summaryrefslogtreecommitdiffstats
path: root/third_party/rust/ece/src/aesgcm.rs
blob: d994c114a18002932545e9dd63beff945db1d094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This supports the now obsolete HTTP-ECE Draft 02 "aesgcm" content
 * type. There are a number of providers that still use this format,
 * and there's no real mechanism to return the client supported crypto
 * versions.
 *
 * */

use crate::{
    common::*,
    crypto::{self, LocalKeyPair, RemotePublicKey},
    error::*,
};
use std::collections::HashMap;

const ECE_AESGCM_PAD_SIZE: usize = 2;

const ECE_WEBPUSH_AESGCM_KEYPAIR_LENGTH: usize = 134; // (2 + Raw Key Length) * 2
const ECE_WEBPUSH_AESGCM_AUTHINFO: &str = "Content-Encoding: auth\0";

// a DER prefixed key is "\04" + ECE_WEBPUSH_RAW_KEY_LENGTH
const ECE_WEBPUSH_RAW_KEY_LENGTH: usize = 65;
const ECE_WEBPUSH_IKM_LENGTH: usize = 32;

pub struct AesGcmEncryptedBlock {
    pub dh: Vec<u8>,
    pub salt: Vec<u8>,
    pub rs: u32,
    pub ciphertext: Vec<u8>,
}

impl AesGcmEncryptedBlock {
    pub fn aesgcm_rs(rs: u32) -> u32 {
        if rs > u32::max_value() - ECE_TAG_LENGTH as u32 {
            return 0;
        }
        rs + ECE_TAG_LENGTH as u32
    }

    /// Create a new block from the various header strings and body content.
    pub fn new(
        dh: &[u8],
        salt: &[u8],
        rs: u32,
        ciphertext: Vec<u8>,
    ) -> Result<AesGcmEncryptedBlock> {
        Ok(AesGcmEncryptedBlock {
            dh: dh.to_owned(),
            salt: salt.to_owned(),
            rs: Self::aesgcm_rs(rs),
            ciphertext,
        })
    }

    /// Return the headers Hash, NOTE you may need to merge Crypto-Key if there's
    /// already a VAPID element present.
    pub fn headers(self) -> HashMap<String, String> {
        let mut result: HashMap<String, String> = HashMap::new();
        let mut rs = "".to_owned();
        result.insert(
            "Crypto-Key".to_owned(),
            format!(
                "dh={}",
                base64::encode_config(&self.dh, base64::URL_SAFE_NO_PAD)
            ),
        );
        if self.rs > 0 {
            rs = format!(";rs={}", self.rs);
        }
        result.insert(
            "Encryption".to_owned(),
            format!(
                "salt={}{}",
                base64::encode_config(&self.salt, base64::URL_SAFE_NO_PAD),
                rs
            ),
        );
        result
    }

    /// Encode the body as a String.
    /// If you need the bytes, probably just call .ciphertext directly
    pub fn body(self) -> String {
        base64::encode_config(&self.ciphertext, base64::URL_SAFE_NO_PAD)
    }
}

pub struct AesGcmEceWebPush;
impl AesGcmEceWebPush {
    /// Encrypts a Web Push message using the "aesgcm" scheme. This function
    /// automatically generates an ephemeral ECDH key pair.
    pub fn encrypt(
        remote_pub_key: &dyn RemotePublicKey,
        auth_secret: &[u8],
        plaintext: &[u8],
        params: WebPushParams,
    ) -> Result<AesGcmEncryptedBlock> {
        let cryptographer = crypto::holder::get_cryptographer();
        let local_prv_key = cryptographer.generate_ephemeral_keypair()?;
        Self::encrypt_with_keys(
            &*local_prv_key,
            remote_pub_key,
            auth_secret,
            plaintext,
            params,
        )
    }

    /// Encrypts a Web Push message using the "aesgcm" scheme, with an explicit
    /// sender key. The sender key can be reused.
    pub fn encrypt_with_keys(
        local_prv_key: &dyn LocalKeyPair,
        remote_pub_key: &dyn RemotePublicKey,
        auth_secret: &[u8],
        plaintext: &[u8],
        params: WebPushParams,
    ) -> Result<AesGcmEncryptedBlock> {
        let cryptographer = crypto::holder::get_cryptographer();
        let salt = {
            let mut salt = [0u8; ECE_SALT_LENGTH];
            cryptographer.random_bytes(&mut salt)?;
            salt.to_vec()
        };
        let raw_local_pub_key = local_prv_key.pub_as_raw()?;
        let ciphertext = Self::common_encrypt(
            local_prv_key,
            remote_pub_key,
            auth_secret,
            &salt,
            params.rs,
            params.pad_length,
            plaintext,
        )?;
        Ok(AesGcmEncryptedBlock {
            salt,
            dh: raw_local_pub_key,
            rs: params.rs,
            ciphertext,
        })
    }

    /// Decrypts a Web Push message encrypted using the "aesgcm" scheme.
    pub fn decrypt(
        local_prv_key: &dyn LocalKeyPair,
        auth_secret: &[u8],
        block: &AesGcmEncryptedBlock,
    ) -> Result<Vec<u8>> {
        let cryptographer = crypto::holder::get_cryptographer();
        let sender_key = cryptographer.import_public_key(&block.dh)?;
        Self::common_decrypt(
            local_prv_key,
            &*sender_key,
            auth_secret,
            &block.salt,
            block.rs,
            &block.ciphertext,
        )
    }
}

impl EceWebPush for AesGcmEceWebPush {
    fn needs_trailer(rs: u32, ciphertextlen: usize) -> bool {
        ciphertextlen as u32 % rs == 0
    }

    fn pad_size() -> usize {
        ECE_AESGCM_PAD_SIZE
    }

    fn min_block_pad_length(pad_len: usize, max_block_len: usize) -> usize {
        ece_min_block_pad_length(pad_len, max_block_len)
    }

    fn pad(plaintext: &[u8], _: usize, _: bool) -> Result<Vec<u8>> {
        let plen = plaintext.len();
        let mut block = vec![0; plen + ECE_AESGCM_PAD_SIZE];
        block[2..].copy_from_slice(plaintext);
        Ok(block)
    }

    fn unpad(block: &[u8], _: bool) -> Result<&[u8]> {
        let padding_size = (((block[0] as u16) << 8) | block[1] as u16) as usize;
        if padding_size >= block.len() - 2 {
            return Err(Error::DecryptPadding);
        }
        if block[2..(2 + padding_size)].iter().any(|b| *b != 0u8) {
            return Err(Error::DecryptPadding);
        }
        Ok(&block[(2 + padding_size)..])
    }

    /// Derives the "aesgcm" decryption keyn and nonce given the receiver private
    /// key, sender public key, authentication secret, and sender salt.
    fn derive_key_and_nonce(
        ece_mode: EceMode,
        local_prv_key: &dyn LocalKeyPair,
        remote_pub_key: &dyn RemotePublicKey,
        auth_secret: &[u8],
        salt: &[u8],
    ) -> Result<KeyAndNonce> {
        let cryptographer = crypto::holder::get_cryptographer();
        let shared_secret = cryptographer.compute_ecdh_secret(remote_pub_key, local_prv_key)?;
        let raw_remote_pub_key = remote_pub_key.as_raw()?;
        let raw_local_pub_key = local_prv_key.pub_as_raw()?;

        let keypair = match ece_mode {
            EceMode::ENCRYPT => encode_keys(&raw_remote_pub_key, &raw_local_pub_key),
            EceMode::DECRYPT => encode_keys(&raw_local_pub_key, &raw_remote_pub_key),
        }?;
        let keyinfo = generate_info("aesgcm", &keypair)?;
        let nonceinfo = generate_info("nonce", &keypair)?;
        let ikm = cryptographer.hkdf_sha256(
            auth_secret,
            &shared_secret,
            &ECE_WEBPUSH_AESGCM_AUTHINFO.as_bytes(),
            ECE_WEBPUSH_IKM_LENGTH,
        )?;
        let key = cryptographer.hkdf_sha256(salt, &ikm, &keyinfo, ECE_AES_KEY_LENGTH)?;
        let nonce = cryptographer.hkdf_sha256(salt, &ikm, &nonceinfo, ECE_NONCE_LENGTH)?;
        Ok((key, nonce))
    }
}

fn encode_keys(raw_key1: &[u8], raw_key2: &[u8]) -> Result<Vec<u8>> {
    let mut combined = vec![0u8; ECE_WEBPUSH_AESGCM_KEYPAIR_LENGTH];

    if raw_key1.len() > ECE_WEBPUSH_RAW_KEY_LENGTH || raw_key2.len() > ECE_WEBPUSH_RAW_KEY_LENGTH {
        return Err(Error::InvalidKeyLength);
    }
    // length prefix each key
    combined[0] = 0;
    combined[1] = 65;
    combined[2..67].copy_from_slice(raw_key1);
    combined[67] = 0;
    combined[68] = 65;
    combined[69..].copy_from_slice(raw_key2);
    Ok(combined)
}

// The "aesgcm" IKM info string is "WebPush: info", followed by the
// receiver and sender public keys prefixed by their lengths.
fn generate_info(encoding: &str, keypair: &[u8]) -> Result<Vec<u8>> {
    let info_str = format!("Content-Encoding: {}\0P-256\0", encoding);
    let offset = info_str.len();
    let mut info = vec![0u8; offset + keypair.len()];
    info[0..offset].copy_from_slice(info_str.as_bytes());
    info[offset..offset + ECE_WEBPUSH_AESGCM_KEYPAIR_LENGTH].copy_from_slice(keypair);
    Ok(info)
}