summaryrefslogtreecommitdiffstats
path: root/third_party/rust/itertools-0.8.0/src/lib.rs
blob: ab98bcdf9b3a0a1bff5d3a16689bb23d71fab40c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
#![warn(missing_docs)]
#![crate_name="itertools"]
#![cfg_attr(not(feature = "use_std"), no_std)]

//! Extra iterator adaptors, functions and macros.
//!
//! To extend [`Iterator`] with methods in this crate, import
//! the [`Itertools` trait](./trait.Itertools.html):
//!
//! ```
//! use itertools::Itertools;
//! ```
//!
//! Now, new methods like [`interleave`](./trait.Itertools.html#method.interleave)
//! are available on all iterators:
//!
//! ```
//! use itertools::Itertools;
//!
//! let it = (1..3).interleave(vec![-1, -2]);
//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
//! ```
//!
//! Most iterator methods are also provided as functions (with the benefit
//! that they convert parameters using [`IntoIterator`]):
//!
//! ```
//! use itertools::interleave;
//!
//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
//!     /* loop body */
//! }
//! ```
//!
//! ## Crate Features
//!
//! - `use_std`
//!   - Enabled by default.
//!   - Disable to compile itertools using `#![no_std]`. This disables
//!     any items that depend on collections (like `group_by`, `unique`,
//!     `kmerge`, `join` and many more).
//!
//! ## Rust Version
//!
//! This version of itertools requires Rust 1.24 or later.
//!
//! [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
#![doc(html_root_url="https://docs.rs/itertools/0.8/")]

extern crate either;

#[cfg(not(feature = "use_std"))]
extern crate core as std;

pub use either::Either;

#[cfg(feature = "use_std")]
use std::collections::HashMap;
use std::iter::{IntoIterator};
use std::cmp::Ordering;
use std::fmt;
#[cfg(feature = "use_std")]
use std::hash::Hash;
#[cfg(feature = "use_std")]
use std::fmt::Write;
#[cfg(feature = "use_std")]
type VecIntoIter<T> = ::std::vec::IntoIter<T>;
#[cfg(feature = "use_std")]
use std::iter::FromIterator;

#[macro_use]
mod impl_macros;

// for compatibility with no std and macros
#[doc(hidden)]
pub use std::iter as __std_iter;

/// The concrete iterator types.
pub mod structs {
    pub use adaptors::{
        Dedup,
        Interleave,
        InterleaveShortest,
        Product,
        PutBack,
        Batching,
        MapInto,
        MapResults,
        Merge,
        MergeBy,
        TakeWhileRef,
        WhileSome,
        Coalesce,
        TupleCombinations,
        Positions,
        Update,
    };
    #[allow(deprecated)]
    pub use adaptors::Step;
    #[cfg(feature = "use_std")]
    pub use adaptors::MultiProduct;
    #[cfg(feature = "use_std")]
    pub use combinations::Combinations;
    pub use cons_tuples_impl::ConsTuples;
    pub use format::{Format, FormatWith};
    #[cfg(feature = "use_std")]
    pub use groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
    pub use intersperse::Intersperse;
    #[cfg(feature = "use_std")]
    pub use kmerge_impl::{KMerge, KMergeBy};
    pub use merge_join::MergeJoinBy;
    #[cfg(feature = "use_std")]
    pub use multipeek_impl::MultiPeek;
    pub use pad_tail::PadUsing;
    pub use peeking_take_while::PeekingTakeWhile;
    pub use process_results_impl::ProcessResults;
    #[cfg(feature = "use_std")]
    pub use put_back_n_impl::PutBackN;
    #[cfg(feature = "use_std")]
    pub use rciter_impl::RcIter;
    pub use repeatn::RepeatN;
    #[allow(deprecated)]
    pub use sources::{RepeatCall, Unfold, Iterate};
    #[cfg(feature = "use_std")]
    pub use tee::Tee;
    pub use tuple_impl::{TupleBuffer, TupleWindows, Tuples};
    #[cfg(feature = "use_std")]
    pub use unique_impl::{Unique, UniqueBy};
    pub use with_position::WithPosition;
    pub use zip_eq_impl::ZipEq;
    pub use zip_longest::ZipLongest;
    pub use ziptuple::Zip;
}
#[allow(deprecated)]
pub use structs::*;
pub use concat_impl::concat;
pub use cons_tuples_impl::cons_tuples;
pub use diff::diff_with;
pub use diff::Diff;
#[cfg(feature = "use_std")]
pub use kmerge_impl::{kmerge_by};
pub use minmax::MinMaxResult;
pub use peeking_take_while::PeekingNext;
pub use process_results_impl::process_results;
pub use repeatn::repeat_n;
#[allow(deprecated)]
pub use sources::{repeat_call, unfold, iterate};
pub use with_position::Position;
pub use ziptuple::multizip;
mod adaptors;
mod either_or_both;
pub use either_or_both::EitherOrBoth;
#[doc(hidden)]
pub mod free;
#[doc(inline)]
pub use free::*;
mod concat_impl;
mod cons_tuples_impl;
#[cfg(feature = "use_std")]
mod combinations;
mod diff;
mod format;
#[cfg(feature = "use_std")]
mod group_map;
#[cfg(feature = "use_std")]
mod groupbylazy;
mod intersperse;
#[cfg(feature = "use_std")]
mod kmerge_impl;
mod merge_join;
mod minmax;
#[cfg(feature = "use_std")]
mod multipeek_impl;
mod pad_tail;
mod peeking_take_while;
mod process_results_impl;
#[cfg(feature = "use_std")]
mod put_back_n_impl;
#[cfg(feature = "use_std")]
mod rciter_impl;
mod repeatn;
mod size_hint;
mod sources;
#[cfg(feature = "use_std")]
mod tee;
mod tuple_impl;
#[cfg(feature = "use_std")]
mod unique_impl;
mod with_position;
mod zip_eq_impl;
mod zip_longest;
mod ziptuple;

#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
///
/// ```
/// #[macro_use] extern crate itertools;
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
///    // ..
/// }
/// # }
/// ```
///
/// **Note:** To enable the macros in this crate, use the `#[macro_use]`
/// attribute when importing the crate:
///
/// ```
/// #[macro_use] extern crate itertools;
/// # fn main() { }
/// ```
macro_rules! iproduct {
    (@flatten $I:expr,) => (
        $I
    );
    (@flatten $I:expr, $J:expr, $($K:expr,)*) => (
        iproduct!(@flatten $crate::cons_tuples(iproduct!($I, $J)), $($K,)*)
    );
    ($I:expr) => (
        $crate::__std_iter::IntoIterator::into_iter($I)
    );
    ($I:expr, $J:expr) => (
        $crate::Itertools::cartesian_product(iproduct!($I), iproduct!($J))
    );
    ($I:expr, $J:expr, $($K:expr),+) => (
        iproduct!(@flatten iproduct!($I, $J), $($K,)+)
    );
}

#[macro_export]
/// Create an iterator running multiple iterators in lockstep.
///
/// The `izip!` iterator yields elements until any subiterator
/// returns `None`.
///
/// This is a version of the standard ``.zip()`` that's supporting more than
/// two iterators. The iterator element type is a tuple with one element
/// from each of the input iterators. Just like ``.zip()``, the iteration stops
/// when the shortest of the inputs reaches its end.
///
/// **Note:** The result of this macro is in the general case an iterator
/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
/// The special cases of one and two arguments produce the equivalent of
/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
///
/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
/// of using the standard library `.zip()`.
///
/// [`multizip`]: fn.multizip.html
///
/// ```
/// #[macro_use] extern crate itertools;
/// # fn main() {
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
///     *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// # }
/// ```
///
/// **Note:** To enable the macros in this crate, use the `#[macro_use]`
/// attribute when importing the crate:
///
/// ```
/// #[macro_use] extern crate itertools;
/// # fn main() { }
/// ```
macro_rules! izip {
    // @closure creates a tuple-flattening closure for .map() call. usage:
    // @closure partial_pattern => partial_tuple , rest , of , iterators
    // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
    ( @closure $p:pat => $tup:expr ) => {
        |$p| $tup
    };

    // The "b" identifier is a different identifier on each recursion level thanks to hygiene.
    ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
        izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
    };

    // unary
    ($first:expr $(,)*) => {
        $crate::__std_iter::IntoIterator::into_iter($first)
    };

    // binary
    ($first:expr, $second:expr $(,)*) => {
        izip!($first)
            .zip($second)
    };

    // n-ary where n > 2
    ( $first:expr $( , $rest:expr )* $(,)* ) => {
        izip!($first)
            $(
                .zip($rest)
            )*
            .map(
                izip!(@closure a => (a) $( , $rest )*)
            )
    };
}

/// An [`Iterator`] blanket implementation that provides extra adaptors and
/// methods.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an iterator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [`.interleave()`](#method.interleave)
///
/// * *Regular methods* are those that don't return iterators and instead
/// return a regular value of some other kind.
/// [`.next_tuple()`](#method.next_tuple) is an example and the first regular
/// method in the list.
///
/// [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
pub trait Itertools : Iterator {
    // adaptors

    /// Alternate elements from two iterators until both have run out.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..7).interleave(vec![-1, -2]);
    /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
    /// ```
    fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
        where J: IntoIterator<Item = Self::Item>,
              Self: Sized
    {
        interleave(self, other)
    }

    /// Alternate elements from two iterators until at least one of them has run
    /// out.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..7).interleave_shortest(vec![-1, -2]);
    /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
    /// ```
    fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
        where J: IntoIterator<Item = Self::Item>,
              Self: Sized
    {
        adaptors::interleave_shortest(self, other.into_iter())
    }

    /// An iterator adaptor to insert a particular value
    /// between each element of the adapted iterator.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
    /// ```
    fn intersperse(self, element: Self::Item) -> Intersperse<Self>
        where Self: Sized,
              Self::Item: Clone
    {
        intersperse::intersperse(self, element)
    }

    /// Create an iterator which iterates over both this and the specified
    /// iterator simultaneously, yielding pairs of two optional elements.
    ///
    /// This iterator is *fused*.
    ///
    /// As long as neither input iterator is exhausted yet, it yields two values
    /// via `EitherOrBoth::Both`.
    ///
    /// When the parameter iterator is exhausted, it only yields a value from the
    /// `self` iterator via `EitherOrBoth::Left`.
    ///
    /// When the `self` iterator is exhausted, it only yields a value from the
    /// parameter iterator via `EitherOrBoth::Right`.
    ///
    /// When both iterators return `None`, all further invocations of `.next()`
    /// will return `None`.
    ///
    /// Iterator element type is
    /// [`EitherOrBoth<Self::Item, J::Item>`](enum.EitherOrBoth.html).
    ///
    /// ```rust
    /// use itertools::EitherOrBoth::{Both, Right};
    /// use itertools::Itertools;
    /// let it = (0..1).zip_longest(1..3);
    /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
    /// ```
    #[inline]
    fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
        where J: IntoIterator,
              Self: Sized
    {
        zip_longest::zip_longest(self, other.into_iter())
    }

    /// Create an iterator which iterates over both this and the specified
    /// iterator simultaneously, yielding pairs of elements.
    ///
    /// **Panics** if the iterators reach an end and they are not of equal
    /// lengths.
    #[inline]
    fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
        where J: IntoIterator,
              Self: Sized
    {
        zip_eq(self, other)
    }

    /// A “meta iterator adaptor”. Its closure receives a reference to the
    /// iterator and may pick off as many elements as it likes, to produce the
    /// next iterator element.
    ///
    /// Iterator element type is `B`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // An adaptor that gathers elements in pairs
    /// let pit = (0..4).batching(|it| {
    ///            match it.next() {
    ///                None => None,
    ///                Some(x) => match it.next() {
    ///                    None => None,
    ///                    Some(y) => Some((x, y)),
    ///                }
    ///            }
    ///        });
    ///
    /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
    /// ```
    ///
    fn batching<B, F>(self, f: F) -> Batching<Self, F>
        where F: FnMut(&mut Self) -> Option<B>,
              Self: Sized
    {
        adaptors::batching(self, f)
    }

    /// Return an *iterable* that can group iterator elements.
    /// Consecutive elements that map to the same key (“runs”), are assigned
    /// to the same group.
    ///
    /// `GroupBy` is the storage for the lazy grouping operation.
    ///
    /// If the groups are consumed in order, or if each group's iterator is
    /// dropped without keeping it around, then `GroupBy` uses no
    /// allocations.  It needs allocations only if several group iterators
    /// are alive at the same time.
    ///
    /// This type implements `IntoIterator` (it is **not** an iterator
    /// itself), because the group iterators need to borrow from this
    /// value. It should be stored in a local variable or temporary and
    /// iterated.
    ///
    /// Iterator element type is `(K, Group)`: the group's key and the
    /// group iterator.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // group data into runs of larger than zero or not.
    /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
    /// // groups:     |---->|------>|--------->|
    ///
    /// // Note: The `&` is significant here, `GroupBy` is iterable
    /// // only by reference. You can also call `.into_iter()` explicitly.
    /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
    ///     // Check that the sum of each group is +/- 4.
    ///     assert_eq!(4, group.sum::<i32>().abs());
    /// }
    /// ```
    #[cfg(feature = "use_std")]
    fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
        where Self: Sized,
              F: FnMut(&Self::Item) -> K,
              K: PartialEq,
    {
        groupbylazy::new(self, key)
    }

    /// Return an *iterable* that can chunk the iterator.
    ///
    /// Yield subiterators (chunks) that each yield a fixed number elements,
    /// determined by `size`. The last chunk will be shorter if there aren't
    /// enough elements.
    ///
    /// `IntoChunks` is based on `GroupBy`: it is iterable (implements
    /// `IntoIterator`, **not** `Iterator`), and it only buffers if several
    /// chunk iterators are alive at the same time.
    ///
    /// Iterator element type is `Chunk`, each chunk's iterator.
    ///
    /// **Panics** if `size` is 0.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
    /// //chunk size=3 |------->|-------->|--->|
    ///
    /// // Note: The `&` is significant here, `IntoChunks` is iterable
    /// // only by reference. You can also call `.into_iter()` explicitly.
    /// for chunk in &data.into_iter().chunks(3) {
    ///     // Check that the sum of each chunk is 4.
    ///     assert_eq!(4, chunk.sum());
    /// }
    /// ```
    #[cfg(feature = "use_std")]
    fn chunks(self, size: usize) -> IntoChunks<Self>
        where Self: Sized,
    {
        assert!(size != 0);
        groupbylazy::new_chunks(self, size)
    }

    /// Return an iterator over all contiguous windows producing tuples of
    /// a specific size (up to 4).
    ///
    /// `tuple_windows` clones the iterator elements so that they can be
    /// part of successive windows, this makes it most suited for iterators
    /// of references and other values that are cheap to copy.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).tuple_windows() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
    ///
    /// let mut it = (1..5).tuple_windows();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((2, 3, 4)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..5).tuple_windows::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::TupleWindows;
    /// use std::ops::Range;
    ///
    /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
    /// ```
    fn tuple_windows<T>(self) -> TupleWindows<Self, T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: tuple_impl::TupleCollect,
              T::Item: Clone
    {
        tuple_impl::tuple_windows(self)
    }

    /// Return an iterator that groups the items in tuples of a specific size
    /// (up to 4).
    ///
    /// See also the method [`.next_tuple()`](#method.next_tuple).
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).tuples() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (3, 4)]);
    ///
    /// let mut it = (1..7).tuples();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((4, 5, 6)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..7).tuples::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::Tuples;
    /// use std::ops::Range;
    ///
    /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
    /// ```
    ///
    /// See also [`Tuples::into_buffer`](structs/struct.Tuples.html#method.into_buffer).
    fn tuples<T>(self) -> Tuples<Self, T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: tuple_impl::TupleCollect
    {
        tuple_impl::tuples(self)
    }

    /// Split into an iterator pair that both yield all elements from
    /// the original iterator.
    ///
    /// **Note:** If the iterator is clonable, prefer using that instead
    /// of using this method. It is likely to be more efficient.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let xs = vec![0, 1, 2, 3];
    ///
    /// let (mut t1, t2) = xs.into_iter().tee();
    /// itertools::assert_equal(t1.next(), Some(0));
    /// itertools::assert_equal(t2, 0..4);
    /// itertools::assert_equal(t1, 1..4);
    /// ```
    #[cfg(feature = "use_std")]
    fn tee(self) -> (Tee<Self>, Tee<Self>)
        where Self: Sized,
              Self::Item: Clone
    {
        tee::new(self)
    }

    /// Return an iterator adaptor that steps `n` elements in the base iterator
    /// for each iteration.
    ///
    /// The iterator steps by yielding the next element from the base iterator,
    /// then skipping forward `n - 1` elements.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// **Panics** if the step is 0.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..8).step(3);
    /// itertools::assert_equal(it, vec![0, 3, 6]);
    /// ```
    #[deprecated(note="Use std .step_by() instead", since="0.8")]
    #[allow(deprecated)]
    fn step(self, n: usize) -> Step<Self>
        where Self: Sized
    {
        adaptors::step(self, n)
    }

    /// Convert each item of the iterator using the `Into` trait.
    ///
    /// ```rust
    /// use itertools::Itertools;
    ///
    /// (1i32..42i32).map_into::<f64>().collect_vec();
    /// ```
    fn map_into<R>(self) -> MapInto<Self, R>
        where Self: Sized,
              Self::Item: Into<R>,
    {
        adaptors::map_into(self)
    }

    /// Return an iterator adaptor that applies the provided closure
    /// to every `Result::Ok` value. `Result::Err` values are
    /// unchanged.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![Ok(41), Err(false), Ok(11)];
    /// let it = input.into_iter().map_results(|i| i + 1);
    /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
    /// ```
    fn map_results<F, T, U, E>(self, f: F) -> MapResults<Self, F>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              F: FnMut(T) -> U,
    {
        adaptors::map_results(self, f)
    }

    /// Return an iterator adaptor that merges the two base iterators in
    /// ascending order.  If both base iterators are sorted (ascending), the
    /// result is sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..11).step(3);
    /// let b = (0..11).step(5);
    /// let it = a.merge(b);
    /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
    /// ```
    fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
        where Self: Sized,
              Self::Item: PartialOrd,
              J: IntoIterator<Item = Self::Item>
    {
        merge(self, other)
    }

    /// Return an iterator adaptor that merges the two base iterators in order.
    /// This is much like `.merge()` but allows for a custom ordering.
    ///
    /// This can be especially useful for sequences of tuples.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..).zip("bc".chars());
    /// let b = (0..).zip("ad".chars());
    /// let it = a.merge_by(b, |x, y| x.1 <= y.1);
    /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
    /// ```

    fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
        where Self: Sized,
              J: IntoIterator<Item = Self::Item>,
              F: FnMut(&Self::Item, &Self::Item) -> bool
    {
        adaptors::merge_by_new(self, other.into_iter(), is_first)
    }

    /// Create an iterator that merges items from both this and the specified
    /// iterator in ascending order.
    ///
    /// It chooses whether to pair elements based on the `Ordering` returned by the
    /// specified compare function. At any point, inspecting the tip of the
    /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
    /// `J::Item` respectively, the resulting iterator will:
    ///
    /// - Emit `EitherOrBoth::Left(i)` when `i < j`,
    ///   and remove `i` from its source iterator
    /// - Emit `EitherOrBoth::Right(j)` when `i > j`,
    ///   and remove `j` from its source iterator
    /// - Emit `EitherOrBoth::Both(i, j)` when  `i == j`,
    ///   and remove both `i` and `j` from their respective source iterators
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::EitherOrBoth::{Left, Right, Both};
    ///
    /// let ki = (0..10).step(3);
    /// let ku = (0..10).step(5);
    /// let ki_ku = ki.merge_join_by(ku, |i, j| i.cmp(j)).map(|either| {
    ///     match either {
    ///         Left(_) => "Ki",
    ///         Right(_) => "Ku",
    ///         Both(_, _) => "KiKu"
    ///     }
    /// });
    ///
    /// itertools::assert_equal(ki_ku, vec!["KiKu", "Ki", "Ku", "Ki", "Ki"]);
    /// ```
    #[inline]
    fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
        where J: IntoIterator,
              F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
              Self: Sized
    {
        merge_join_by(self, other, cmp_fn)
    }


    /// Return an iterator adaptor that flattens an iterator of iterators by
    /// merging them in ascending order.
    ///
    /// If all base iterators are sorted (ascending), the result is sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..6).step(3);
    /// let b = (1..6).step(3);
    /// let c = (2..6).step(3);
    /// let it = vec![a, b, c].into_iter().kmerge();
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
    /// ```
    #[cfg(feature = "use_std")]
    fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
        where Self: Sized,
              Self::Item: IntoIterator,
              <Self::Item as IntoIterator>::Item: PartialOrd,
    {
        kmerge(self)
    }

    /// Return an iterator adaptor that flattens an iterator of iterators by
    /// merging them according to the given closure.
    ///
    /// The closure `first` is called with two elements *a*, *b* and should
    /// return `true` if *a* is ordered before *b*.
    ///
    /// If all base iterators are sorted according to `first`, the result is
    /// sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = vec![-1f64, 2., 3., -5., 6., -7.];
    /// let b = vec![0., 2., -4.];
    /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
    /// assert_eq!(it.next(), Some(0.));
    /// assert_eq!(it.last(), Some(-7.));
    /// ```
    #[cfg(feature = "use_std")]
    fn kmerge_by<F>(self, first: F)
        -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
        where Self: Sized,
              Self::Item: IntoIterator,
              F: FnMut(&<Self::Item as IntoIterator>::Item,
                       &<Self::Item as IntoIterator>::Item) -> bool
    {
        kmerge_by(self, first)
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// the element sets of two iterators `self` and `J`.
    ///
    /// Iterator element type is `(Self::Item, J::Item)`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..2).cartesian_product("αβ".chars());
    /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
    /// ```
    fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
        where Self: Sized,
              Self::Item: Clone,
              J: IntoIterator,
              J::IntoIter: Clone
    {
        adaptors::cartesian_product(self, other.into_iter())
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// all subiterators returned by meta-iterator `self`.
    ///
    /// All provided iterators must yield the same `Item` type. To generate
    /// the product of iterators yielding multiple types, use the
    /// [`iproduct`](macro.iproduct.html) macro instead.
    ///
    ///
    /// The iterator element type is `Vec<T>`, where `T` is the iterator element
    /// of the subiterators.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
    ///     .multi_cartesian_product();
    /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
    /// assert_eq!(multi_prod.next(), None);
    /// ```
    #[cfg(feature = "use_std")]
    fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
        where Self: Iterator + Sized,
              Self::Item: IntoIterator,
              <Self::Item as IntoIterator>::IntoIter: Clone,
              <Self::Item as IntoIterator>::Item: Clone
    {
        adaptors::multi_cartesian_product(self)
    }

    /// Return an iterator adaptor that uses the passed-in closure to
    /// optionally merge together consecutive elements.
    ///
    /// The closure `f` is passed two elements, `previous` and `current` and may
    /// return either (1) `Ok(combined)` to merge the two values or
    /// (2) `Err((previous', current'))` to indicate they can't be merged.
    /// In (2), the value `previous'` is emitted by the iterator.
    /// Either (1) `combined` or (2) `current'` becomes the previous value
    /// when coalesce continues with the next pair of elements to merge. The
    /// value that remains at the end is also emitted by the iterator.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sum same-sign runs together
    /// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
    /// itertools::assert_equal(data.into_iter().coalesce(|x, y|
    ///         if (x >= 0.) == (y >= 0.) {
    ///             Ok(x + y)
    ///         } else {
    ///             Err((x, y))
    ///         }),
    ///         vec![-6., 4., -1.]);
    /// ```
    fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
        where Self: Sized,
              F: FnMut(Self::Item, Self::Item)
                       -> Result<Self::Item, (Self::Item, Self::Item)>
    {
        adaptors::coalesce(self, f)
    }

    /// Remove duplicates from sections of consecutive identical elements.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1., 1., 2., 3., 3., 2., 2.];
    /// itertools::assert_equal(data.into_iter().dedup(),
    ///                         vec![1., 2., 3., 2.]);
    /// ```
    fn dedup(self) -> Dedup<Self>
        where Self: Sized,
              Self::Item: PartialEq,
    {
        adaptors::dedup(self)
    }

    /// Return an iterator adaptor that filters out elements that have
    /// already been produced once during the iteration. Duplicates
    /// are detected using hash and equality.
    ///
    /// Clones of visited elements are stored in a hash set in the
    /// iterator.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![10, 20, 30, 20, 40, 10, 50];
    /// itertools::assert_equal(data.into_iter().unique(),
    ///                         vec![10, 20, 30, 40, 50]);
    /// ```
    #[cfg(feature = "use_std")]
    fn unique(self) -> Unique<Self>
        where Self: Sized,
              Self::Item: Clone + Eq + Hash
    {
        unique_impl::unique(self)
    }

    /// Return an iterator adaptor that filters out elements that have
    /// already been produced once during the iteration.
    ///
    /// Duplicates are detected by comparing the key they map to
    /// with the keying function `f` by hash and equality.
    /// The keys are stored in a hash set in the iterator.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec!["a", "bb", "aa", "c", "ccc"];
    /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
    ///                         vec!["a", "bb", "ccc"]);
    /// ```
    #[cfg(feature = "use_std")]
    fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
        where Self: Sized,
              V: Eq + Hash,
              F: FnMut(&Self::Item) -> V
    {
        unique_impl::unique_by(self, f)
    }

    /// Return an iterator adaptor that borrows from this iterator and
    /// takes items while the closure `accept` returns `true`.
    ///
    /// This adaptor can only be used on iterators that implement `PeekingNext`
    /// like `.peekable()`, `put_back` and a few other collection iterators.
    ///
    /// The last and rejected element (first `false`) is still available when
    /// `peeking_take_while` is done.
    ///
    ///
    /// See also [`.take_while_ref()`](#method.take_while_ref)
    /// which is a similar adaptor.
    fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
        where Self: Sized + PeekingNext,
              F: FnMut(&Self::Item) -> bool,
    {
        peeking_take_while::peeking_take_while(self, accept)
    }

    /// Return an iterator adaptor that borrows from a `Clone`-able iterator
    /// to only pick off elements while the predicate `accept` returns `true`.
    ///
    /// It uses the `Clone` trait to restore the original iterator so that the
    /// last and rejected element (first `false`) is still available when
    /// `take_while_ref` is done.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut hexadecimals = "0123456789abcdef".chars();
    ///
    /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
    ///                            .collect::<String>();
    /// assert_eq!(decimals, "0123456789");
    /// assert_eq!(hexadecimals.next(), Some('a'));
    ///
    /// ```
    fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
        where Self: Clone,
              F: FnMut(&Self::Item) -> bool
    {
        adaptors::take_while_ref(self, accept)
    }

    /// Return an iterator adaptor that filters `Option<A>` iterator elements
    /// and produces `A`. Stops on the first `None` encountered.
    ///
    /// Iterator element type is `A`, the unwrapped element.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // List all hexadecimal digits
    /// itertools::assert_equal(
    ///     (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
    ///     "0123456789abcdef".chars());
    ///
    /// ```
    fn while_some<A>(self) -> WhileSome<Self>
        where Self: Sized + Iterator<Item = Option<A>>
    {
        adaptors::while_some(self)
    }

    /// Return an iterator adaptor that iterates over the combinations of the
    /// elements from an iterator.
    ///
    /// Iterator element can be any homogeneous tuple of type `Self::Item` with
    /// size up to 4.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).tuple_combinations() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
    ///
    /// let mut it = (1..5).tuple_combinations();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((1, 2, 4)), it.next());
    /// assert_eq!(Some((1, 3, 4)), it.next());
    /// assert_eq!(Some((2, 3, 4)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..5).tuple_combinations::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::TupleCombinations;
    /// use std::ops::Range;
    ///
    /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
    /// ```
    fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
        where Self: Sized + Clone,
              Self::Item: Clone,
              T: adaptors::HasCombination<Self>,
    {
        adaptors::tuple_combinations(self)
    }

    /// Return an iterator adaptor that iterates over the `n`-length combinations of
    /// the elements from an iterator.
    ///
    /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
    /// and clones the iterator elements.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..5).combinations(3);
    /// itertools::assert_equal(it, vec![
    ///     vec![1, 2, 3],
    ///     vec![1, 2, 4],
    ///     vec![1, 3, 4],
    ///     vec![2, 3, 4],
    ///     ]);
    /// ```
    #[cfg(feature = "use_std")]
    fn combinations(self, n: usize) -> Combinations<Self>
        where Self: Sized,
              Self::Item: Clone
    {
        combinations::combinations(self, n)
    }

    /// Return an iterator adaptor that pads the sequence to a minimum length of
    /// `min` by filling missing elements using a closure `f`.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..5).pad_using(10, |i| 2*i);
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
    ///
    /// let it = (0..10).pad_using(5, |i| 2*i);
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// let it = (0..5).pad_using(10, |i| 2*i).rev();
    /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
    /// ```
    fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
        where Self: Sized,
              F: FnMut(usize) -> Self::Item
    {
        pad_tail::pad_using(self, min, f)
    }

    /// Return an iterator adaptor that wraps each element in a `Position` to
    /// ease special-case handling of the first or last elements.
    ///
    /// Iterator element type is
    /// [`Position<Self::Item>`](enum.Position.html)
    ///
    /// ```
    /// use itertools::{Itertools, Position};
    ///
    /// let it = (0..4).with_position();
    /// itertools::assert_equal(it,
    ///                         vec![Position::First(0),
    ///                              Position::Middle(1),
    ///                              Position::Middle(2),
    ///                              Position::Last(3)]);
    ///
    /// let it = (0..1).with_position();
    /// itertools::assert_equal(it, vec![Position::Only(0)]);
    /// ```
    fn with_position(self) -> WithPosition<Self>
        where Self: Sized,
    {
        with_position::with_position(self)
    }

    /// Return an iterator adaptor that yields the indices of all elements
    /// satisfying a predicate, counted from the start of the iterator.
    ///
    /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
    /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
    ///
    /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
    /// ```
    fn positions<P>(self, predicate: P) -> Positions<Self, P>
        where Self: Sized,
              P: FnMut(Self::Item) -> bool,
    {
        adaptors::positions(self, predicate)
    }

    /// Return an iterator adaptor that applies a mutating function
    /// to each element before yielding it.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![vec![1], vec![3, 2, 1]];
    /// let it = input.into_iter().update(|mut v| v.push(0));
    /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
    /// ```
    fn update<F>(self, updater: F) -> Update<Self, F>
        where Self: Sized,
              F: FnMut(&mut Self::Item),
    {
        adaptors::update(self, updater)
    }

    // non-adaptor methods
    /// Advances the iterator and returns the next items grouped in a tuple of
    /// a specific size (up to 4).
    ///
    /// If there are enough elements to be grouped in a tuple, then the tuple is
    /// returned inside `Some`, otherwise `None` is returned.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut iter = 1..5;
    ///
    /// assert_eq!(Some((1, 2)), iter.next_tuple());
    /// ```
    fn next_tuple<T>(&mut self) -> Option<T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: tuple_impl::TupleCollect
    {
        T::collect_from_iter_no_buf(self)
    }

    /// Collects all items from the iterator into a tuple of a specific size
    /// (up to 4).
    ///
    /// If the number of elements inside the iterator is **exactly** equal to
    /// the tuple size, then the tuple is returned inside `Some`, otherwise
    /// `None` is returned.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let iter = 1..3;
    ///
    /// if let Some((x, y)) = iter.collect_tuple() {
    ///     assert_eq!((x, y), (1, 2))
    /// } else {
    ///     panic!("Expected two elements")
    /// }
    /// ```
    fn collect_tuple<T>(mut self) -> Option<T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: tuple_impl::TupleCollect
    {
        match self.next_tuple() {
            elt @ Some(_) => match self.next() {
                Some(_) => None,
                None => elt,
            },
            _ => None
        }
    }


    /// Find the position and value of the first element satisfying a predicate.
    ///
    /// The iterator is not advanced past the first element found.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let text = "Hα";
    /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
    /// ```
    fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)>
        where P: FnMut(&Self::Item) -> bool
    {
        let mut index = 0usize;
        for elt in self {
            if pred(&elt) {
                return Some((index, elt));
            }
            index += 1;
        }
        None
    }

    /// Check whether all elements compare equal.
    ///
    /// Empty iterators are considered to have equal elements:
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
    /// assert!(!data.iter().all_equal());
    /// assert!(data[0..3].iter().all_equal());
    /// assert!(data[3..5].iter().all_equal());
    /// assert!(data[5..8].iter().all_equal());
    ///
    /// let data : Option<usize> = None;
    /// assert!(data.into_iter().all_equal());
    /// ```
    fn all_equal(&mut self) -> bool
        where Self::Item: PartialEq,
    {
        self.dedup().nth(1).is_none()
    }

    /// Consume the first `n` elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// It works similarly to *.skip(* `n` *)* except it is eager and
    /// preserves the iterator type.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut iter = "αβγ".chars().dropping(2);
    /// itertools::assert_equal(iter, "γ".chars());
    /// ```
    ///
    /// *Fusing notes: if the iterator is exhausted by dropping,
    /// the result of calling `.next()` again depends on the iterator implementation.*
    fn dropping(mut self, n: usize) -> Self
        where Self: Sized
    {
        if n > 0 {
            self.nth(n - 1);
        }
        self
    }

    /// Consume the last `n` elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// This is only possible on double ended iterators. `n` may be
    /// larger than the number of elements.
    ///
    /// Note: This method is eager, dropping the back elements immediately and
    /// preserves the iterator type.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
    /// itertools::assert_equal(init, vec![0, 3, 6]);
    /// ```
    fn dropping_back(mut self, n: usize) -> Self
        where Self: Sized,
              Self: DoubleEndedIterator
    {
        if n > 0 {
            (&mut self).rev().nth(n - 1);
        }
        self
    }

    /// Run the closure `f` eagerly on each element of the iterator.
    ///
    /// Consumes the iterator until its end.
    ///
    /// ```
    /// use std::sync::mpsc::channel;
    /// use itertools::Itertools;
    ///
    /// let (tx, rx) = channel();
    ///
    /// // use .foreach() to apply a function to each value -- sending it
    /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
    ///
    /// drop(tx);
    ///
    /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
    /// ```
    #[deprecated(note="Use .for_each() instead", since="0.8")]
    fn foreach<F>(self, f: F)
        where F: FnMut(Self::Item),
              Self: Sized,
    {
        self.for_each(f)
    }

    /// Combine all an iterator's elements into one element by using `Extend`.
    ///
    /// This combinator will extend the first item with each of the rest of the
    /// items of the iterator. If the iterator is empty, the default value of
    /// `I::Item` is returned.
    ///
    /// ```rust
    /// use itertools::Itertools;
    ///
    /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
    /// assert_eq!(input.into_iter().concat(),
    ///            vec![1, 2, 3, 4, 5, 6]);
    /// ```
    fn concat(self) -> Self::Item
        where Self: Sized,
              Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default
    {
        concat(self)
    }

    /// `.collect_vec()` is simply a type specialization of `.collect()`,
    /// for convenience.
    #[cfg(feature = "use_std")]
    fn collect_vec(self) -> Vec<Self::Item>
        where Self: Sized
    {
        self.collect()
    }

    /// Assign to each reference in `self` from the `from` iterator,
    /// stopping at the shortest of the two iterators.
    ///
    /// The `from` iterator is queried for its next element before the `self`
    /// iterator, and if either is exhausted the method is done.
    ///
    /// Return the number of elements written.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut xs = [0; 4];
    /// xs.iter_mut().set_from(1..);
    /// assert_eq!(xs, [1, 2, 3, 4]);
    /// ```
    #[inline]
    fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
        where Self: Iterator<Item = &'a mut A>,
              J: IntoIterator<Item = A>
    {
        let mut count = 0;
        for elt in from {
            match self.next() {
                None => break,
                Some(ptr) => *ptr = elt,
            }
            count += 1;
        }
        count
    }

    /// Combine all iterator elements into one String, seperated by `sep`.
    ///
    /// Use the `Display` implementation of each element.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
    /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
    /// ```
    #[cfg(feature = "use_std")]
    fn join(&mut self, sep: &str) -> String
        where Self::Item: std::fmt::Display
    {
        match self.next() {
            None => String::new(),
            Some(first_elt) => {
                // estimate lower bound of capacity needed
                let (lower, _) = self.size_hint();
                let mut result = String::with_capacity(sep.len() * lower);
                write!(&mut result, "{}", first_elt).unwrap();
                for elt in self {
                    result.push_str(sep);
                    write!(&mut result, "{}", elt).unwrap();
                }
                result
            }
        }
    }

    /// Format all iterator elements, separated by `sep`.
    ///
    /// All elements are formatted (any formatting trait)
    /// with `sep` inserted between each element.
    ///
    /// **Panics** if the formatter helper is formatted more than once.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = [1.1, 2.71828, -3.];
    /// assert_eq!(
    ///     format!("{:.2}", data.iter().format(", ")),
    ///            "1.10, 2.72, -3.00");
    /// ```
    fn format(self, sep: &str) -> Format<Self>
        where Self: Sized,
    {
        format::new_format_default(self, sep)
    }

    /// Format all iterator elements, separated by `sep`.
    ///
    /// This is a customizable version of `.format()`.
    ///
    /// The supplied closure `format` is called once per iterator element,
    /// with two arguments: the element and a callback that takes a
    /// `&Display` value, i.e. any reference to type that implements `Display`.
    ///
    /// Using `&format_args!(...)` is the most versatile way to apply custom
    /// element formatting. The callback can be called multiple times if needed.
    ///
    /// **Panics** if the formatter helper is formatted more than once.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = [1.1, 2.71828, -3.];
    /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt)));
    /// assert_eq!(format!("{}", data_formatter),
    ///            "1.10, 2.72, -3.00");
    ///
    /// // .format_with() is recursively composable
    /// let matrix = [[1., 2., 3.],
    ///               [4., 5., 6.]];
    /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| {
    ///                                 f(&row.iter().format_with(", ", |elt, g| g(&elt)))
    ///                              });
    /// assert_eq!(format!("{}", matrix_formatter),
    ///            "1, 2, 3\n4, 5, 6");
    ///
    ///
    /// ```
    fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
        where Self: Sized,
              F: FnMut(Self::Item, &mut FnMut(&fmt::Display) -> fmt::Result) -> fmt::Result,
    {
        format::new_format(self, sep, format)
    }

    /// Fold `Result` values from an iterator.
    ///
    /// Only `Ok` values are folded. If no error is encountered, the folded
    /// value is returned inside `Ok`. Otherwise, the operation terminates
    /// and returns the first `Err` value it encounters. No iterator elements are
    /// consumed after the first error.
    ///
    /// The first accumulator value is the `start` parameter.
    /// Each iteration passes the accumulator value and the next value inside `Ok`
    /// to the fold function `f` and its return value becomes the new accumulator value.
    ///
    /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
    /// computation like this:
    ///
    /// ```ignore
    /// let mut accum = start;
    /// accum = f(accum, 1);
    /// accum = f(accum, 2);
    /// accum = f(accum, 3);
    /// ```
    ///
    /// With a `start` value of 0 and an addition as folding function,
    /// this effetively results in *((0 + 1) + 2) + 3*
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let values = [1, 2, -2, -1, 2, 1];
    /// assert_eq!(
    ///     values.iter()
    ///           .map(Ok::<_, ()>)
    ///           .fold_results(0, Add::add),
    ///     Ok(3)
    /// );
    /// assert!(
    ///     values.iter()
    ///           .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
    ///           .fold_results(0, Add::add)
    ///           .is_err()
    /// );
    /// ```
    fn fold_results<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E>
        where Self: Iterator<Item = Result<A, E>>,
              F: FnMut(B, A) -> B
    {
        for elt in self {
            match elt {
                Ok(v) => start = f(start, v),
                Err(u) => return Err(u),
            }
        }
        Ok(start)
    }

    /// Fold `Option` values from an iterator.
    ///
    /// Only `Some` values are folded. If no `None` is encountered, the folded
    /// value is returned inside `Some`. Otherwise, the operation terminates
    /// and returns `None`. No iterator elements are consumed after the `None`.
    ///
    /// This is the `Option` equivalent to `fold_results`.
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
    /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
    ///
    /// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
    /// assert!(more_values.fold_options(0, Add::add).is_none());
    /// assert_eq!(more_values.next().unwrap(), Some(0));
    /// ```
    fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B>
        where Self: Iterator<Item = Option<A>>,
              F: FnMut(B, A) -> B
    {
        for elt in self {
            match elt {
                Some(v) => start = f(start, v),
                None => return None,
            }
        }
        Some(start)
    }

    /// Accumulator of the elements in the iterator.
    ///
    /// Like `.fold()`, without a base case. If the iterator is
    /// empty, return `None`. With just one element, return it.
    /// Otherwise elements are accumulated in sequence using the closure `f`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
    /// assert_eq!((0..0).fold1(|x, y| x * y), None);
    /// ```
    fn fold1<F>(mut self, f: F) -> Option<Self::Item>
        where F: FnMut(Self::Item, Self::Item) -> Self::Item,
              Self: Sized,
    {
        self.next().map(move |x| self.fold(x, f))
    }

    /// Accumulate the elements in the iterator in a tree-like manner.
    ///
    /// You can think of it as, while there's more than one item, repeatedly
    /// combining adjacent items.  It does so in bottom-up-merge-sort order,
    /// however, so that it needs only logarithmic stack space.
    ///
    /// This produces a call tree like the following (where the calls under
    /// an item are done after reading that item):
    ///
    /// ```text
    /// 1 2 3 4 5 6 7
    /// │ │ │ │ │ │ │
    /// └─f └─f └─f │
    ///   │   │   │ │
    ///   └───f   └─f
    ///       │     │
    ///       └─────f
    /// ```
    ///
    /// Which, for non-associative functions, will typically produce a different
    /// result than the linear call tree used by `fold1`:
    ///
    /// ```text
    /// 1 2 3 4 5 6 7
    /// │ │ │ │ │ │ │
    /// └─f─f─f─f─f─f
    /// ```
    ///
    /// If `f` is associative, prefer the normal `fold1` instead.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // The same tree as above
    /// let num_strings = (1..8).map(|x| x.to_string());
    /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)),
    ///     Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))")));
    ///
    /// // Like fold1, an empty iterator produces None
    /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
    ///
    /// // tree_fold1 matches fold1 for associative operations...
    /// assert_eq!((0..10).tree_fold1(|x, y| x + y),
    ///     (0..10).fold1(|x, y| x + y));
    /// // ...but not for non-associative ones
    /// assert!((0..10).tree_fold1(|x, y| x - y)
    ///     != (0..10).fold1(|x, y| x - y));
    /// ```
    // FIXME: If minver changes to >= 1.13, use `assert_ne!` in the doctest.
    fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item>
        where F: FnMut(Self::Item, Self::Item) -> Self::Item,
              Self: Sized,
    {
        type State<T> = Result<T, Option<T>>;

        fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T>
            where
                II: Iterator<Item = T>,
                FF: FnMut(T, T) -> T
        {
            // This function could be replaced with `it.next().ok_or(None)`,
            // but half the useful tree_fold1 work is combining adjacent items,
            // so put that in a form that LLVM is more likely to optimize well.

            let a =
                if let Some(v) = it.next() { v }
                else { return Err(None) };
            let b =
                if let Some(v) = it.next() { v }
                else { return Err(Some(a)) };
            Ok(f(a, b))
        }

        fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T>
            where
                II: Iterator<Item = T>,
                FF: FnMut(T, T) -> T
        {
            let mut x = try!(inner0(it, f));
            for height in 0..stop {
                // Try to get another tree the same size with which to combine it,
                // creating a new tree that's twice as big for next time around.
                let next =
                    if height == 0 {
                        inner0(it, f)
                    } else {
                        inner(height, it, f)
                    };
                match next {
                    Ok(y) => x = f(x, y),

                    // If we ran out of items, combine whatever we did manage
                    // to get.  It's better combined with the current value
                    // than something in a parent frame, because the tree in
                    // the parent is always as least as big as this one.
                    Err(None) => return Err(Some(x)),
                    Err(Some(y)) => return Err(Some(f(x, y))),
                }
            }
            Ok(x)
        }

        match inner(usize::max_value(), &mut self, &mut f) {
            Err(x) => x,
            _ => unreachable!(),
        }
    }

    /// An iterator method that applies a function, producing a single, final value.
    ///
    /// `fold_while()` is basically equivalent to `fold()` but with additional support for
    /// early exit via short-circuiting.
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::FoldWhile::{Continue, Done};
    ///
    /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    ///
    /// let mut result = 0;
    ///
    /// // for loop:
    /// for i in &numbers {
    ///     if *i > 5 {
    ///         break;
    ///     }
    ///     result = result + i;
    /// }
    ///
    /// // fold:
    /// let result2 = numbers.iter().fold(0, |acc, x| {
    ///     if *x > 5 { acc } else { acc + x }
    /// });
    ///
    /// // fold_while:
    /// let result3 = numbers.iter().fold_while(0, |acc, x| {
    ///     if *x > 5 { Done(acc) } else { Continue(acc + x) }
    /// }).into_inner();
    ///
    /// // they're the same
    /// assert_eq!(result, result2);
    /// assert_eq!(result2, result3);
    /// ```
    ///
    /// The big difference between the computations of `result2` and `result3` is that while
    /// `fold()` called the provided closure for every item of the callee iterator,
    /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
    #[deprecated(note="Use .try_fold() instead", since="0.8")]
    fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B>
        where Self: Sized,
              F: FnMut(B, Self::Item) -> FoldWhile<B>
    {
        let mut acc = init;
        while let Some(item) = self.next() {
            match f(acc, item) {
                FoldWhile::Continue(res) => acc = res,
                res @ FoldWhile::Done(_) => return res,
            }
        }
        FoldWhile::Continue(acc)
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// `slice::sort()` method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort the letters of the text in ascending order
    /// let text = "bdacfe";
    /// itertools::assert_equal(text.chars().sorted(),
    ///                         "abcdef".chars());
    /// ```
    #[cfg(feature = "use_std")]
    fn sorted(self) -> VecIntoIter<Self::Item>
        where Self: Sized,
              Self::Item: Ord
    {
        // Use .sort() directly since it is not quite identical with
        // .sort_by(Ord::cmp)
        let mut v = Vec::from_iter(self);
        v.sort();
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// `slice::sort_by()` method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_by(|a, b| Ord::cmp(&b.1, &a.1))
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_std")]
    fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              F: FnMut(&Self::Item, &Self::Item) -> Ordering,
    {
        let mut v = Vec::from_iter(self);
        v.sort_by(cmp);
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// `slice::sort_by_key()` method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_by_key(|x| -x.1)
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_std")]
    fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              K: Ord,
              F: FnMut(&Self::Item) -> K,
    {
        let mut v = Vec::from_iter(self);
        v.sort_by_key(f);
        v.into_iter()
    }

    /// Collect all iterator elements into one of two
    /// partitions. Unlike `Iterator::partition`, each partition may
    /// have a distinct type.
    ///
    /// ```
    /// use itertools::{Itertools, Either};
    ///
    /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
    ///
    /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
    ///     .into_iter()
    ///     .partition_map(|r| {
    ///         match r {
    ///             Ok(v) => Either::Left(v),
    ///             Err(v) => Either::Right(v),
    ///         }
    ///     });
    ///
    /// assert_eq!(successes, [1, 2]);
    /// assert_eq!(failures, [false, true]);
    /// ```
    fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B)
        where Self: Sized,
              F: Fn(Self::Item) -> Either<L, R>,
              A: Default + Extend<L>,
              B: Default + Extend<R>,
    {
        let mut left = A::default();
        let mut right = B::default();

        for val in self {
            match predicate(val) {
                Either::Left(v) => left.extend(Some(v)),
                Either::Right(v) => right.extend(Some(v)),
            }
        }

        (left, right)
    }

    /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
    /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
    /// 
    /// ```
    /// use itertools::Itertools;
    /// 
    /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
    /// let lookup = data.into_iter().into_group_map();
    /// 
    /// assert_eq!(lookup[&0], vec![10, 20]);
    /// assert_eq!(lookup.get(&1), None);
    /// assert_eq!(lookup[&2], vec![12, 42]);
    /// assert_eq!(lookup[&3], vec![13, 33]);
    /// ```
    #[cfg(feature = "use_std")]
    fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
        where Self: Iterator<Item=(K, V)> + Sized,
              K: Hash + Eq,
    {
        group_map::into_group_map(self)
    }

    /// Return the minimum and maximum elements in the iterator.
    ///
    /// The return type `MinMaxResult` is an enum of three variants:
    ///
    /// - `NoElements` if the iterator is empty.
    /// - `OneElement(x)` if the iterator has exactly one element.
    /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
    ///    values are equal if and only if there is more than one
    ///    element in the iterator and all elements are equal.
    ///
    /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
    /// and so is faster than calling `min` and `max` separately which does
    /// `2 * n` comparisons.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().minmax(), NoElements);
    ///
    /// let a = [1];
    /// assert_eq!(a.iter().minmax(), OneElement(&1));
    ///
    /// let a = [1, 2, 3, 4, 5];
    /// assert_eq!(a.iter().minmax(), MinMax(&1, &5));
    ///
    /// let a = [1, 1, 1, 1];
    /// assert_eq!(a.iter().minmax(), MinMax(&1, &1));
    /// ```
    ///
    /// The elements can be floats but no particular result is guaranteed
    /// if an element is NaN.
    fn minmax(self) -> MinMaxResult<Self::Item>
        where Self: Sized, Self::Item: PartialOrd
    {
        minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y)
    }

    /// Return the minimum and maximum element of an iterator, as determined by
    /// the specified function.
    ///
    /// The return value is a variant of `MinMaxResult` like for `minmax()`.
    ///
    /// For the minimum, the first minimal element is returned.  For the maximum,
    /// the last maximal element wins.  This matches the behavior of the standard
    /// `Iterator::min()` and `Iterator::max()` methods.
    ///
    /// The keys can be floats but no particular result is guaranteed
    /// if a key is NaN.
    fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
        where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
    {
        minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk)
    }

    /// Return the minimum and maximum element of an iterator, as determined by
    /// the specified comparison function.
    ///
    /// The return value is a variant of `MinMaxResult` like for `minmax()`.
    ///
    /// For the minimum, the first minimal element is returned.  For the maximum,
    /// the last maximal element wins.  This matches the behavior of the standard
    /// `Iterator::min()` and `Iterator::max()` methods.
    fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item>
        where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        minmax::minmax_impl(
            self,
            |_| (),
            |x, y, _, _| Ordering::Less == compare(x, y)
        )
    }
}

impl<T: ?Sized> Itertools for T where T: Iterator { }

/// Return `true` if both iterables produce equal sequences
/// (elements pairwise equal and sequences of the same length),
/// `false` otherwise.
///
/// This is an `IntoIterator` enabled function that is similar to the standard
/// library method `Iterator::eq`.
///
/// ```
/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
/// ```
pub fn equal<I, J>(a: I, b: J) -> bool
    where I: IntoIterator,
          J: IntoIterator,
          I::Item: PartialEq<J::Item>
{
    let mut ia = a.into_iter();
    let mut ib = b.into_iter();
    loop {
        match ia.next() {
            Some(x) => match ib.next() {
                Some(y) => if x != y { return false; },
                None => return false,
            },
            None => return ib.next().is_none()
        }
    }
}

/// Assert that two iterables produce equal sequences, with the same
/// semantics as *equal(a, b)*.
///
/// **Panics** on assertion failure with a message that shows the
/// two iteration elements.
///
/// ```ignore
/// assert_equal("exceed".split('c'), "excess".split('c'));
/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1',
/// ```
pub fn assert_equal<I, J>(a: I, b: J)
    where I: IntoIterator,
          J: IntoIterator,
          I::Item: fmt::Debug + PartialEq<J::Item>,
          J::Item: fmt::Debug,
{
    let mut ia = a.into_iter();
    let mut ib = b.into_iter();
    let mut i = 0;
    loop {
        match (ia.next(), ib.next()) {
            (None, None) => return,
            (a, b) => {
                let equal = match (&a, &b) {
                    (&Some(ref a), &Some(ref b)) => a == b,
                    _ => false,
                };
                assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}",
                        i=i, a=a, b=b);
                i += 1;
            }
        }
    }
}

/// Partition a sequence using predicate `pred` so that elements
/// that map to `true` are placed before elements which map to `false`.
///
/// The order within the partitions is arbitrary.
///
/// Return the index of the split point.
///
/// ```
/// use itertools::partition;
///
/// # // use repeated numbers to not promise any ordering
/// let mut data = [7, 1, 1, 7, 1, 1, 7];
/// let split_index = partition(&mut data, |elt| *elt >= 3);
///
/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
/// assert_eq!(split_index, 3);
/// ```
pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize
    where I: IntoIterator<Item = &'a mut A>,
          I::IntoIter: DoubleEndedIterator,
          F: FnMut(&A) -> bool
{
    let mut split_index = 0;
    let mut iter = iter.into_iter();
    'main: while let Some(front) = iter.next() {
        if !pred(front) {
            loop {
                match iter.next_back() {
                    Some(back) => if pred(back) {
                        std::mem::swap(front, back);
                        break;
                    },
                    None => break 'main,
                }
            }
        }
        split_index += 1;
    }
    split_index
}

/// An enum used for controlling the execution of `.fold_while()`.
///
/// See [`.fold_while()`](trait.Itertools.html#method.fold_while) for more information.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum FoldWhile<T> {
    /// Continue folding with this value
    Continue(T),
    /// Fold is complete and will return this value
    Done(T),
}

impl<T> FoldWhile<T> {
    /// Return the value in the continue or done.
    pub fn into_inner(self) -> T {
        match self {
            FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
        }
    }

    /// Return true if `self` is `Done`, false if it is `Continue`.
    pub fn is_done(&self) -> bool {
        match *self {
            FoldWhile::Continue(_) => false,
            FoldWhile::Done(_) => true,
        }
    }
}