1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
//! Zero-cost Futures in Rust
//!
//! This library is an implementation of futures in Rust which aims to provide
//! a robust implementation of handling asynchronous computations, ergonomic
//! composition and usage, and zero-cost abstractions over what would otherwise
//! be written by hand.
//!
//! Futures are a concept for an object which is a proxy for another value that
//! may not be ready yet. For example issuing an HTTP request may return a
//! future for the HTTP response, as it probably hasn't arrived yet. With an
//! object representing a value that will eventually be available, futures allow
//! for powerful composition of tasks through basic combinators that can perform
//! operations like chaining computations, changing the types of futures, or
//! waiting for two futures to complete at the same time.
//!
//! You can find extensive tutorials and documentations at [https://tokio.rs]
//! for both this crate (asynchronous programming in general) as well as the
//! Tokio stack to perform async I/O with.
//!
//! [https://tokio.rs]: https://tokio.rs
//!
//! ## Installation
//!
//! Add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! futures = "0.1"
//! ```
//!
//! ## Examples
//!
//! Let's take a look at a few examples of how futures might be used:
//!
//! ```
//! extern crate futures;
//!
//! use std::io;
//! use std::time::Duration;
//! use futures::prelude::*;
//! use futures::future::Map;
//!
//! // A future is actually a trait implementation, so we can generically take a
//! // future of any integer and return back a future that will resolve to that
//! // value plus 10 more.
//! //
//! // Note here that like iterators, we're returning the `Map` combinator in
//! // the futures crate, not a boxed abstraction. This is a zero-cost
//! // construction of a future.
//! fn add_ten<F>(future: F) -> Map<F, fn(i32) -> i32>
//! where F: Future<Item=i32>,
//! {
//! fn add(a: i32) -> i32 { a + 10 }
//! future.map(add)
//! }
//!
//! // Not only can we modify one future, but we can even compose them together!
//! // Here we have a function which takes two futures as input, and returns a
//! // future that will calculate the sum of their two values.
//! //
//! // Above we saw a direct return value of the `Map` combinator, but
//! // performance isn't always critical and sometimes it's more ergonomic to
//! // return a trait object like we do here. Note though that there's only one
//! // allocation here, not any for the intermediate futures.
//! fn add<'a, A, B>(a: A, b: B) -> Box<Future<Item=i32, Error=A::Error> + 'a>
//! where A: Future<Item=i32> + 'a,
//! B: Future<Item=i32, Error=A::Error> + 'a,
//! {
//! Box::new(a.join(b).map(|(a, b)| a + b))
//! }
//!
//! // Futures also allow chaining computations together, starting another after
//! // the previous finishes. Here we wait for the first computation to finish,
//! // and then decide what to do depending on the result.
//! fn download_timeout(url: &str,
//! timeout_dur: Duration)
//! -> Box<Future<Item=Vec<u8>, Error=io::Error>> {
//! use std::io;
//! use std::net::{SocketAddr, TcpStream};
//!
//! type IoFuture<T> = Box<Future<Item=T, Error=io::Error>>;
//!
//! // First thing to do is we need to resolve our URL to an address. This
//! // will likely perform a DNS lookup which may take some time.
//! let addr = resolve(url);
//!
//! // After we acquire the address, we next want to open up a TCP
//! // connection.
//! let tcp = addr.and_then(|addr| connect(&addr));
//!
//! // After the TCP connection is established and ready to go, we're off to
//! // the races!
//! let data = tcp.and_then(|conn| download(conn));
//!
//! // That all might take awhile, though, so let's not wait too long for it
//! // to all come back. The `select` combinator here returns a future which
//! // resolves to the first value that's ready plus the next future.
//! //
//! // Note we can also use the `then` combinator which is similar to
//! // `and_then` above except that it receives the result of the
//! // computation, not just the successful value.
//! //
//! // Again note that all the above calls to `and_then` and the below calls
//! // to `map` and such require no allocations. We only ever allocate once
//! // we hit the `Box::new()` call at the end here, which means we've built
//! // up a relatively involved computation with only one box, and even that
//! // was optional!
//!
//! let data = data.map(Ok);
//! let timeout = timeout(timeout_dur).map(Err);
//!
//! let ret = data.select(timeout).then(|result| {
//! match result {
//! // One future succeeded, and it was the one which was
//! // downloading data from the connection.
//! Ok((Ok(data), _other_future)) => Ok(data),
//!
//! // The timeout fired, and otherwise no error was found, so
//! // we translate this to an error.
//! Ok((Err(_timeout), _other_future)) => {
//! Err(io::Error::new(io::ErrorKind::Other, "timeout"))
//! }
//!
//! // A normal I/O error happened, so we pass that on through.
//! Err((e, _other_future)) => Err(e),
//! }
//! });
//! return Box::new(ret);
//!
//! fn resolve(url: &str) -> IoFuture<SocketAddr> {
//! // ...
//! # panic!("unimplemented");
//! }
//!
//! fn connect(hostname: &SocketAddr) -> IoFuture<TcpStream> {
//! // ...
//! # panic!("unimplemented");
//! }
//!
//! fn download(stream: TcpStream) -> IoFuture<Vec<u8>> {
//! // ...
//! # panic!("unimplemented");
//! }
//!
//! fn timeout(stream: Duration) -> IoFuture<()> {
//! // ...
//! # panic!("unimplemented");
//! }
//! }
//! # fn main() {}
//! ```
//!
//! Some more information can also be found in the [README] for now, but
//! otherwise feel free to jump in to the docs below!
//!
//! [README]: https://github.com/rust-lang-nursery/futures-rs#futures-rs
#![no_std]
#![deny(missing_docs, missing_debug_implementations)]
#![doc(html_root_url = "https://docs.rs/futures/0.1")]
#[macro_use]
#[cfg(feature = "use_std")]
extern crate std;
macro_rules! if_std {
($($i:item)*) => ($(
#[cfg(feature = "use_std")]
$i
)*)
}
#[macro_use]
mod poll;
pub use poll::{Poll, Async, AsyncSink, StartSend};
pub mod future;
pub use future::{Future, IntoFuture};
pub mod stream;
pub use stream::Stream;
pub mod sink;
pub use sink::Sink;
#[deprecated(since = "0.1.4", note = "import through the future module instead")]
#[cfg(feature = "with-deprecated")]
#[doc(hidden)]
pub use future::{done, empty, failed, finished, lazy};
#[doc(hidden)]
#[cfg(feature = "with-deprecated")]
#[deprecated(since = "0.1.4", note = "import through the future module instead")]
pub use future::{
Done, Empty, Failed, Finished, Lazy, AndThen, Flatten, FlattenStream, Fuse, IntoStream,
Join, Join3, Join4, Join5, Map, MapErr, OrElse, Select,
SelectNext, Then
};
#[cfg(feature = "use_std")]
mod lock;
mod task_impl;
mod resultstream;
pub mod task;
pub mod executor;
#[cfg(feature = "use_std")]
pub mod sync;
#[cfg(feature = "use_std")]
pub mod unsync;
if_std! {
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "use sync::oneshot::channel instead")]
#[cfg(feature = "with-deprecated")]
pub use sync::oneshot::channel as oneshot;
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "use sync::oneshot::Receiver instead")]
#[cfg(feature = "with-deprecated")]
pub use sync::oneshot::Receiver as Oneshot;
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "use sync::oneshot::Sender instead")]
#[cfg(feature = "with-deprecated")]
pub use sync::oneshot::Sender as Complete;
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "use sync::oneshot::Canceled instead")]
#[cfg(feature = "with-deprecated")]
pub use sync::oneshot::Canceled;
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "import through the future module instead")]
#[cfg(feature = "with-deprecated")]
#[allow(deprecated)]
pub use future::{BoxFuture, collect, select_all, select_ok};
#[doc(hidden)]
#[deprecated(since = "0.1.4", note = "import through the future module instead")]
#[cfg(feature = "with-deprecated")]
pub use future::{SelectAll, SelectAllNext, Collect, SelectOk};
}
/// A "prelude" for crates using the `futures` crate.
///
/// This prelude is similar to the standard library's prelude in that you'll
/// almost always want to import its entire contents, but unlike the standard
/// library's prelude you'll have to do so manually. An example of using this is:
///
/// ```
/// use futures::prelude::*;
/// ```
///
/// We may add items to this over time as they become ubiquitous as well, but
/// otherwise this should help cut down on futures-related imports when you're
/// working with the `futures` crate!
pub mod prelude {
#[doc(no_inline)]
pub use {Future, Stream, Sink, Async, AsyncSink, Poll, StartSend};
#[doc(no_inline)]
pub use IntoFuture;
}
|