summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/image.rs
blob: f761902b2a3c02ba8701a1bcac59bf8023be9a8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
#![allow(clippy::too_many_arguments)]
use std::convert::TryFrom;
use std::io;
use std::io::Read;
use std::ops::{Deref, DerefMut};
use std::path::Path;

use crate::buffer::{ImageBuffer, Pixel};
use crate::color::{ColorType, ExtendedColorType};
use crate::error::{ImageError, ImageResult};
use crate::math::Rect;

use crate::animation::Frames;

#[cfg(feature = "pnm")]
use crate::pnm::PNMSubtype;

/// An enumeration of supported image formats.
/// Not all formats support both encoding and decoding.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum ImageFormat {
    /// An Image in PNG Format
    Png,

    /// An Image in JPEG Format
    Jpeg,

    /// An Image in GIF Format
    Gif,

    /// An Image in WEBP Format
    WebP,

    /// An Image in general PNM Format
    Pnm,

    /// An Image in TIFF Format
    Tiff,

    /// An Image in TGA Format
    Tga,

    /// An Image in DDS Format
    Dds,

    /// An Image in BMP Format
    Bmp,

    /// An Image in ICO Format
    Ico,

    /// An Image in Radiance HDR Format
    Hdr,

    #[doc(hidden)]
    __NonExhaustive(crate::utils::NonExhaustiveMarker),
}

impl ImageFormat {
    /// Return the image format specified by the path's file extension.
    pub fn from_path<P>(path: P) -> ImageResult<Self> where P : AsRef<Path> {
        // thin wrapper function to strip generics before calling from_path_impl
        crate::io::free_functions::guess_format_from_path_impl(path.as_ref())
            .map_err(Into::into)
    }
}

/// An enumeration of supported image formats for encoding.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum ImageOutputFormat {
    #[cfg(feature = "png")]
    /// An Image in PNG Format
    Png,

    #[cfg(feature = "jpeg")]
    /// An Image in JPEG Format with specified quality
    Jpeg(u8),

    #[cfg(feature = "pnm")]
    /// An Image in one of the PNM Formats
    Pnm(PNMSubtype),

    #[cfg(feature = "gif")]
    /// An Image in GIF Format
    Gif,

    #[cfg(feature = "ico")]
    /// An Image in ICO Format
    Ico,

    #[cfg(feature = "bmp")]
    /// An Image in BMP Format
    Bmp,

    /// A value for signalling an error: An unsupported format was requested
    // Note: When TryFrom is stabilized, this value should not be needed, and
    // a TryInto<ImageOutputFormat> should be used instead of an Into<ImageOutputFormat>.
    Unsupported(String),

    #[doc(hidden)]
    __NonExhaustive(crate::utils::NonExhaustiveMarker),
}

impl From<ImageFormat> for ImageOutputFormat {
    fn from(fmt: ImageFormat) -> Self {
        match fmt {
            #[cfg(feature = "png")]
            ImageFormat::Png => ImageOutputFormat::Png,
            #[cfg(feature = "jpeg")]
            ImageFormat::Jpeg => ImageOutputFormat::Jpeg(75),
            #[cfg(feature = "pnm")]
            ImageFormat::Pnm => ImageOutputFormat::Pnm(PNMSubtype::ArbitraryMap),
            #[cfg(feature = "gif")]
            ImageFormat::Gif => ImageOutputFormat::Gif,
            #[cfg(feature = "ico")]
            ImageFormat::Ico => ImageOutputFormat::Ico,
            #[cfg(feature = "bmp")]
            ImageFormat::Bmp => ImageOutputFormat::Bmp,

            f => ImageOutputFormat::Unsupported(format!(
                "Image format {:?} not supported for encoding.",
                f
            )),
        }
    }
}

// This struct manages buffering associated with implementing `Read` and `Seek` on decoders that can
// must decode ranges of bytes at a time.
pub(crate) struct ImageReadBuffer {
    scanline_bytes: usize,
    buffer: Vec<u8>,
    consumed: usize,

    total_bytes: u64,
    offset: u64,
}
impl ImageReadBuffer {
    /// Create a new ImageReadBuffer.
    ///
    /// Panics if scanline_bytes doesn't fit into a usize, because that would mean reading anything
    /// from the image would take more RAM than the entire virtual address space. In other words,
    /// actually using this struct would instantly OOM so just get it out of the way now.
    pub(crate) fn new(scanline_bytes: u64, total_bytes: u64) -> Self {
        Self {
            scanline_bytes: usize::try_from(scanline_bytes).unwrap(),
            buffer: Vec::new(),
            consumed: 0,
            total_bytes,
            offset: 0,
        }
    }

    pub(crate) fn read<F>(&mut self, buf: &mut [u8], mut read_scanline: F) -> io::Result<usize>
    where
        F: FnMut(&mut [u8]) -> io::Result<usize>,
    {
        if self.buffer.len() == self.consumed {
            if self.offset == self.total_bytes {
                return Ok(0);
            } else if buf.len() >= self.scanline_bytes {
                // If there is nothing buffered and the user requested a full scanline worth of
                // data, skip buffering.
                let bytes_read = read_scanline(&mut buf[..self.scanline_bytes])?;
                self.offset += u64::try_from(bytes_read).unwrap();
                return Ok(bytes_read);
            } else {
                // Lazily allocate buffer the first time that read is called with a buffer smaller
                // than the scanline size.
                if self.buffer.is_empty() {
                    self.buffer.resize(self.scanline_bytes, 0);
                }

                self.consumed = 0;
                let bytes_read = read_scanline(&mut self.buffer[..])?;
                self.buffer.resize(bytes_read, 0);
                self.offset += u64::try_from(bytes_read).unwrap();

                assert!(bytes_read == self.scanline_bytes || self.offset == self.total_bytes);
            }
        }

        // Finally, copy bytes into output buffer.
        let bytes_buffered = self.buffer.len() - self.consumed;
        if bytes_buffered > buf.len() {
            crate::copy_memory(&self.buffer[self.consumed..][..buf.len()], &mut buf[..]);
            self.consumed += buf.len();
            Ok(buf.len())
        } else {
            crate::copy_memory(&self.buffer[self.consumed..], &mut buf[..bytes_buffered]);
            self.consumed = self.buffer.len();
            Ok(bytes_buffered)
        }
    }
}

/// Decodes a specific region of the image, represented by the rectangle
/// starting from ```x``` and ```y``` and having ```length``` and ```width```
pub(crate) fn load_rect<'a, D, F, F1, F2, E>(x: u32, y: u32, width: u32, height: u32, buf: &mut [u8],
                                          progress_callback: F,
                                          decoder: &mut D,
                                          mut seek_scanline: F1,
                                          mut read_scanline: F2) -> ImageResult<()>
    where D: ImageDecoder<'a>,
          F: Fn(Progress),
          F1: FnMut(&mut D, u64) -> io::Result<()>,
          F2: FnMut(&mut D, &mut [u8]) -> Result<usize, E>,
          ImageError: From<E>,
{
    let (x, y, width, height) = (u64::from(x), u64::from(y), u64::from(width), u64::from(height));
    let dimensions = decoder.dimensions();
    let bytes_per_pixel = u64::from(decoder.color_type().bytes_per_pixel());
    let row_bytes = bytes_per_pixel * u64::from(dimensions.0);
    let scanline_bytes = decoder.scanline_bytes();
    let total_bytes = width * height * bytes_per_pixel;

    let mut bytes_read = 0u64;
    let mut current_scanline = 0;
    let mut tmp = Vec::new();

    {
        // Read a range of the image starting from byte number `start` and continuing until byte
        // number `end`. Updates `current_scanline` and `bytes_read` appropiately.
        let mut read_image_range = |start: u64, end: u64| -> ImageResult<()> {
            let target_scanline = start / scanline_bytes;
            if target_scanline != current_scanline {
                seek_scanline(decoder, target_scanline)?;
                current_scanline = target_scanline;
            }

            let mut position = current_scanline * scanline_bytes;
            while position < end {
                if position >= start && end - position >= scanline_bytes {
                    read_scanline(decoder, &mut buf[(bytes_read as usize)..]
                                                   [..(scanline_bytes as usize)])?;
                    bytes_read += scanline_bytes;
                } else {
                    tmp.resize(scanline_bytes as usize, 0u8);
                    read_scanline(decoder, &mut tmp)?;

                    let offset = start.saturating_sub(position);
                    let len = (end - start)
                        .min(scanline_bytes - offset)
                        .min(end - position);

                    buf[(bytes_read as usize)..][..len as usize]
                        .copy_from_slice(&tmp[offset as usize..][..len as usize]);
                    bytes_read += len;
                }

                current_scanline += 1;
                position += scanline_bytes;
                progress_callback(Progress {current: bytes_read, total: total_bytes});
            }
            Ok(())
        };

        if x + width > u64::from(dimensions.0) || y + height > u64::from(dimensions.0)
            || width == 0 || height == 0 {
                return Err(ImageError::DimensionError);
            }
        if scanline_bytes > usize::max_value() as u64 {
            return Err(ImageError::InsufficientMemory);
        }

        progress_callback(Progress {current: 0, total: total_bytes});
        if x == 0 && width == u64::from(dimensions.0) {
            let start = x * bytes_per_pixel + y * row_bytes;
            let end = (x + width) * bytes_per_pixel + (y + height - 1) * row_bytes;
            read_image_range(start, end)?;
        } else {
            for row in y..(y+height) {
                let start = x * bytes_per_pixel + row * row_bytes;
                let end = (x + width) * bytes_per_pixel + row * row_bytes;
                read_image_range(start, end)?;
            }
        }
    }

    // Seek back to the start
    Ok(seek_scanline(decoder, 0)?)
}

/// Reads all of the bytes of a decoder into a Vec<T>. No particular alignment
/// of the output buffer is guaranteed.
///
/// Panics if there isn't enough memory to decode the image.
pub(crate) fn decoder_to_vec<'a, T>(decoder: impl ImageDecoder<'a>) -> ImageResult<Vec<T>>
where
    T: crate::traits::Primitive + bytemuck::Pod,
{
    let mut buf = vec![num_traits::Zero::zero(); usize::try_from(decoder.total_bytes()).unwrap() / std::mem::size_of::<T>()];
    decoder.read_image(bytemuck::cast_slice_mut(buf.as_mut_slice()))?;
    Ok(buf)
}

/// Represents the progress of an image operation.
///
/// Note that this is not necessarily accurate and no change to the values passed to the progress
/// function during decoding will be considered breaking. A decoder could in theory report the
/// progress `(0, 0)` if progress is unknown, without violating the interface contract of the type.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Progress {
    current: u64,
    total: u64,
}

impl Progress {
    /// A measure of completed decoding.
    pub fn current(self) -> u64 {
        self.current
    }

    /// A measure of all necessary decoding work.
    ///
    /// This is in general greater or equal than `current`.
    pub fn total(self) -> u64 {
        self.total
    }

    /// Calculate a measure for remaining decoding work.
    pub fn remaining(self) -> u64 {
        self.total.max(self.current) - self.current
    }
}

/// The trait that all decoders implement
pub trait ImageDecoder<'a>: Sized {
    /// The type of reader produced by `into_reader`.
    type Reader: Read + 'a;

    /// Returns a tuple containing the width and height of the image
    fn dimensions(&self) -> (u32, u32);

    /// Returns the color type of the image data produced by this decoder
    fn color_type(&self) -> ColorType;

    /// Retuns the color type of the image file before decoding
    fn original_color_type(&self) -> ExtendedColorType {
        self.color_type().into()
    }

    /// Returns a reader that can be used to obtain the bytes of the image. For the best
    /// performance, always try to read at least `scanline_bytes` from the reader at a time. Reading
    /// fewer bytes will cause the reader to perform internal buffering.
    fn into_reader(self) -> ImageResult<Self::Reader>;

    /// Returns the total number of bytes in the decoded image.
    ///
    /// This is the size of the buffer that must be passed to `read_image` or
    /// `read_image_with_progress`. The returned value may exceed usize::MAX, in
    /// which case it isn't actually possible to construct a buffer to decode all the image data
    /// into.
    fn total_bytes(&self) -> u64 {
        let dimensions = self.dimensions();
        u64::from(dimensions.0) * u64::from(dimensions.1) * u64::from(self.color_type().bytes_per_pixel())
    }

    /// Returns the minimum number of bytes that can be efficiently read from this decoder. This may
    /// be as few as 1 or as many as `total_bytes()`.
    fn scanline_bytes(&self) -> u64 {
        self.total_bytes()
    }

    /// Returns all the bytes in the image.
    ///
    /// This function takes a slice of bytes and writes the pixel data of the image into it.
    /// Although not required, for certain color types callers may want to pass buffers which are
    /// aligned to 2 or 4 byte boundaries to the slice can be cast to a [u16] or [u32]. To accommodate
    /// such casts, the returned contents will always be in native endian.
    ///
    /// # Panics
    ///
    /// This function panics if buf.len() != self.total_bytes().
    ///
    /// # Examples
    ///
    /// ```no_build
    /// use zerocopy::{AsBytes, FromBytes};
    /// fn read_16bit_image(decoder: impl ImageDecoder) -> Vec<16> {
    ///     let mut buf: Vec<u16> = vec![0; decoder.total_bytes()/2];
    ///     decoder.read_image(buf.as_bytes());
    ///     buf
    /// }
    fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
        self.read_image_with_progress(buf, |_| {})
    }

    /// Same as `read_image` but periodically calls the provided callback to give updates on loading
    /// progress.
    fn read_image_with_progress<F: Fn(Progress)>(
        self,
        buf: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));

        let total_bytes = self.total_bytes() as usize;
        let scanline_bytes = self.scanline_bytes() as usize;
        let target_read_size = if scanline_bytes < 4096 {
            (4096 / scanline_bytes) * scanline_bytes
        } else {
            scanline_bytes
        };

        let mut reader = self.into_reader()?;

        let mut bytes_read = 0;
        while bytes_read < total_bytes {
            let read_size = target_read_size.min(total_bytes - bytes_read);
            reader.read_exact(&mut buf[bytes_read..][..read_size])?;
            bytes_read += read_size;

            progress_callback(Progress {
                current: bytes_read as u64,
                total: total_bytes as u64,
            });
        }

        Ok(())
    }
}

/// ImageDecoderExt trait
pub trait ImageDecoderExt<'a>: ImageDecoder<'a> + Sized {
    /// Read a rectangular section of the image.
    fn read_rect(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
        buf: &mut [u8],
    ) -> ImageResult<()> {
        self.read_rect_with_progress(x, y, width, height, buf, |_|{})
    }

    /// Read a rectangular section of the image, periodically reporting progress.
    fn read_rect_with_progress<F: Fn(Progress)>(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
        buf: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()>;
}

/// AnimationDecoder trait
pub trait AnimationDecoder<'a> {
    /// Consume the decoder producing a series of frames.
    fn into_frames(self) -> Frames<'a>;
}

/// The trait all encoders implement
pub trait ImageEncoder {
    /// Writes all the bytes in an image to the encoder.
    ///
    /// This function takes a slice of bytes of the pixel data of the image
    /// and encodes them. Unlike particular format encoders inherent impl encode
    /// methods where endianness is not specified, here image data bytes should
    /// always be in native endian. The implementor will reorder the endianess
    /// as necessary for the target encoding format.
    ///
    /// See also `ImageDecoder::read_image` which reads byte buffers into
    /// native endian.
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()>;
}

/// Immutable pixel iterator
pub struct Pixels<'a, I: ?Sized + 'a> {
    image: &'a I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
}

impl<'a, I: GenericImageView> Iterator for Pixels<'a, I> {
    type Item = (u32, u32, I::Pixel);

    fn next(&mut self) -> Option<(u32, u32, I::Pixel)> {
        if self.x >= self.width {
            self.x = 0;
            self.y += 1;
        }

        if self.y >= self.height {
            None
        } else {
            let pixel = self.image.get_pixel(self.x, self.y);
            let p = (self.x, self.y, pixel);

            self.x += 1;

            Some(p)
        }
    }
}

/// Trait to inspect an image.
pub trait GenericImageView {
    /// The type of pixel.
    type Pixel: Pixel;

    /// Underlying image type. This is mainly used by SubImages in order to
    /// always have a reference to the original image. This allows for less
    /// indirections and it eases the use of nested SubImages.
    type InnerImageView: GenericImageView<Pixel = Self::Pixel>;

    /// The width and height of this image.
    fn dimensions(&self) -> (u32, u32);

    /// The width of this image.
    fn width(&self) -> u32 {
        let (w, _) = self.dimensions();
        w
    }

    /// The height of this image.
    fn height(&self) -> u32 {
        let (_, h) = self.dimensions();
        h
    }

    /// The bounding rectangle of this image.
    fn bounds(&self) -> (u32, u32, u32, u32);

    /// Returns true if this x, y coordinate is contained inside the image.
    fn in_bounds(&self, x: u32, y: u32) -> bool {
        let (ix, iy, iw, ih) = self.bounds();
        x >= ix && x < ix + iw && y >= iy && y < iy + ih
    }

    /// Returns the pixel located at (x, y)
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of bounds.
    ///
    /// TODO: change this signature to &P
    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel;

    /// Returns the pixel located at (x, y)
    ///
    /// This function can be implemented in a way that ignores bounds checking.
    unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        self.get_pixel(x, y)
    }

    /// Returns an Iterator over the pixels of this image.
    /// The iterator yields the coordinates of each pixel
    /// along with their value
    fn pixels(&self) -> Pixels<Self> {
        let (width, height) = self.dimensions();

        Pixels {
            image: self,
            x: 0,
            y: 0,
            width,
            height,
        }
    }

    /// Returns a reference to the underlying image.
    fn inner(&self) -> &Self::InnerImageView;

    /// Returns an subimage that is an immutable view into this image.
    /// You can use [`GenericImage::sub_image`] if you need a mutable view instead.
    fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&Self::InnerImageView> {
        SubImage::new(self.inner(), x, y, width, height)
    }
}

/// A trait for manipulating images.
pub trait GenericImage: GenericImageView {
    /// Underlying image type. This is mainly used by SubImages in order to
    /// always have a reference to the original image. This allows for less
    /// indirections and it eases the use of nested SubImages.
    type InnerImage: GenericImage<Pixel = Self::Pixel>;

    /// Gets a reference to the mutable pixel at location `(x, y)`
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of bounds.
    fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel;

    /// Put a pixel at location (x, y)
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of bounds.
    fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);

    /// Puts a pixel at location (x, y)
    ///
    /// This function can be implemented in a way that ignores bounds checking.
    unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        self.put_pixel(x, y, pixel);
    }

    /// Put a pixel at location (x, y), taking into account alpha channels
    ///
    /// DEPRECATED: This method will be removed. Blend the pixel directly instead.
    fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);

    /// Copies all of the pixels from another image into this image.
    ///
    /// The other image is copied with the top-left corner of the
    /// other image placed at (x, y).
    ///
    /// In order to copy only a piece of the other image, use [`GenericImageView::view`].
    ///
    /// # Returns
    /// Returns an error if the image is too large to be copied at the given position
    fn copy_from<O>(&mut self, other: &O, x: u32, y: u32) -> ImageResult<()>
    where
        O: GenericImageView<Pixel = Self::Pixel>,
    {
        // Do bounds checking here so we can use the non-bounds-checking
        // functions to copy pixels.
        if self.width() < other.width() + x || self.height() < other.height() + y {
            return Err(ImageError::DimensionError);
        }

        for i in 0..other.width() {
            for k in 0..other.height() {
                let p = other.get_pixel(i, k);
                self.put_pixel(i + x, k + y, p);
            }
        }
        Ok(())
    }

    /// Copies all of the pixels from one part of this image to another part of this image.
    ///
    /// The destination rectangle of the copy is specified with the top-left corner placed at (x, y).
    ///
    /// # Returns
    /// `true` if the copy was successful, `false` if the image could not
    /// be copied due to size constraints.
    fn copy_within(&mut self, source: Rect, x: u32, y: u32) -> bool {
        let Rect { x: sx, y: sy, width, height } = source;
        let dx = x;
        let dy = y;
        assert!(sx < self.width() && dx < self.width());
        assert!(sy < self.height() && dy < self.height());
        if self.width() - dx.max(sx) < width || self.height() - dy.max(sy) < height {
            return false;
        }
        // since `.rev()` creates a new dype we would either have to go with dynamic dispatch for the ranges
        // or have quite a lot of code bloat. A macro gives us static dispatch with less visible bloat.
        macro_rules! copy_within_impl_ {
            ($xiter:expr, $yiter:expr) => {
                for y in $yiter {
                    let sy = sy + y;
                    let dy = dy + y;
                    for x in $xiter {
                        let sx = sx + x;
                        let dx = dx + x;
                        let pixel = self.get_pixel(sx, sy);
                        self.put_pixel(dx, dy, pixel);
                    }
                }
            };
        }
        // check how target and source rectangles relate to each other so we dont overwrite data before we copied it.
        match (sx < dx, sy < dy) {
            (true, true) => copy_within_impl_!((0..width).rev(), (0..height).rev()),
            (true, false) => copy_within_impl_!((0..width).rev(), 0..height),
            (false, true) => copy_within_impl_!(0..width, (0..height).rev()),
            (false, false) => copy_within_impl_!(0..width, 0..height),
        }
        true
    }

    /// Returns a mutable reference to the underlying image.
    fn inner_mut(&mut self) -> &mut Self::InnerImage;

    /// Returns a mutable subimage that is a view into this image.
    /// If you want an immutable subimage instead, use [`GenericImageView::view`]
    fn sub_image(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
    ) -> SubImage<&mut Self::InnerImage> {
        SubImage::new(self.inner_mut(), x, y, width, height)
    }
}

/// A View into another image
///
/// Instances of this struct can be created using:
///   - [`GenericImage::sub_image`] to create a mutable view,
///   - [`GenericImageView::view`] to create an immutable view,
///   - [`SubImage::new`] to instantiate the struct directly.
pub struct SubImage<I> {
    image: I,
    xoffset: u32,
    yoffset: u32,
    xstride: u32,
    ystride: u32,
}

/// Alias to access Pixel behind a reference
type DerefPixel<I> = <<I as Deref>::Target as GenericImageView>::Pixel;

/// Alias to access Subpixel behind a reference
type DerefSubpixel<I> = <DerefPixel<I> as Pixel>::Subpixel;

impl<I> SubImage<I> {
    /// Construct a new subimage
    pub fn new(image: I, x: u32, y: u32, width: u32, height: u32) -> SubImage<I> {
        SubImage {
            image,
            xoffset: x,
            yoffset: y,
            xstride: width,
            ystride: height,
        }
    }

    /// Change the coordinates of this subimage.
    pub fn change_bounds(&mut self, x: u32, y: u32, width: u32, height: u32) {
        self.xoffset = x;
        self.yoffset = y;
        self.xstride = width;
        self.ystride = height;
    }

    /// Convert this subimage to an ImageBuffer
    pub fn to_image(&self) -> ImageBuffer<DerefPixel<I>, Vec<DerefSubpixel<I>>>
    where
        I: Deref,
        I::Target: GenericImage + 'static,
    {
        let mut out = ImageBuffer::new(self.xstride, self.ystride);
        let borrowed = self.image.deref();

        for y in 0..self.ystride {
            for x in 0..self.xstride {
                let p = borrowed.get_pixel(x + self.xoffset, y + self.yoffset);
                out.put_pixel(x, y, p);
            }
        }

        out
    }
}

#[allow(deprecated)]
impl<I> GenericImageView for SubImage<I>
where
    I: Deref,
    I::Target: GenericImageView + Sized,
{
    type Pixel = DerefPixel<I>;
    type InnerImageView = I::Target;

    fn dimensions(&self) -> (u32, u32) {
        (self.xstride, self.ystride)
    }

    fn bounds(&self) -> (u32, u32, u32, u32) {
        (self.xoffset, self.yoffset, self.xstride, self.ystride)
    }

    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        self.image.get_pixel(x + self.xoffset, y + self.yoffset)
    }

    fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&Self::InnerImageView> {
        let x = self.xoffset + x;
        let y = self.yoffset + y;
        SubImage::new(self.inner(), x, y, width, height)
    }

    fn inner(&self) -> &Self::InnerImageView {
        &self.image
    }
}

#[allow(deprecated)]
impl<I> GenericImage for SubImage<I>
where
    I: DerefMut,
    I::Target: GenericImage + Sized,
{
    type InnerImage = I::Target;

    fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
        self.image.get_pixel_mut(x + self.xoffset, y + self.yoffset)
    }

    fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        self.image
            .put_pixel(x + self.xoffset, y + self.yoffset, pixel)
    }

    /// DEPRECATED: This method will be removed. Blend the pixel directly instead.
    fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        self.image
            .blend_pixel(x + self.xoffset, y + self.yoffset, pixel)
    }

    fn sub_image(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
    ) -> SubImage<&mut Self::InnerImage> {
        let x = self.xoffset + x;
        let y = self.yoffset + y;
        SubImage::new(self.inner_mut(), x, y, width, height)
    }

    fn inner_mut(&mut self) -> &mut Self::InnerImage {
        &mut self.image
    }
}

#[cfg(test)]
mod tests {
    use std::io;
    use std::path::Path;

    use super::{ColorType, ImageDecoder, ImageResult, GenericImage, GenericImageView, load_rect, ImageFormat};
    use crate::buffer::{GrayImage, ImageBuffer};
    use crate::color::Rgba;
    use crate::math::Rect;

    #[test]
    /// Test that alpha blending works as expected
    fn test_image_alpha_blending() {
        let mut target = ImageBuffer::new(1, 1);
        target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));
        assert!(*target.get_pixel(0, 0) == Rgba([255, 0, 0, 255]));
        target.blend_pixel(0, 0, Rgba([0, 255, 0, 255]));
        assert!(*target.get_pixel(0, 0) == Rgba([0, 255, 0, 255]));

        // Blending an alpha channel onto a solid background
        target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
        assert!(*target.get_pixel(0, 0) == Rgba([127, 127, 0, 255]));

        // Blending two alpha channels
        target.put_pixel(0, 0, Rgba([0, 255, 0, 127]));
        target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
        assert!(*target.get_pixel(0, 0) == Rgba([169, 85, 0, 190]));
    }

    #[test]
    fn test_in_bounds() {
        let mut target = ImageBuffer::new(2, 2);
        target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));

        assert!(target.in_bounds(0, 0));
        assert!(target.in_bounds(1, 0));
        assert!(target.in_bounds(0, 1));
        assert!(target.in_bounds(1, 1));

        assert!(!target.in_bounds(2, 0));
        assert!(!target.in_bounds(0, 2));
        assert!(!target.in_bounds(2, 2));
    }

    #[test]
    fn test_can_subimage_clone_nonmut() {
        let mut source = ImageBuffer::new(3, 3);
        source.put_pixel(1, 1, Rgba([255u8, 0, 0, 255]));

        // A non-mutable copy of the source image
        let source = source.clone();

        // Clone a view into non-mutable to a separate buffer
        let cloned = source.view(1, 1, 1, 1).to_image();

        assert!(cloned.get_pixel(0, 0) == source.get_pixel(1, 1));
    }

    #[test]
    fn test_can_nest_views() {
        let mut source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));

        {
            let mut sub1 = source.sub_image(0, 0, 2, 2);
            let mut sub2 = sub1.sub_image(1, 1, 1, 1);
            sub2.put_pixel(0, 0, Rgba([0, 0, 0, 0]));
        }

        assert_eq!(*source.get_pixel(1, 1), Rgba([0, 0, 0, 0]));

        let view1 = source.view(0, 0, 2, 2);
        assert_eq!(*source.get_pixel(1, 1), view1.get_pixel(1, 1));

        let view2 = view1.view(1, 1, 1, 1);
        assert_eq!(*source.get_pixel(1, 1), view2.get_pixel(0, 0));
    }

    #[test]
    fn test_load_rect() {
        struct MockDecoder {scanline_number: u64, scanline_bytes: u64}
        impl<'a> ImageDecoder<'a> for MockDecoder {
            type Reader = Box<dyn io::Read>;
            fn dimensions(&self) -> (u32, u32) {(5, 5)}
            fn color_type(&self) -> ColorType {  ColorType::L8 }
            fn into_reader(self) -> ImageResult<Self::Reader> {unimplemented!()}
            fn scanline_bytes(&self) -> u64 { self.scanline_bytes }
        }

        const DATA: [u8; 25] = [0,  1,  2,  3,  4,
                                5,  6,  7,  8,  9,
                                10, 11, 12, 13, 14,
                                15, 16, 17, 18, 19,
                                20, 21, 22, 23, 24];

        fn seek_scanline(m: &mut MockDecoder, n: u64) -> io::Result<()> {
            m.scanline_number = n;
            Ok(())
        }
        fn read_scanline(m: &mut MockDecoder, buf: &mut [u8]) -> io::Result<usize> {
            let bytes_read = m.scanline_number * m.scanline_bytes;
            if bytes_read >= 25 {
                return Ok(0);
            }

            let len = m.scanline_bytes.min(25 - bytes_read);
            buf[..(len as usize)].copy_from_slice(&DATA[(bytes_read as usize)..][..(len as usize)]);
            m.scanline_number += 1;
            Ok(len as usize)
        }

        for scanline_bytes in 1..30 {
            let mut output = [0u8; 26];

            load_rect(0, 0, 5, 5, &mut output, |_|{},
                      &mut MockDecoder{scanline_number:0, scanline_bytes},
                      seek_scanline, read_scanline).unwrap();
            assert_eq!(output[0..25], DATA);
            assert_eq!(output[25], 0);

            output = [0u8; 26];
            load_rect(3, 2, 1, 1, &mut output, |_|{},
                      &mut MockDecoder{scanline_number:0, scanline_bytes},
                      seek_scanline, read_scanline).unwrap();
            assert_eq!(output[0..2], [13, 0]);

            output = [0u8; 26];
            load_rect(3, 2, 2, 2, &mut output, |_|{},
                      &mut MockDecoder{scanline_number:0, scanline_bytes},
                      seek_scanline, read_scanline).unwrap();
            assert_eq!(output[0..5], [13, 14, 18, 19, 0]);


            output = [0u8; 26];
            load_rect(1, 1, 2, 4, &mut output, |_|{},
                      &mut MockDecoder{scanline_number:0, scanline_bytes},
                      seek_scanline, read_scanline).unwrap();
            assert_eq!(output[0..9], [6, 7, 11, 12, 16, 17, 21, 22, 0]);

        }
    }

    #[test]
    fn test_image_format_from_path() {
        fn from_path(s: &str) -> ImageResult<ImageFormat> {
            ImageFormat::from_path(Path::new(s))
        }
        assert_eq!(from_path("./a.jpg").unwrap(), ImageFormat::Jpeg);
        assert_eq!(from_path("./a.jpeg").unwrap(), ImageFormat::Jpeg);
        assert_eq!(from_path("./a.JPEG").unwrap(), ImageFormat::Jpeg);
        assert_eq!(from_path("./a.pNg").unwrap(), ImageFormat::Png);
        assert_eq!(from_path("./a.gif").unwrap(), ImageFormat::Gif);
        assert_eq!(from_path("./a.webp").unwrap(), ImageFormat::WebP);
        assert_eq!(from_path("./a.tiFF").unwrap(), ImageFormat::Tiff);
        assert_eq!(from_path("./a.tif").unwrap(), ImageFormat::Tiff);
        assert_eq!(from_path("./a.tga").unwrap(), ImageFormat::Tga);
        assert_eq!(from_path("./a.dds").unwrap(), ImageFormat::Dds);
        assert_eq!(from_path("./a.bmp").unwrap(), ImageFormat::Bmp);
        assert_eq!(from_path("./a.Ico").unwrap(), ImageFormat::Ico);
        assert_eq!(from_path("./a.hdr").unwrap(), ImageFormat::Hdr);
        assert_eq!(from_path("./a.pbm").unwrap(), ImageFormat::Pnm);
        assert_eq!(from_path("./a.pAM").unwrap(), ImageFormat::Pnm);
        assert_eq!(from_path("./a.Ppm").unwrap(), ImageFormat::Pnm);
        assert_eq!(from_path("./a.pgm").unwrap(), ImageFormat::Pnm);
        assert!(from_path("./a.txt").is_err());
        assert!(from_path("./a").is_err());
    }

    #[test]
    fn test_generic_image_copy_within_oob() {
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, vec![0u8; 16]).unwrap();
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 5, height: 4 }, 0, 0));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 5 }, 0, 0));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 0, width: 4, height: 4 }, 0, 0));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 1, 0));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 1, width: 4, height: 4 }, 0, 0));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 0, 1));
        assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 1, width: 4, height: 4 }, 0, 0));
    }

    #[test]
    fn test_generic_image_copy_within_tl() {
        let data = &[
            00, 01, 02, 03,
            04, 05, 06, 07,
            08, 09, 10, 11,
            12, 13, 14, 15
        ];
        let expected = [
            00, 01, 02, 03,
            04, 00, 01, 02,
            08, 04, 05, 06,
            12, 08, 09, 10,
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 3, height: 3 }, 1, 1));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_generic_image_copy_within_tr() {
        let data = &[
            00, 01, 02, 03,
            04, 05, 06, 07,
            08, 09, 10, 11,
            12, 13, 14, 15
        ];
        let expected = [
            00, 01, 02, 03,
            01, 02, 03, 07,
            05, 06, 07, 11,
            09, 10, 11, 15
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 0, width: 3, height: 3 }, 0, 1));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_generic_image_copy_within_bl() {
        let data = &[
            00, 01, 02, 03,
            04, 05, 06, 07,
            08, 09, 10, 11,
            12, 13, 14, 15
        ];
        let expected = [
            00, 04, 05, 06,
            04, 08, 09, 10,
            08, 12, 13, 14,
            12, 13, 14, 15
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 1, width: 3, height: 3 }, 1, 0));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_generic_image_copy_within_br() {
        let data = &[
            00, 01, 02, 03,
            04, 05, 06, 07,
            08, 09, 10, 11,
            12, 13, 14, 15
        ];
        let expected = [
            05, 06, 07, 03,
            09, 10, 11, 07,
            13, 14, 15, 11,
            12, 13, 14, 15
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 1, width: 3, height: 3 }, 0, 0));
        assert_eq!(&image.into_raw(), &expected);
    }
}