1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use once_cell::sync::Lazy;
use std::sync::RwLock;
use super::{DispatchError, DispatchGuard, Dispatcher};
const GLOBAL_DISPATCHER_LIMIT: usize = 100;
static GLOBAL_DISPATCHER: Lazy<RwLock<Option<Dispatcher>>> =
Lazy::new(|| RwLock::new(Some(Dispatcher::new(GLOBAL_DISPATCHER_LIMIT))));
/// Get a dispatcher for the global queue.
///
/// A dispatcher is cheap to create, so we create one on every access instead of caching it.
/// This avoids troubles for tests where the global dispatcher _can_ change.
fn guard() -> DispatchGuard {
GLOBAL_DISPATCHER
.read()
.unwrap()
.as_ref()
.map(|dispatcher| dispatcher.guard())
.unwrap()
}
/// Launches a new task on the global dispatch queue.
///
/// The new task will be enqueued immediately.
/// If the pre-init queue was already flushed,
/// the background thread will process tasks in the queue (see [`flush_init`]).
///
/// This will not block.
///
/// [`flush_init`]: fn.flush_init.html
pub fn launch(task: impl FnOnce() + Send + 'static) {
match guard().launch(task) {
Ok(_) => {}
Err(DispatchError::QueueFull) => {
log::info!("Exceeded maximum queue size, discarding task");
// TODO: Record this as an error.
}
Err(_) => {
log::info!("Failed to launch a task on the queue. Discarding task.");
}
}
}
/// Block until all tasks prior to this call are processed.
pub fn block_on_queue() {
guard().block_on_queue();
}
/// Starts processing queued tasks in the global dispatch queue.
///
/// This function blocks until queued tasks prior to this call are finished.
/// Once the initial queue is empty the dispatcher will wait for new tasks to be launched.
pub fn flush_init() -> Result<(), DispatchError> {
guard().flush_init()
}
fn join_dispatcher_thread() -> Result<(), DispatchError> {
// After we issue the shutdown command, make sure to wait for the
// worker thread to join.
let mut lock = GLOBAL_DISPATCHER.write().unwrap();
let dispatcher = lock.as_mut().expect("Global dispatcher has gone missing");
if let Some(worker) = dispatcher.worker.take() {
return worker.join().map_err(|_| DispatchError::WorkerPanic);
}
Ok(())
}
/// Kill the blocked dispatcher without processing the queue.
///
/// This will immediately shutdown the worker thread
/// and no other tasks will be processed.
/// This only has an effect when the queue is still blocked.
pub fn kill() -> Result<(), DispatchError> {
guard().kill()?;
join_dispatcher_thread()
}
/// Shuts down the dispatch queue.
///
/// This will initiate a shutdown of the worker thread
/// and no new tasks will be processed after this.
pub fn shutdown() -> Result<(), DispatchError> {
guard().shutdown()?;
join_dispatcher_thread()
}
/// TEST ONLY FUNCTION.
/// Resets the Glean state and triggers init again.
pub(crate) fn reset_dispatcher() {
// We don't care about shutdown errors, since they will
// definitely happen if this
let _ = shutdown();
// Now that the dispatcher is shut down, replace it.
// For that we
// 1. Create a new
// 2. Replace the global one
// 3. Only then return (and thus release the lock)
let mut lock = GLOBAL_DISPATCHER.write().unwrap();
let new_dispatcher = Some(Dispatcher::new(GLOBAL_DISPATCHER_LIMIT));
*lock = new_dispatcher;
}
#[cfg(test)]
mod test {
use std::sync::{Arc, Mutex};
use super::*;
#[test]
#[ignore] // We can't reset the queue at the moment, so filling it up breaks other tests.
fn global_fills_up_in_order_and_works() {
let _ = env_logger::builder().is_test(true).try_init();
let result = Arc::new(Mutex::new(vec![]));
for i in 1..=GLOBAL_DISPATCHER_LIMIT {
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(i);
});
}
{
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(150);
});
}
flush_init().unwrap();
{
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(200);
});
}
block_on_queue();
let mut expected = (1..=GLOBAL_DISPATCHER_LIMIT).collect::<Vec<_>>();
expected.push(200);
assert_eq!(&*result.lock().unwrap(), &expected);
}
#[test]
#[ignore] // We can't reset the queue at the moment, so flushing it breaks other tests.
fn global_nested_calls() {
let _ = env_logger::builder().is_test(true).try_init();
let result = Arc::new(Mutex::new(vec![]));
{
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(1);
});
}
flush_init().unwrap();
{
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(21);
{
let result = Arc::clone(&result);
launch(move || {
result.lock().unwrap().push(3);
});
}
result.lock().unwrap().push(22);
});
}
block_on_queue();
let expected = vec![1, 21, 22, 3];
assert_eq!(&*result.lock().unwrap(), &expected);
}
}
|