1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
//! Decoding and Encoding of PNG Images
//!
//! PNG (Portable Network Graphics) is an image format that supports lossless compression.
//!
//! # Related Links
//! * <http://www.w3.org/TR/PNG/> - The PNG Specification
//!
use std::convert::TryFrom;
use std::io::{self, Read, Write};
use crate::color::{ColorType, ExtendedColorType};
use crate::error::{DecodingError, ImageError, ImageResult, ParameterError, ParameterErrorKind};
use crate::image::{ImageDecoder, ImageEncoder, ImageFormat};
/// PNG Reader
///
/// This reader will try to read the png one row at a time,
/// however for interlaced png files this is not possible and
/// these are therefore read at once.
pub struct PNGReader<R: Read> {
reader: png::Reader<R>,
buffer: Vec<u8>,
index: usize,
}
impl<R: Read> PNGReader<R> {
fn new(mut reader: png::Reader<R>) -> ImageResult<PNGReader<R>> {
let len = reader.output_buffer_size();
// Since interlaced images do not come in
// scanline order it is almost impossible to
// read them in a streaming fashion, however
// this shouldn't be a too big of a problem
// as most interlaced images should fit in memory.
let buffer = if reader.info().interlaced {
let mut buffer = vec![0; len];
reader.next_frame(&mut buffer).map_err(ImageError::from_png)?;
buffer
} else {
Vec::new()
};
Ok(PNGReader {
reader,
buffer,
index: 0,
})
}
}
impl<R: Read> Read for PNGReader<R> {
fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
// io::Write::write for slice cannot fail
let readed = buf.write(&self.buffer[self.index..]).unwrap();
let mut bytes = readed;
self.index += readed;
while self.index >= self.buffer.len() {
match self.reader.next_row()? {
Some(row) => {
// Faster to copy directly to external buffer
let readed = buf.write(row).unwrap();
bytes += readed;
self.buffer = (&row[readed..]).to_owned();
self.index = 0;
}
None => return Ok(bytes)
}
}
Ok(bytes)
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
let mut bytes = self.buffer.len();
buf.extend_from_slice(&self.buffer);
self.buffer = Vec::new();
self.index = 0;
while let Some(row) = self.reader.next_row()? {
buf.extend_from_slice(row);
bytes += row.len();
}
Ok(bytes)
}
}
/// PNG decoder
pub struct PngDecoder<R: Read> {
color_type: ColorType,
reader: png::Reader<R>,
}
impl<R: Read> PngDecoder<R> {
/// Creates a new decoder that decodes from the stream ```r```
pub fn new(r: R) -> ImageResult<PngDecoder<R>> {
let limits = png::Limits {
bytes: usize::max_value(),
};
let mut decoder = png::Decoder::new_with_limits(r, limits);
// By default the PNG decoder will scale 16 bpc to 8 bpc, so custom
// transformations must be set. EXPAND preserves the default behavior
// expanding bpc < 8 to 8 bpc.
decoder.set_transformations(png::Transformations::EXPAND);
let (_, mut reader) = decoder.read_info().map_err(ImageError::from_png)?;
let (color_type, bits) = reader.output_color_type();
let color_type = match (color_type, bits) {
(png::ColorType::Grayscale, png::BitDepth::Eight) => ColorType::L8,
(png::ColorType::Grayscale, png::BitDepth::Sixteen) => ColorType::L16,
(png::ColorType::GrayscaleAlpha, png::BitDepth::Eight) => ColorType::La8,
(png::ColorType::GrayscaleAlpha, png::BitDepth::Sixteen) => ColorType::La16,
(png::ColorType::RGB, png::BitDepth::Eight) => ColorType::Rgb8,
(png::ColorType::RGB, png::BitDepth::Sixteen) => ColorType::Rgb16,
(png::ColorType::RGBA, png::BitDepth::Eight) => ColorType::Rgba8,
(png::ColorType::RGBA, png::BitDepth::Sixteen) => ColorType::Rgba16,
(png::ColorType::Grayscale, png::BitDepth::One) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::L1)),
(png::ColorType::GrayscaleAlpha, png::BitDepth::One) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::La1)),
(png::ColorType::RGB, png::BitDepth::One) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgb1)),
(png::ColorType::RGBA, png::BitDepth::One) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgba1)),
(png::ColorType::Grayscale, png::BitDepth::Two) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::L2)),
(png::ColorType::GrayscaleAlpha, png::BitDepth::Two) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::La2)),
(png::ColorType::RGB, png::BitDepth::Two) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgb2)),
(png::ColorType::RGBA, png::BitDepth::Two) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgba2)),
(png::ColorType::Grayscale, png::BitDepth::Four) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::L4)),
(png::ColorType::GrayscaleAlpha, png::BitDepth::Four) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::La4)),
(png::ColorType::RGB, png::BitDepth::Four) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgb4)),
(png::ColorType::RGBA, png::BitDepth::Four) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Rgba4)),
(png::ColorType::Indexed, bits) =>
return Err(ImageError::UnsupportedColor(ExtendedColorType::Unknown(bits as u8))),
};
Ok(PngDecoder { color_type, reader })
}
}
impl<'a, R: 'a + Read> ImageDecoder<'a> for PngDecoder<R> {
type Reader = PNGReader<R>;
fn dimensions(&self) -> (u32, u32) {
self.reader.info().size()
}
fn color_type(&self) -> ColorType {
self.color_type
}
fn into_reader(self) -> ImageResult<Self::Reader> {
PNGReader::new(self.reader)
}
fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
use byteorder::{BigEndian, ByteOrder, NativeEndian};
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
self.reader.next_frame(buf).map_err(ImageError::from_png)?;
// PNG images are big endian. For 16 bit per channel and larger types,
// the buffer may need to be reordered to native endianness per the
// contract of `read_image`.
// TODO: assumes equal channel bit depth.
let bpc = self.color_type().bytes_per_pixel() / self.color_type().channel_count();
match bpc {
1 => (), // No reodering necessary for u8
2 => buf.chunks_mut(2).for_each(|c| {
let v = BigEndian::read_u16(c);
NativeEndian::write_u16(c, v)
}),
_ => unreachable!(),
}
Ok(())
}
fn scanline_bytes(&self) -> u64 {
let width = self.reader.info().width;
self.reader.output_line_size(width) as u64
}
}
/// PNG encoder
pub struct PNGEncoder<W: Write> {
w: W,
}
impl<W: Write> PNGEncoder<W> {
/// Create a new encoder that writes its output to ```w```
pub fn new(w: W) -> PNGEncoder<W> {
PNGEncoder { w }
}
/// Encodes the image ```image```
/// that has dimensions ```width``` and ```height```
/// and ```ColorType``` ```c```
pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
let (ct, bits) = match color {
ColorType::L8 => (png::ColorType::Grayscale, png::BitDepth::Eight),
ColorType::L16 => (png::ColorType::Grayscale,png::BitDepth::Sixteen),
ColorType::La8 => (png::ColorType::GrayscaleAlpha, png::BitDepth::Eight),
ColorType::La16 => (png::ColorType::GrayscaleAlpha,png::BitDepth::Sixteen),
ColorType::Rgb8 => (png::ColorType::RGB, png::BitDepth::Eight),
ColorType::Rgb16 => (png::ColorType::RGB,png::BitDepth::Sixteen),
ColorType::Rgba8 => (png::ColorType::RGBA, png::BitDepth::Eight),
ColorType::Rgba16 => (png::ColorType::RGBA,png::BitDepth::Sixteen),
_ => return Err(ImageError::UnsupportedColor(color.into())),
};
let mut encoder = png::Encoder::new(self.w, width, height);
encoder.set_color(ct);
encoder.set_depth(bits);
let mut writer = encoder.write_header().map_err(|e| ImageError::IoError(e.into()))?;
writer.write_image_data(data).map_err(|e| ImageError::IoError(e.into()))
}
}
impl<W: Write> ImageEncoder for PNGEncoder<W> {
fn write_image(
self,
buf: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()> {
use byteorder::{BigEndian, ByteOrder, NativeEndian};
// PNG images are big endian. For 16 bit per channel and larger types,
// the buffer may need to be reordered to big endian per the
// contract of `write_image`.
// TODO: assumes equal channel bit depth.
let bpc = color_type.bytes_per_pixel() / color_type.channel_count();
match bpc {
1 => self.encode(buf, width, height, color_type), // No reodering necessary for u8
2 => {
// Because the buffer is immutable and the PNG encoder does not
// yet take Write/Read traits, create a temporary buffer for
// big endian reordering.
let mut reordered = vec![0; buf.len()];
buf.chunks(2)
.zip(reordered.chunks_mut(2))
.for_each(|(b, r)| BigEndian::write_u16(r, NativeEndian::read_u16(b)));
self.encode(&reordered, width, height, color_type)
},
_ => unreachable!(),
}
}
}
impl ImageError {
fn from_png(err: png::DecodingError) -> ImageError {
use png::DecodingError::*;
match err {
IoError(err) => ImageError::IoError(err),
Format(message) => ImageError::Decoding(DecodingError::with_message(
ImageFormat::Png.into(),
message.into_owned(),
)),
LimitsExceeded => ImageError::InsufficientMemory,
// Other is used when the buffer to `Reader::next_frame` is too small.
Other(message) => ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::Generic(message.into_owned())
)),
err @ InvalidSignature
| err @ CrcMismatch { .. }
| err @ CorruptFlateStream => {
ImageError::Decoding(DecodingError::new(
ImageFormat::Png.into(),
err,
))
}
}
}
}
#[cfg(test)]
mod tests {
use crate::image::ImageDecoder;
use std::io::Read;
use super::*;
#[test]
fn ensure_no_decoder_off_by_one() {
let dec = PngDecoder::new(std::fs::File::open("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png").unwrap())
.expect("Unable to read PNG file (does it exist?)");
assert_eq![(2000, 1000), dec.dimensions()];
assert_eq![
ColorType::Rgb8,
dec.color_type(),
"Image MUST have the Rgb8 format"
];
let correct_bytes = dec
.into_reader()
.expect("Unable to read file")
.bytes()
.map(|x| x.expect("Unable to read byte"))
.collect::<Vec<u8>>();
assert_eq![6_000_000, correct_bytes.len()];
}
#[test]
fn underlying_error() {
use std::error::Error;
let mut not_png = std::fs::read("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png").unwrap();
not_png[0] = 0;
let error = PngDecoder::new(¬_png[..]).err().unwrap();
let _ = error
.source()
.unwrap()
.downcast_ref::<png::DecodingError>()
.expect("Caused by a png error");
}
}
|