations on them will have to use global locks for synchronization.
    /// assert_eq!(AtomicCell::<[u8; 1000]>::is_lock_free(), false);
    /// ```
    pub fn is_lock_free() -> bool {
        atomic_is_lock_free::<T>()
    }

    /// Stores `val` into the atomic cell.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(7);
    ///
    /// assert_eq!(a.load(), 7);
    /// a.store(8);
    /// assert_eq!(a.load(), 8);
    /// ```
    pub fn store(&self, val: T) {
        if mem::needs_drop::<T>() {
            drop(self.swap(val));
        } else {
            unsafe {
                atomic_store(self.value.get(), val);
            }
        }
    }

    /// Stores `val` into the atomic cell and returns the previous value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(7);
    ///
    /// assert_eq!(a.load(), 7);
    /// assert_eq!(a.swap(8), 7);
    /// assert_eq!(a.load(), 8);
    /// ```
    pub fn swap(&self, val: T) -> T {
        unsafe { atomic_swap(self.value.get(), val) }
    }
}

impl<T: Copy> AtomicCell<T> {
    /// Loads a value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(7);
    ///
    /// assert_eq!(a.load(), 7);
    /// ```
    pub fn load(&self) -> T {
        unsafe { atomic_load(self.value.get()) }
    }
}

impl<T: Copy + Eq> AtomicCell<T> {
    /// If the current value equals `current`, stores `new` into the atomic cell.
    ///
    /// The return value is always the previous value. If it is equal to `current`, then the value
    /// was updated.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(1);
    ///
    /// assert_eq!(a.compare_exchange(2, 3), Err(1));
    /// assert_eq!(a.load(), 1);
    ///
    /// assert_eq!(a.compare_exchange(1, 2), Ok(1));
    /// assert_eq!(a.load(), 2);
    /// ```
    pub fn compare_and_swap(&self, current: T, new: T) -> T {
        match self.compare_exchange(current, new) {
            Ok(v) => v,
            Err(v) => v,
        }
    }

    /// If the current value equals `current`, stores `new` into the atomic cell.
    ///
    /// The return value is a result indicating whether the new value was written and containing
    /// the previous value. On success this value is guaranteed to be equal to `current`.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(1);
    ///
    /// assert_eq!(a.compare_exchange(2, 3), Err(1));
    /// assert_eq!(a.load(), 1);
    ///
    /// assert_eq!(a.compare_exchange(1, 2), Ok(1));
    /// assert_eq!(a.load(), 2);
    /// ```
    pub fn compare_exchange(&self, mut current: T, new: T) -> Result<T, T> {
        loop {
            match unsafe { atomic_compare_exchange_weak(self.value.get(), current, new) } {
                Ok(_) => return Ok(current),
                Err(previous) => {
                    if previous != current {
                        return Err(previous);
                    }

                    // The compare-exchange operation has failed and didn't store `new`. The
                    // failure is either spurious, or `previous` was semantically equal to
                    // `current` but not byte-equal. Let's retry with `previous` as the new
                    // `current`.
                    current = previous;
                }
            }
        }
    }
}

macro_rules! impl_arithmetic {
    ($t:ty, $example:tt) => {
        impl AtomicCell<$t> {
            /// Increments the current value by `val` and returns the previous value.
            ///
            /// The addition wraps on overflow.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_add(3), 7);
            /// assert_eq!(a.load(), 10);
            /// ```
            #[inline]
            pub fn fetch_add(&self, val: $t) -> $t {
                if can_transmute::<$t, atomic::AtomicUsize>() {
                    let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
                    a.fetch_add(val as usize, Ordering::SeqCst) as $t
                } else {
                    let _guard = lock(self.value.get() as usize).write();
                    let value = unsafe { &mut *(self.value.get()) };
                    let old = *value;
                    *value = value.wrapping_add(val);
                    old
                }
            }

            /// Decrements the current value by `val` and returns the previous value.
            ///
            /// The subtraction wraps on overflow.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_sub(3), 7);
            /// assert_eq!(a.load(), 4);
            /// ```
            #[inline]
            pub fn fetch_sub(&self, val: $t) -> $t {
                if can_transmute::<$t, atomic::AtomicUsize>() {
                    let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
                    a.fetch_sub(val as usize, Ordering::SeqCst) as $t
                } else {
                    let _guard = lock(self.value.get() as usize).write();
                    let value = unsafe { &mut *(self.value.get()) };
                    let old = *value;
                    *value = value.wrapping_sub(val);
                    old
                }
            }

            /// Applies bitwise "and" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_and(3), 7);
            /// assert_eq!(a.load(), 3);
            /// ```
            #[inline]
            pub fn fetch_and(&self, val: $t) -> $t {
                if can_transmute::<$t, atomic::AtomicUsize>() {
                    let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
                    a.fetch_and(val as usize, Ordering::SeqCst) as $t
                } else {
                    let _guard = lock(self.value.get() as usize).write();
                    let value = unsafe { &mut *(self.value.get()) };
                    let old = *value;
                    *value &= val;
                    old
                }
            }

            /// Applies bitwise "or" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_or(16), 7);
            /// assert_eq!(a.load(), 23);
            /// ```
            #[inline]
            pub fn fetch_or(&self, val: $t) -> $t {
                if can_transmute::<$t, atomic::AtomicUsize>() {
                    let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
                    a.fetch_or(val as usize, Ordering::SeqCst) as $t
                } else {
                    let _guard = lock(self.value.get() as usize).write();
                    let value = unsafe { &mut *(self.value.get()) };
                    let old = *value;
                    *value |= val;
                    old
                }
            }

            /// Applies bitwise "xor" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_xor(2), 7);
            /// assert_eq!(a.load(), 5);
            /// ```
            #[inline]
            pub fn fetch_xor(&self, val: $t) -> $t {
                if can_transmute::<$t, atomic::AtomicUsize>() {
                    let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) };
                    a.fetch_xor(val as usize, Ordering::SeqCst) as $t
                } else {
                    let _guard = lock(self.value.get() as usize).write();
                    let value = unsafe { &mut *(self.value.get()) };
                    let old = *value;
                    *value ^= val;
                    old
                }
            }
        }
    };
    ($t:ty, $atomic:ty, $example:tt) => {
        impl AtomicCell<$t> {
            /// Increments the current value by `val` and returns the previous value.
            ///
            /// The addition wraps on overflow.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_add(3), 7);
            /// assert_eq!(a.load(), 10);
            /// ```
            #[inline]
            pub fn fetch_add(&self, val: $t) -> $t {
                let a = unsafe { &*(self.value.get() as *const $atomic) };
                a.fetch_add(val, Ordering::SeqCst)
            }

            /// Decrements the current value by `val` and returns the previous value.
            ///
            /// The subtraction wraps on overflow.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_sub(3), 7);
            /// assert_eq!(a.load(), 4);
            /// ```
            #[inline]
            pub fn fetch_sub(&self, val: $t) -> $t {
                let a = unsafe { &*(self.value.get() as *const $atomic) };
                a.fetch_sub(val, Ordering::SeqCst)
            }

            /// Applies bitwise "and" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_and(3), 7);
            /// assert_eq!(a.load(), 3);
            /// ```
            #[inline]
            pub fn fetch_and(&self, val: $t) -> $t {
                let a = unsafe { &*(self.value.get() as *const $atomic) };
                a.fetch_and(val, Ordering::SeqCst)
            }

            /// Applies bitwise "or" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_or(16), 7);
            /// assert_eq!(a.load(), 23);
            /// ```
            #[inline]
            pub fn fetch_or(&self, val: $t) -> $t {
                let a = unsafe { &*(self.value.get() as *const $atomic) };
                a.fetch_or(val, Ordering::SeqCst)
            }

            /// Applies bitwise "xor" to the current value and returns the previous value.
            ///
            /// # Examples
            ///
            /// ```
            /// use crossbeam_utils::atomic::AtomicCell;
            ///
            #[doc = $example]
            ///
            /// assert_eq!(a.fetch_xor(2), 7);
            /// assert_eq!(a.load(), 5);
            /// ```
            #[inline]
            pub fn fetch_xor(&self, val: $t) -> $t {
                let a = unsafe { &*(self.value.get() as *const $atomic) };
                a.fetch_xor(val, Ordering::SeqCst)
            }
        }
    };
    ($t:ty, $size:tt, $atomic:ty, $example:tt) => {
        #[cfg(target_has_atomic = $size)]
        impl_arithmetic!($t, $atomic, $example);
    };
}

cfg_if! {
    if #[cfg(feature = "nightly")] {
        impl_arithmetic!(u8, "8", atomic::AtomicU8, "let a = AtomicCell::new(7u8);");
        impl_arithmetic!(i8, "8", atomic::AtomicI8, "let a = AtomicCell::new(7i8);");
        impl_arithmetic!(u16, "16", atomic::AtomicU16, "let a = AtomicCell::new(7u16);");
        impl_arithmetic!(i16, "16", atomic::AtomicI16, "let a = AtomicCell::new(7i16);");
        impl_arithmetic!(u32, "32", atomic::AtomicU32, "let a = AtomicCell::new(7u32);");
        impl_arithmetic!(i32, "32", atomic::AtomicI32, "let a = AtomicCell::new(7i32);");
        impl_arithmetic!(u64, "64", atomic::AtomicU64, "let a = AtomicCell::new(7u64);");
        impl_arithmetic!(i64, "64", atomic::AtomicI64, "let a = AtomicCell::new(7i64);");
        impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);");
        impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);");
    } else {
        impl_arithmetic!(u8, "let a = AtomicCell::new(7u8);");
        impl_arithmetic!(i8, "let a = AtomicCell::new(7i8);");
        impl_arithmetic!(u16, "let a = AtomicCell::new(7u16);");
        impl_arithmetic!(i16, "let a = AtomicCell::new(7i16);");
        impl_arithmetic!(u32, "let a = AtomicCell::new(7u32);");
        impl_arithmetic!(i32, "let a = AtomicCell::new(7i32);");
        impl_arithmetic!(u64, "let a = AtomicCell::new(7u64);");
        impl_arithmetic!(i64, "let a = AtomicCell::new(7i64);");
        impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);");
        impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);");
    }
}

impl_arithmetic!(
    usize,
    atomic::AtomicUsize,
    "let a = AtomicCell::new(7usize);"
);
impl_arithmetic!(
    isize,
    atomic::AtomicIsize,
    "let a = AtomicCell::new(7isize);"
);

impl AtomicCell<bool> {
    /// Applies logical "and" to the current value and returns the previous value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(true);
    ///
    /// assert_eq!(a.fetch_and(true), true);
    /// assert_eq!(a.load(), true);
    ///
    /// assert_eq!(a.fetch_and(false), true);
    /// assert_eq!(a.load(), false);
    /// ```
    #[inline]
    pub fn fetch_and(&self, val: bool) -> bool {
        let a = unsafe { &*(self.value.get() as *const AtomicBool) };
        a.fetch_and(val, Ordering::SeqCst)
    }

    /// Applies logical "or" to the current value and returns the previous value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(false);
    ///
    /// assert_eq!(a.fetch_or(false), false);
    /// assert_eq!(a.load(), false);
    ///
    /// assert_eq!(a.fetch_or(true), false);
    /// assert_eq!(a.load(), true);
    /// ```
    #[inline]
    pub fn fetch_or(&self, val: bool) -> bool {
        let a = unsafe { &*(self.value.get() as *const AtomicBool) };
        a.fetch_or(val, Ordering::SeqCst)
    }

    /// Applies logical "xor" to the current value and returns the previous value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::atomic::AtomicCell;
    ///
    /// let a = AtomicCell::new(true);
    ///
    /// assert_eq!(a.fetch_xor(false), true);
    /// assert_eq!(a.load(), true);
    ///
    /// assert_eq!(a.fetch_xor(true), true);
    /// assert_eq!(a.load(), false);
    /// ```
    #[inline]
    pub fn fetch_xor(&self, val: bool) -> bool {
        let a = unsafe { &*(self.value.get() as *const AtomicBool) };
        a.fetch_xor(val, Ordering::SeqCst)
    }
}

impl<T: Default> Default for AtomicCell<T> {
    fn default() -> AtomicCell<T> {
        AtomicCell::new(T::default())
    }
}

impl<T: Copy + fmt::Debug> fmt::Debug for AtomicCell<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("AtomicCell")
            .field("value", &self.load())
            .finish()
    }
}

/// Returns `true` if the two values are equal byte-for-byte.
fn byte_eq<T>(a: &T, b: &T) -> bool {
    unsafe {
        let a = slice::from_raw_parts(a as *const _ as *const u8, mem::size_of::<T>());
        let b = slice::from_raw_parts(b as *const _ as *const u8, mem::size_of::<T>());
        a == b
    }
}

/// Returns `true` if values of type `A` can be transmuted into values of type `B`.
fn can_transmute<A, B>() -> bool {
    // Sizes must be equal, but alignment of `A` must be greater or equal than that of `B`.
    mem::size_of::<A>() == mem::size_of::<B>() && mem::align_of::<A>() >= mem::align_of::<B>()
}

/// A simple stamped lock.
struct Lock {
    /// The current state of the lock.
    ///
    /// All bits except the least significant one hold the current stamp. When locked, the state
    /// equals 1 and doesn't contain a valid stamp.
    state: AtomicUsize,
}

impl Lock {
    /// If not locked, returns the current stamp.
    ///
    /// This method should be called before optimistic reads.
    #[inline]
    fn optimistic_read(&self) -> Option<usize> {
        let state = self.state.load(Ordering::Acquire);
        if state == 1 {
            None
        } else {
            Some(state)
        }
    }

    /// Returns `true` if the current stamp is equal to `stamp`.
    ///
    /// This method should be called after optimistic reads to check whether they are valid. The
    /// argument `stamp` should correspond to the one returned by method `optimistic_read`.
    #[inline]
    fn validate_read(&self, stamp: usize) -> bool {
        atomic::fence(Ordering::Acquire);
        self.state.load(Ordering::Relaxed) == stamp
    }

    /// Grabs the lock for writing.
    #[inline]
    fn write(&'static self) -> WriteGuard {
        let backoff = Backoff::new();
        loop {
            let previous = self.state.swap(1, Ordering::Acquire);

            if previous != 1 {
                atomic::fence(Ordering::Release);

                return WriteGuard {
                    lock: self,
                    state: previous,
                };
            }

            backoff.snooze();
        }
    }
}

/// A RAII guard that releases the lock and increments the stamp when dropped.
struct WriteGuard {
    /// The parent lock.
    lock: &'static Lock,

    /// The stamp before locking.
    state: usize,
}

impl WriteGuard {
    /// Releases the lock without incrementing the stamp.
    #[inline]
    fn abort(self) {
        self.lock.state.store(self.state, Ordering::Release);
    }
}

impl Drop for WriteGuard {
    #[inline]
    fn drop(&mut self) {
        // Release the lock and increment the stamp.
        self.lock
            .state
            .store(self.state.wrapping_add(2), Ordering::Release);
    }
}

/// Returns a reference to the global lock associated with the `AtomicCell` at address `addr`.
///
/// This function is used to protect atomic data which doesn't fit into any of the primitive atomic
/// types in `std::sync::atomic`. Operations on such atomics must therefore use a global lock.
///
/// However, there is not only one global lock but an array of many locks, and one of them is
/// picked based on the given address. Having many locks reduces contention and improves
/// scalability.
#[inline]
#[must_use]
fn lock(addr: usize) -> &'static Lock {
    // The number of locks is a prime number because we want to make sure `addr % LEN` gets
    // dispersed across all locks.
    //
    // Note that addresses are always aligned to some power of 2, depending on type `T` in
    // `AtomicCell<T>`. If `LEN` was an even number, then `addr % LEN` would be an even number,
    // too, which means only half of the locks would get utilized!
    //
    // It is also possible for addresses to accidentally get aligned to a number that is not a
    // power of 2. Consider this example:
    //
    // ```
    // #[repr(C)]
    // struct Foo {
    //     a: AtomicCell<u8>,
    //     b: u8,
    //     c: u8,
    // }
    // ```
    //
    // Now, if we have a slice of type `&[Foo]`, it is possible that field `a` in all items gets
    // stored at addresses that are multiples of 3. It'd be too bad if `LEN` was divisible by 3.
    // In order to protect from such cases, we simply choose a large prime number for `LEN`.
    const LEN: usize = 97;

    const L: Lock = Lock {
        state: AtomicUsize::new(0),
    };
    static LOCKS: [Lock; LEN] = [
        L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
        L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
        L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
        L, L, L, L, L, L, L,
    ];

    // If the modulus is a constant number, the compiler will use crazy math to transform this into
    // a sequence of cheap arithmetic operations rather than using the slow modulo instruction.
    &LOCKS[addr % LEN]
}

/// An atomic `()`.
///
/// All operations are noops.
struct AtomicUnit;

impl AtomicUnit {
    #[inline]
    fn load(&self, _order: Ordering) {}

    #[inline]
    fn store(&self, _val: (), _order: Ordering) {}

    #[inline]
    fn swap(&self, _val: (), _order: Ordering) {}

    #[inline]
    fn compare_exchange_weak(
        &self,
        _current: (),
        _new: (),
        _success: Ordering,
        _failure: Ordering,
    ) -> Result<(), ()> {
        Ok(())
    }
}

macro_rules! atomic {
    // If values of type `$t` can be transmuted into values of the primitive atomic type `$atomic`,
    // declares variable `$a` of type `$atomic` and executes `$atomic_op`, breaking out of the loop.
    (@check, $t:ty, $atomic:ty, $a:ident, $atomic_op:expr) => {
        if can_transmute::<$t, $atomic>() {
            let $a: &$atomic;
            break $atomic_op;
        }
    };

    // If values of type `$t` can be transmuted into values of a primitive atomic type, declares
    // variable `$a` of that type and executes `$atomic_op`. Otherwise, just executes
    // `$fallback_op`.
    ($t:ty, $a:ident, $atomic_op:expr, $fallback_op:expr) => {
        loop {
            atomic!(@check, $t, AtomicUnit, $a, $atomic_op);
            atomic!(@check, $t, atomic::AtomicUsize, $a, $atomic_op);

            #[cfg(feature = "nightly")]
            {
                #[cfg(target_has_atomic = "8")]
                atomic!(@check, $t, atomic::AtomicU8, $a, $atomic_op);
                #[cfg(target_has_atomic = "16")]
                atomic!(@check, $t, atomic::AtomicU16, $a, $atomic_op);
                #[cfg(target_has_atomic = "32")]
                atomic!(@check, $t, atomic::AtomicU32, $a, $atomic_op);
                #[cfg(target_has_atomic = "64")]
                atomic!(@check, $t, atomic::AtomicU64, $a, $atomic_op);
            }

            break $fallback_op;
        }
    };
}

/// Returns `true` if operations on `AtomicCell<T>` are lock-free.
fn atomic_is_lock_free<T>() -> bool {
    atomic! { T, _a, true, false }
}

/// Atomically reads data from `src`.
///
/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
/// global lock otherwise.
unsafe fn atomic_load<T>(src: *mut T) -> T
where
    T: Copy,
{
    atomic! {
        T, a,
        {
            a = &*(src as *const _ as *const _);
            mem::transmute_copy(&a.load(Ordering::SeqCst))
        },
        {
            let lock = lock(src as usize);

            // Try doing an optimistic read first.
            if let Some(stamp) = lock.optimistic_read() {
                // We need a volatile read here because other threads might concurrently modify the
                // value. In theory, data races are *always* UB, even if we use volatile reads and
                // discard the data when a data race is detected. The proper solution would be to
                // do atomic reads and atomic writes, but we can't atomically read and write all
                // kinds of data since `AtomicU8` is not available on stable Rust yet.
                let val = ptr::read_volatile(src);

                if lock.validate_read(stamp) {
                    return val;
                }
            }

            // Grab a regular write lock so that writers don't starve this load.
            let guard = lock.write();
            let val = ptr::read(src);
            // The value hasn't been changed. Drop the guard without incrementing the stamp.
            guard.abort();
            val
        }
    }
}

/// Atomically writes `val` to `dst`.
///
/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
/// global lock otherwise.
unsafe fn atomic_store<T>(dst: *mut T, val: T) {
    atomic! {
        T, a,
        {
            a = &*(dst as *const _ as *const _);
            let res = a.store(mem::transmute_copy(&val), Ordering::SeqCst);
            mem::forget(val);
            res
        },
        {
            let _guard = lock(dst as usize).write();
            ptr::write(dst, val)
        }
    }
}

/// Atomically swaps data at `dst` with `val`.
///
/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
/// global lock otherwise.
unsafe fn atomic_swap<T>(dst: *mut T, val: T) -> T {
    atomic! {
        T, a,
        {
            a = &*(dst as *const _ as *const _);
            let res = mem::transmute_copy(&a.swap(mem::transmute_copy(&val), Ordering::SeqCst));
            mem::forget(val);
            res
        },
        {
            let _guard = lock(dst as usize).write();
            ptr::replace(dst, val)
        }
    }
}

/// Atomically compares data at `dst` to `current` and, if equal byte-for-byte, exchanges data at
/// `dst` with `new`.
///
/// Returns the old value on success, or the current value at `dst` on failure.
///
/// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a
/// global lock otherwise.
unsafe fn atomic_compare_exchange_weak<T>(dst: *mut T, current: T, new: T) -> Result<T, T>
where
    T: Copy,
{
    atomic! {
        T, a,
        {
            a = &*(dst as *const _ as *const _);
            let res = a.compare_exchange_weak(
                mem::transmute_copy(&current),
                mem::transmute_copy(&new),
                Ordering::SeqCst,
                Ordering::SeqCst,
            );
            match res {
                Ok(v) => Ok(mem::transmute_copy(&v)),
                Err(v) => Err(mem::transmute_copy(&v)),
            }
        },
        {
            let guard = lock(dst as usize).write();

            if byte_eq(&*dst, &current) {
                Ok(ptr::replace(dst, new))
            } else {
                let val = ptr::read(dst);
                // The value hasn't been changed. Drop the guard without incrementing the stamp.
                guard.abort();
                Err(val)
            }
        }
    }
}