summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/tiff.rs
blob: 6a556257f462bcda1ca2bb6f27be659db0e22f78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! Decoding and Encoding of TIFF Images
//!
//! TIFF (Tagged Image File Format) is a versatile image format that supports
//! lossless and lossy compression.
//!
//! # Related Links
//! * <http://partners.adobe.com/public/developer/tiff/index.html> - The TIFF specification

extern crate tiff;

use std::convert::TryFrom;
use std::io::{self, Cursor, Read, Write, Seek};
use std::marker::PhantomData;
use std::mem;

use byteorder::{NativeEndian, ByteOrder};

use crate::color::{ColorType, ExtendedColorType};
use crate::error::{ImageError, ImageResult};
use crate::image::{ImageDecoder, ImageEncoder};
use crate::utils::vec_u16_into_u8;

/// Decoder for TIFF images.
pub struct TiffDecoder<R>
    where R: Read + Seek
{
    dimensions: (u32, u32),
    color_type: ColorType,
    inner: tiff::decoder::Decoder<R>,
}

impl<R> TiffDecoder<R>
    where R: Read + Seek
{
    /// Create a new TiffDecoder.
    pub fn new(r: R) -> Result<TiffDecoder<R>, ImageError> {
        let mut inner = tiff::decoder::Decoder::new(r).map_err(ImageError::from_tiff)?;
        let dimensions = inner.dimensions().map_err(ImageError::from_tiff)?;
        let color_type = match inner.colortype().map_err(ImageError::from_tiff)? {
            tiff::ColorType::Gray(8) => ColorType::L8,
            tiff::ColorType::Gray(16) => ColorType::L16,
            tiff::ColorType::GrayA(8) => ColorType::La8,
            tiff::ColorType::GrayA(16) => ColorType::La16,
            tiff::ColorType::RGB(8) => ColorType::Rgb8,
            tiff::ColorType::RGB(16) => ColorType::Rgb16,
            tiff::ColorType::RGBA(8) => ColorType::Rgba8,
            tiff::ColorType::RGBA(16) => ColorType::Rgba16,

            tiff::ColorType::Palette(n) | tiff::ColorType::Gray(n) =>
                return Err(ImageError::UnsupportedColor(ExtendedColorType::Unknown(n))),
            tiff::ColorType::GrayA(n) =>
                return Err(ImageError::UnsupportedColor(ExtendedColorType::Unknown(n*2))),
            tiff::ColorType::RGB(n) =>
                return Err(ImageError::UnsupportedColor(ExtendedColorType::Unknown(n*3))),
            tiff::ColorType::RGBA(n) | tiff::ColorType::CMYK(n) =>
                return Err(ImageError::UnsupportedColor(ExtendedColorType::Unknown(n*4))),
        };

        Ok(TiffDecoder {
            dimensions,
            color_type,
            inner,
        })
    }
}

impl ImageError {
    fn from_tiff(err: tiff::TiffError) -> ImageError {
        match err {
            tiff::TiffError::IoError(err) => ImageError::IoError(err),
            tiff::TiffError::FormatError(desc) => ImageError::FormatError(desc.to_string()),
            tiff::TiffError::UnsupportedError(desc) => ImageError::UnsupportedError(desc.to_string()),
            tiff::TiffError::LimitsExceeded => ImageError::InsufficientMemory,
        }
    }
}

/// Wrapper struct around a `Cursor<Vec<u8>>`
pub struct TiffReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
impl<R> Read for TiffReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        if self.0.position() == 0 && buf.is_empty() {
            mem::swap(buf, self.0.get_mut());
            Ok(buf.len())
        } else {
            self.0.read_to_end(buf)
        }
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for TiffDecoder<R> {
    type Reader = TiffReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        self.dimensions
    }

    fn color_type(&self) -> ColorType {
        self.color_type
    }

    fn into_reader(mut self) -> ImageResult<Self::Reader> {
        let buf = match self.inner.read_image().map_err(ImageError::from_tiff)? {
            tiff::decoder::DecodingResult::U8(v) => v,
            tiff::decoder::DecodingResult::U16(v) => vec_u16_into_u8(v),
        };

        Ok(TiffReader(Cursor::new(buf), PhantomData))
    }

    fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
        match self.inner.read_image().map_err(ImageError::from_tiff)? {
            tiff::decoder::DecodingResult::U8(v) => {
                buf.copy_from_slice(&v);
            }
            tiff::decoder::DecodingResult::U16(v) => {
                NativeEndian::write_u16_into(&v, buf);
            }
        }
        Ok(())
    }
}

/// Encoder for tiff images
pub struct TiffEncoder<W> {
    w: W,
}

// Utility to simplify and deduplicate error handling during 16-bit encoding.
fn u8_slice_as_u16(buf: &[u8]) -> ImageResult<&[u16]> {
    bytemuck::try_cast_slice(buf)
        // If the buffer is not aligned or the correct length for a u16 slice, err.
        .map_err(|_| ImageError::IoError(std::io::ErrorKind::InvalidData.into()))
}

impl<W: Write + Seek> TiffEncoder<W> {
    /// Create a new encoder that writes its output to `w`
    pub fn new(w: W) -> TiffEncoder<W> {
        TiffEncoder { w }
    }

    /// Encodes the image `image` that has dimensions `width` and `height` and `ColorType` `c`.
    ///
    /// 16-bit types assume the buffer is native endian.
    pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
        let mut encoder = tiff::encoder::TiffEncoder::new(self.w).map_err(ImageError::from_tiff)?;
        match color {
            ColorType::L8 => encoder.write_image::<tiff::encoder::colortype::Gray8>(width, height, data),
            ColorType::Rgb8 => encoder.write_image::<tiff::encoder::colortype::RGB8>(width, height, data),
            ColorType::Rgba8 => encoder.write_image::<tiff::encoder::colortype::RGBA8>(width, height, data),
            ColorType::L16 => encoder.write_image::<tiff::encoder::colortype::Gray16>(width, height, &u8_slice_as_u16(data)?),
            ColorType::Rgb16 => encoder.write_image::<tiff::encoder::colortype::RGB16>(width, height, &u8_slice_as_u16(data)?),
            ColorType::Rgba16 => encoder.write_image::<tiff::encoder::colortype::RGBA16>(width, height, &u8_slice_as_u16(data)?),
            _ => return Err(ImageError::UnsupportedColor(color.into()))
        }.map_err(ImageError::from_tiff)?;

        Ok(())
    }
}

impl<W: Write + Seek> ImageEncoder for TiffEncoder<W> {
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        self.encode(buf, width, height, color_type)
    }
}