1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
extern crate deflate;
extern crate flate2;
use std::io::{Write, Read};
use deflate::CompressionOptions;
fn get_test_file_data(name: &str) -> Vec<u8> {
use std::fs::File;
let mut input = Vec::new();
let mut f = File::open(name).unwrap();
f.read_to_end(&mut input).unwrap();
input
}
fn get_test_data() -> Vec<u8> {
use std::env;
let path = env::var("TEST_FILE").unwrap_or_else(|_| "tests/pg11.txt".to_string());
get_test_file_data(&path)
}
fn roundtrip(data: &[u8]) {
roundtrip_conf(data, CompressionOptions::default())
}
fn roundtrip_conf(data: &[u8], level: CompressionOptions) {
let compressed = deflate::deflate_bytes_zlib_conf(data, level);
println!("Compressed len: {}, level: {:?}", compressed.len(), level);
let decompressed = {
let mut d = flate2::read::ZlibDecoder::new(compressed.as_slice());
let mut out = Vec::new();
d.read_to_end(&mut out).unwrap();
out
};
assert!(decompressed.as_slice() == data);
}
// A test comparing the compression ratio of the library with flate2
#[test]
fn file_zlib_compare_output() {
use flate2::Compression;
let test_data = get_test_data();
let flate2_compressed = {
let mut e = flate2::write::ZlibEncoder::new(Vec::new(), Compression::best());
e.write_all(&test_data).unwrap();
e.finish().unwrap()
};
// {
// use std::fs::File;
// use std::io::Write;
// {
// let mut f = File::create("out.deflate").unwrap();
// f.write_all(&deflate_compressed).unwrap();
// }
// {
// let mut f = File::create("out.flate2").unwrap();
// f.write_all(&flate2_compressed).unwrap();
// }
// }
println!("flate2 len: {}", flate2_compressed.len(),);
roundtrip_conf(&test_data, CompressionOptions::high());
}
#[test]
fn block_type() {
let test_file = "tests/short.bin";
let test_data = get_test_file_data(test_file);
let compressed = deflate::deflate_bytes_zlib(&test_data);
assert_eq!(compressed.len(), 30);
roundtrip(b"test");
}
#[test]
fn issue_17() {
// This is window size + 1 bytes long which made the hash table
// slide when there was only the two end-bytes that don't need to be hashed left
// and triggered an assertion.
let data = vec![0; 65537];
roundtrip(&data);
}
#[test]
fn fast() {
let test_data = get_test_data();
roundtrip_conf(&test_data, CompressionOptions::fast());
}
#[test]
fn rle() {
use deflate::{deflate_bytes_conf, CompressionOptions};
let test_data = get_test_data();
let compressed = deflate_bytes_conf(&test_data, CompressionOptions::rle());
let decompressed = {
let mut d = flate2::read::DeflateDecoder::new(compressed.as_slice());
let mut out = Vec::new();
d.read_to_end(&mut out).unwrap();
out
};
println!("Input size: {}", test_data.len());
println!("Rle compressed len: {}", compressed.len());
assert!(test_data == decompressed);
}
#[test]
fn issue_26() {
use deflate::write::ZlibEncoder;
let fp = Vec::new();
let mut fp = ZlibEncoder::new( fp, CompressionOptions::default() );
fp.write( &[0] ).unwrap();
fp.flush().unwrap();
fp.write( &[0] ).unwrap();
fp.write( &[0, 0] ).unwrap();
}
#[cfg(feature = "gzip")]
#[test]
fn issue_26_gzip() {
use deflate::write::DeflateEncoder;
let fp = Vec::new();
let mut fp = DeflateEncoder::new( fp, CompressionOptions::default() );
fp.write( &[0] ).unwrap();
fp.flush().unwrap();
fp.write( &[0] ).unwrap();
fp.write( &[0, 0] ).unwrap();
}
|