1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
//! The purpose of these tests is to cover corner cases of iterators
//! and adaptors.
//!
//! In particular we test the tedious size_hint and exact size correctness.
#[macro_use] extern crate itertools;
extern crate quickcheck;
extern crate rand;
use std::default::Default;
use quickcheck as qc;
use std::ops::Range;
use std::cmp::Ordering;
use itertools::Itertools;
use itertools::{
multizip,
EitherOrBoth,
};
use itertools::free::{
cloned,
enumerate,
multipeek,
put_back,
put_back_n,
rciter,
zip,
zip_eq,
};
use rand::Rng;
use rand::seq::SliceRandom;
use quickcheck::TestResult;
/// Trait for size hint modifier types
trait HintKind: Copy + Send + qc::Arbitrary {
fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>);
}
/// Exact size hint variant that leaves hints unchanged
#[derive(Clone, Copy, Debug)]
struct Exact {}
impl HintKind for Exact {
fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) {
org_hint
}
}
impl qc::Arbitrary for Exact {
fn arbitrary<G: qc::Gen>(_: &mut G) -> Self {
Exact {}
}
}
/// Inexact size hint variant to simulate imprecise (but valid) size hints
///
/// Will always decrease the lower bound and increase the upper bound
/// of the size hint by set amounts.
#[derive(Clone, Copy, Debug)]
struct Inexact {
underestimate: usize,
overestimate: usize,
}
impl HintKind for Inexact {
fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) {
let (org_lower, org_upper) = org_hint;
(org_lower.saturating_sub(self.underestimate),
org_upper.and_then(move |x| x.checked_add(self.overestimate)))
}
}
impl qc::Arbitrary for Inexact {
fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
let ue_value = usize::arbitrary(g);
let oe_value = usize::arbitrary(g);
// Compensate for quickcheck using extreme values too rarely
let ue_choices = &[0, ue_value, usize::max_value()];
let oe_choices = &[0, oe_value, usize::max_value()];
Inexact {
underestimate: *ue_choices.choose(g).unwrap(),
overestimate: *oe_choices.choose(g).unwrap(),
}
}
fn shrink(&self) -> Box<Iterator<Item=Self>> {
let underestimate_value = self.underestimate;
let overestimate_value = self.overestimate;
Box::new(
underestimate_value.shrink().flat_map(move |ue_value|
overestimate_value.shrink().map(move |oe_value|
Inexact {
underestimate: ue_value,
overestimate: oe_value,
}
)
)
)
}
}
/// Our base iterator that we can impl Arbitrary for
///
/// By default we'll return inexact bounds estimates for size_hint
/// to make tests harder to pass.
///
/// NOTE: Iter is tricky and is not fused, to help catch bugs.
/// At the end it will return None once, then return Some(0),
/// then return None again.
#[derive(Clone, Debug)]
struct Iter<T, SK: HintKind = Inexact> {
iterator: Range<T>,
// fuse/done flag
fuse_flag: i32,
hint_kind: SK,
}
impl<T, HK> Iter<T, HK> where HK: HintKind
{
fn new(it: Range<T>, hint_kind: HK) -> Self {
Iter {
iterator: it,
fuse_flag: 0,
hint_kind: hint_kind
}
}
}
impl<T, HK> Iterator for Iter<T, HK>
where Range<T>: Iterator,
<Range<T> as Iterator>::Item: Default,
HK: HintKind,
{
type Item = <Range<T> as Iterator>::Item;
fn next(&mut self) -> Option<Self::Item>
{
let elt = self.iterator.next();
if elt.is_none() {
self.fuse_flag += 1;
// check fuse flag
if self.fuse_flag == 2 {
return Some(Default::default())
}
}
elt
}
fn size_hint(&self) -> (usize, Option<usize>)
{
let org_hint = self.iterator.size_hint();
self.hint_kind.loosen_bounds(org_hint)
}
}
impl<T, HK> DoubleEndedIterator for Iter<T, HK>
where Range<T>: DoubleEndedIterator,
<Range<T> as Iterator>::Item: Default,
HK: HintKind
{
fn next_back(&mut self) -> Option<Self::Item> { self.iterator.next_back() }
}
impl<T> ExactSizeIterator for Iter<T, Exact> where Range<T>: ExactSizeIterator,
<Range<T> as Iterator>::Item: Default,
{ }
impl<T, HK> qc::Arbitrary for Iter<T, HK>
where T: qc::Arbitrary,
HK: HintKind,
{
fn arbitrary<G: qc::Gen>(g: &mut G) -> Self
{
Iter::new(T::arbitrary(g)..T::arbitrary(g), HK::arbitrary(g))
}
fn shrink(&self) -> Box<Iterator<Item=Iter<T, HK>>>
{
let r = self.iterator.clone();
let hint_kind = self.hint_kind;
Box::new(
r.start.shrink().flat_map(move |a|
r.end.shrink().map(move |b|
Iter::new(a.clone()..b, hint_kind)
)
)
)
}
}
/// A meta-iterator which yields `Iter<i32>`s whose start/endpoints are
/// increased or decreased linearly on each iteration.
#[derive(Clone, Debug)]
struct ShiftRange<HK = Inexact> {
range_start: i32,
range_end: i32,
start_step: i32,
end_step: i32,
iter_count: u32,
hint_kind: HK,
}
impl<HK> Iterator for ShiftRange<HK> where HK: HintKind {
type Item = Iter<i32, HK>;
fn next(&mut self) -> Option<Self::Item> {
if self.iter_count == 0 {
return None;
}
let iter = Iter::new(self.range_start..self.range_end, self.hint_kind);
self.range_start += self.start_step;
self.range_end += self.end_step;
self.iter_count -= 1;
Some(iter)
}
}
impl ExactSizeIterator for ShiftRange<Exact> { }
impl<HK> qc::Arbitrary for ShiftRange<HK>
where HK: HintKind
{
fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
const MAX_STARTING_RANGE_DIFF: i32 = 32;
const MAX_STEP_MODULO: i32 = 8;
const MAX_ITER_COUNT: u32 = 3;
let range_start = qc::Arbitrary::arbitrary(g);
let range_end = range_start + g.gen_range(0, MAX_STARTING_RANGE_DIFF + 1);
let start_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1);
let end_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1);
let iter_count = g.gen_range(0, MAX_ITER_COUNT + 1);
let hint_kind = qc::Arbitrary::arbitrary(g);
ShiftRange {
range_start: range_start,
range_end: range_end,
start_step: start_step,
end_step: end_step,
iter_count: iter_count,
hint_kind: hint_kind
}
}
}
fn correct_size_hint<I: Iterator>(mut it: I) -> bool {
// record size hint at each iteration
let initial_hint = it.size_hint();
let mut hints = Vec::with_capacity(initial_hint.0 + 1);
hints.push(initial_hint);
while let Some(_) = it.next() {
hints.push(it.size_hint())
}
let mut true_count = hints.len(); // start off +1 too much
// check all the size hints
for &(low, hi) in &hints {
true_count -= 1;
if low > true_count ||
(hi.is_some() && hi.unwrap() < true_count)
{
println!("True size: {:?}, size hint: {:?}", true_count, (low, hi));
//println!("All hints: {:?}", hints);
return false
}
}
true
}
fn exact_size<I: ExactSizeIterator>(mut it: I) -> bool {
// check every iteration
let (mut low, mut hi) = it.size_hint();
if Some(low) != hi { return false; }
while let Some(_) = it.next() {
let (xlow, xhi) = it.size_hint();
if low != xlow + 1 { return false; }
low = xlow;
hi = xhi;
if Some(low) != hi { return false; }
}
let (low, hi) = it.size_hint();
low == 0 && hi == Some(0)
}
// Exact size for this case, without ExactSizeIterator
fn exact_size_for_this<I: Iterator>(mut it: I) -> bool {
// check every iteration
let (mut low, mut hi) = it.size_hint();
if Some(low) != hi { return false; }
while let Some(_) = it.next() {
let (xlow, xhi) = it.size_hint();
if low != xlow + 1 { return false; }
low = xlow;
hi = xhi;
if Some(low) != hi { return false; }
}
let (low, hi) = it.size_hint();
low == 0 && hi == Some(0)
}
/*
* NOTE: Range<i8> is broken!
* (all signed ranges are)
#[quickcheck]
fn size_range_i8(a: Iter<i8>) -> bool {
exact_size(a)
}
#[quickcheck]
fn size_range_i16(a: Iter<i16>) -> bool {
exact_size(a)
}
#[quickcheck]
fn size_range_u8(a: Iter<u8>) -> bool {
exact_size(a)
}
*/
macro_rules! quickcheck {
// accept several property function definitions
// The property functions can use pattern matching and `mut` as usual
// in the function arguments, but the functions can not be generic.
{$($(#$attr:tt)* fn $fn_name:ident($($arg:tt)*) -> $ret:ty { $($code:tt)* })*} => (
$(
#[test]
$(#$attr)*
fn $fn_name() {
fn prop($($arg)*) -> $ret {
$($code)*
}
::quickcheck::quickcheck(quickcheck!(@fn prop [] $($arg)*));
}
)*
);
// parse argument list (with patterns allowed) into prop as fn(_, _) -> _
(@fn $f:ident [$($t:tt)*]) => {
$f as fn($($t),*) -> _
};
(@fn $f:ident [$($p:tt)*] : $($tail:tt)*) => {
quickcheck!(@fn $f [$($p)* _] $($tail)*)
};
(@fn $f:ident [$($p:tt)*] $t:tt $($tail:tt)*) => {
quickcheck!(@fn $f [$($p)*] $($tail)*)
};
}
quickcheck! {
fn size_product(a: Iter<u16>, b: Iter<u16>) -> bool {
correct_size_hint(a.cartesian_product(b))
}
fn size_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>) -> bool {
correct_size_hint(iproduct!(a, b, c))
}
fn correct_cartesian_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>,
take_manual: usize) -> ()
{
// test correctness of iproduct through regular iteration (take)
// and through fold.
let ac = a.clone();
let br = &b.clone();
let cr = &c.clone();
let answer: Vec<_> = ac.flat_map(move |ea| br.clone().flat_map(move |eb| cr.clone().map(move |ec| (ea, eb, ec)))).collect();
let mut product_iter = iproduct!(a, b, c);
let mut actual = Vec::new();
actual.extend((&mut product_iter).take(take_manual));
if actual.len() == take_manual {
product_iter.fold((), |(), elt| actual.push(elt));
}
assert_eq!(answer, actual);
}
fn size_multi_product(a: ShiftRange) -> bool {
correct_size_hint(a.multi_cartesian_product())
}
fn correct_multi_product3(a: ShiftRange, take_manual: usize) -> () {
// Fix no. of iterators at 3
let a = ShiftRange { iter_count: 3, ..a };
// test correctness of MultiProduct through regular iteration (take)
// and through fold.
let mut iters = a.clone();
let i0 = iters.next().unwrap();
let i1r = &iters.next().unwrap();
let i2r = &iters.next().unwrap();
let answer: Vec<_> = i0.flat_map(move |ei0| i1r.clone().flat_map(move |ei1| i2r.clone().map(move |ei2| vec![ei0, ei1, ei2]))).collect();
let mut multi_product = a.clone().multi_cartesian_product();
let mut actual = Vec::new();
actual.extend((&mut multi_product).take(take_manual));
if actual.len() == take_manual {
multi_product.fold((), |(), elt| actual.push(elt));
}
assert_eq!(answer, actual);
assert_eq!(answer.into_iter().last(), a.clone().multi_cartesian_product().last());
}
#[allow(deprecated)]
fn size_step(a: Iter<i16, Exact>, s: usize) -> bool {
let mut s = s;
if s == 0 {
s += 1; // never zero
}
let filt = a.clone().dedup();
correct_size_hint(filt.step(s)) &&
exact_size(a.step(s))
}
#[allow(deprecated)]
fn equal_step(a: Iter<i16>, s: usize) -> bool {
let mut s = s;
if s == 0 {
s += 1; // never zero
}
let mut i = 0;
itertools::equal(a.clone().step(s), a.filter(|_| {
let keep = i % s == 0;
i += 1;
keep
}))
}
#[allow(deprecated)]
fn equal_step_vec(a: Vec<i16>, s: usize) -> bool {
let mut s = s;
if s == 0 {
s += 1; // never zero
}
let mut i = 0;
itertools::equal(a.iter().step(s), a.iter().filter(|_| {
let keep = i % s == 0;
i += 1;
keep
}))
}
fn size_multipeek(a: Iter<u16, Exact>, s: u8) -> bool {
let mut it = multipeek(a);
// peek a few times
for _ in 0..s {
it.peek();
}
exact_size(it)
}
fn equal_merge(a: Vec<i16>, b: Vec<i16>) -> bool {
let mut sa = a.clone();
let mut sb = b.clone();
sa.sort();
sb.sort();
let mut merged = sa.clone();
merged.extend(sb.iter().cloned());
merged.sort();
itertools::equal(&merged, sa.iter().merge(&sb))
}
fn size_merge(a: Iter<u16>, b: Iter<u16>) -> bool {
correct_size_hint(a.merge(b))
}
fn size_zip(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool {
let filt = a.clone().dedup();
correct_size_hint(multizip((filt, b.clone(), c.clone()))) &&
exact_size(multizip((a, b, c)))
}
fn size_zip_rc(a: Iter<i16>, b: Iter<i16>) -> bool {
let rc = rciter(a.clone());
correct_size_hint(multizip((&rc, &rc, b)))
}
fn size_zip_macro(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool {
let filt = a.clone().dedup();
correct_size_hint(izip!(filt, b.clone(), c.clone())) &&
exact_size(izip!(a, b, c))
}
fn equal_kmerge(a: Vec<i16>, b: Vec<i16>, c: Vec<i16>) -> bool {
use itertools::free::kmerge;
let mut sa = a.clone();
let mut sb = b.clone();
let mut sc = c.clone();
sa.sort();
sb.sort();
sc.sort();
let mut merged = sa.clone();
merged.extend(sb.iter().cloned());
merged.extend(sc.iter().cloned());
merged.sort();
itertools::equal(merged.into_iter(), kmerge(vec![sa, sb, sc]))
}
// Any number of input iterators
fn equal_kmerge_2(mut inputs: Vec<Vec<i16>>) -> bool {
use itertools::free::kmerge;
// sort the inputs
for input in &mut inputs {
input.sort();
}
let mut merged = inputs.concat();
merged.sort();
itertools::equal(merged.into_iter(), kmerge(inputs))
}
// Any number of input iterators
fn equal_kmerge_by_ge(mut inputs: Vec<Vec<i16>>) -> bool {
// sort the inputs
for input in &mut inputs {
input.sort();
input.reverse();
}
let mut merged = inputs.concat();
merged.sort();
merged.reverse();
itertools::equal(merged.into_iter(),
inputs.into_iter().kmerge_by(|x, y| x >= y))
}
// Any number of input iterators
fn equal_kmerge_by_lt(mut inputs: Vec<Vec<i16>>) -> bool {
// sort the inputs
for input in &mut inputs {
input.sort();
}
let mut merged = inputs.concat();
merged.sort();
itertools::equal(merged.into_iter(),
inputs.into_iter().kmerge_by(|x, y| x < y))
}
// Any number of input iterators
fn equal_kmerge_by_le(mut inputs: Vec<Vec<i16>>) -> bool {
// sort the inputs
for input in &mut inputs {
input.sort();
}
let mut merged = inputs.concat();
merged.sort();
itertools::equal(merged.into_iter(),
inputs.into_iter().kmerge_by(|x, y| x <= y))
}
fn size_kmerge(a: Iter<i16>, b: Iter<i16>, c: Iter<i16>) -> bool {
use itertools::free::kmerge;
correct_size_hint(kmerge(vec![a, b, c]))
}
fn equal_zip_eq(a: Vec<i32>, b: Vec<i32>) -> bool {
let len = std::cmp::min(a.len(), b.len());
let a = &a[..len];
let b = &b[..len];
itertools::equal(zip_eq(a, b), zip(a, b))
}
fn size_zip_longest(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool {
let filt = a.clone().dedup();
let filt2 = b.clone().dedup();
correct_size_hint(filt.zip_longest(b.clone())) &&
correct_size_hint(a.clone().zip_longest(filt2)) &&
exact_size(a.zip_longest(b))
}
fn size_2_zip_longest(a: Iter<i16>, b: Iter<i16>) -> bool {
let it = a.clone().zip_longest(b.clone());
let jt = a.clone().zip_longest(b.clone());
itertools::equal(a.clone(),
it.filter_map(|elt| match elt {
EitherOrBoth::Both(x, _) => Some(x),
EitherOrBoth::Left(x) => Some(x),
_ => None,
}
))
&&
itertools::equal(b.clone(),
jt.filter_map(|elt| match elt {
EitherOrBoth::Both(_, y) => Some(y),
EitherOrBoth::Right(y) => Some(y),
_ => None,
}
))
}
fn size_interleave(a: Iter<i16>, b: Iter<i16>) -> bool {
correct_size_hint(a.interleave(b))
}
fn exact_interleave(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool {
exact_size_for_this(a.interleave(b))
}
fn size_interleave_shortest(a: Iter<i16>, b: Iter<i16>) -> bool {
correct_size_hint(a.interleave_shortest(b))
}
fn exact_interleave_shortest(a: Vec<()>, b: Vec<()>) -> bool {
exact_size_for_this(a.iter().interleave_shortest(&b))
}
fn size_intersperse(a: Iter<i16>, x: i16) -> bool {
correct_size_hint(a.intersperse(x))
}
fn equal_intersperse(a: Vec<i32>, x: i32) -> bool {
let mut inter = false;
let mut i = 0;
for elt in a.iter().cloned().intersperse(x) {
if inter {
if elt != x { return false }
} else {
if elt != a[i] { return false }
i += 1;
}
inter = !inter;
}
true
}
fn equal_combinations_2(a: Vec<u8>) -> bool {
let mut v = Vec::new();
for (i, x) in enumerate(&a) {
for y in &a[i + 1..] {
v.push((x, y));
}
}
itertools::equal(a.iter().tuple_combinations::<(_, _)>(), v)
}
fn collect_tuple_matches_size(a: Iter<i16>) -> bool {
let size = a.clone().count();
a.collect_tuple::<(_, _, _)>().is_some() == (size == 3)
}
}
quickcheck! {
fn equal_dedup(a: Vec<i32>) -> bool {
let mut b = a.clone();
b.dedup();
itertools::equal(&b, a.iter().dedup())
}
}
quickcheck! {
fn size_dedup(a: Vec<i32>) -> bool {
correct_size_hint(a.iter().dedup())
}
}
quickcheck! {
fn exact_repeatn((n, x): (usize, i32)) -> bool {
let it = itertools::repeat_n(x, n);
exact_size(it)
}
}
quickcheck! {
fn size_put_back(a: Vec<u8>, x: Option<u8>) -> bool {
let mut it = put_back(a.into_iter());
match x {
Some(t) => it.put_back(t),
None => {}
}
correct_size_hint(it)
}
}
quickcheck! {
fn size_put_backn(a: Vec<u8>, b: Vec<u8>) -> bool {
let mut it = put_back_n(a.into_iter());
for elt in b {
it.put_back(elt)
}
correct_size_hint(it)
}
}
quickcheck! {
fn size_tee(a: Vec<u8>) -> bool {
let (mut t1, mut t2) = a.iter().tee();
t1.next();
t1.next();
t2.next();
exact_size(t1) && exact_size(t2)
}
}
quickcheck! {
fn size_tee_2(a: Vec<u8>) -> bool {
let (mut t1, mut t2) = a.iter().dedup().tee();
t1.next();
t1.next();
t2.next();
correct_size_hint(t1) && correct_size_hint(t2)
}
}
quickcheck! {
fn size_take_while_ref(a: Vec<u8>, stop: u8) -> bool {
correct_size_hint(a.iter().take_while_ref(|x| **x != stop))
}
}
quickcheck! {
fn equal_partition(a: Vec<i32>) -> bool {
let mut a = a;
let mut ap = a.clone();
let split_index = itertools::partition(&mut ap, |x| *x >= 0);
let parted = (0..split_index).all(|i| ap[i] >= 0) &&
(split_index..a.len()).all(|i| ap[i] < 0);
a.sort();
ap.sort();
parted && (a == ap)
}
}
quickcheck! {
fn size_combinations(it: Iter<i16>) -> bool {
correct_size_hint(it.tuple_combinations::<(_, _)>())
}
}
quickcheck! {
fn equal_combinations(it: Iter<i16>) -> bool {
let values = it.clone().collect_vec();
let mut cmb = it.tuple_combinations();
for i in 0..values.len() {
for j in i+1..values.len() {
let pair = (values[i], values[j]);
if pair != cmb.next().unwrap() {
return false;
}
}
}
cmb.next() == None
}
}
quickcheck! {
fn size_pad_tail(it: Iter<i8>, pad: u8) -> bool {
correct_size_hint(it.clone().pad_using(pad as usize, |_| 0)) &&
correct_size_hint(it.dropping(1).rev().pad_using(pad as usize, |_| 0))
}
}
quickcheck! {
fn size_pad_tail2(it: Iter<i8, Exact>, pad: u8) -> bool {
exact_size(it.pad_using(pad as usize, |_| 0))
}
}
quickcheck! {
fn size_unique(it: Iter<i8>) -> bool {
correct_size_hint(it.unique())
}
fn count_unique(it: Vec<i8>, take_first: u8) -> () {
let answer = {
let mut v = it.clone();
v.sort(); v.dedup();
v.len()
};
let mut iter = cloned(&it).unique();
let first_count = (&mut iter).take(take_first as usize).count();
let rest_count = iter.count();
assert_eq!(answer, first_count + rest_count);
}
}
quickcheck! {
fn fuzz_group_by_lazy_1(it: Iter<u8>) -> bool {
let jt = it.clone();
let groups = it.group_by(|k| *k);
let res = itertools::equal(jt, groups.into_iter().flat_map(|(_, x)| x));
res
}
}
quickcheck! {
fn fuzz_group_by_lazy_2(data: Vec<u8>) -> bool {
let groups = data.iter().group_by(|k| *k / 10);
let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x));
res
}
}
quickcheck! {
fn fuzz_group_by_lazy_3(data: Vec<u8>) -> bool {
let grouper = data.iter().group_by(|k| *k / 10);
let groups = grouper.into_iter().collect_vec();
let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x));
res
}
}
quickcheck! {
fn fuzz_group_by_lazy_duo(data: Vec<u8>, order: Vec<(bool, bool)>) -> bool {
let grouper = data.iter().group_by(|k| *k / 3);
let mut groups1 = grouper.into_iter();
let mut groups2 = grouper.into_iter();
let mut elts = Vec::<&u8>::new();
let mut old_groups = Vec::new();
let tup1 = |(_, b)| b;
for &(ord, consume_now) in &order {
let iter = &mut [&mut groups1, &mut groups2][ord as usize];
match iter.next() {
Some((_, gr)) => if consume_now {
for og in old_groups.drain(..) {
elts.extend(og);
}
elts.extend(gr);
} else {
old_groups.push(gr);
},
None => break,
}
}
for og in old_groups.drain(..) {
elts.extend(og);
}
for gr in groups1.map(&tup1) { elts.extend(gr); }
for gr in groups2.map(&tup1) { elts.extend(gr); }
itertools::assert_equal(&data, elts);
true
}
}
quickcheck! {
fn equal_chunks_lazy(a: Vec<u8>, size: u8) -> bool {
let mut size = size;
if size == 0 {
size += 1;
}
let chunks = a.iter().chunks(size as usize);
let it = a.chunks(size as usize);
for (a, b) in chunks.into_iter().zip(it) {
if !itertools::equal(a, b) {
return false;
}
}
true
}
}
quickcheck! {
fn equal_tuple_windows_1(a: Vec<u8>) -> bool {
let x = a.windows(1).map(|s| (&s[0], ));
let y = a.iter().tuple_windows::<(_,)>();
itertools::equal(x, y)
}
fn equal_tuple_windows_2(a: Vec<u8>) -> bool {
let x = a.windows(2).map(|s| (&s[0], &s[1]));
let y = a.iter().tuple_windows::<(_, _)>();
itertools::equal(x, y)
}
fn equal_tuple_windows_3(a: Vec<u8>) -> bool {
let x = a.windows(3).map(|s| (&s[0], &s[1], &s[2]));
let y = a.iter().tuple_windows::<(_, _, _)>();
itertools::equal(x, y)
}
fn equal_tuple_windows_4(a: Vec<u8>) -> bool {
let x = a.windows(4).map(|s| (&s[0], &s[1], &s[2], &s[3]));
let y = a.iter().tuple_windows::<(_, _, _, _)>();
itertools::equal(x, y)
}
fn equal_tuples_1(a: Vec<u8>) -> bool {
let x = a.chunks(1).map(|s| (&s[0], ));
let y = a.iter().tuples::<(_,)>();
itertools::equal(x, y)
}
fn equal_tuples_2(a: Vec<u8>) -> bool {
let x = a.chunks(2).filter(|s| s.len() == 2).map(|s| (&s[0], &s[1]));
let y = a.iter().tuples::<(_, _)>();
itertools::equal(x, y)
}
fn equal_tuples_3(a: Vec<u8>) -> bool {
let x = a.chunks(3).filter(|s| s.len() == 3).map(|s| (&s[0], &s[1], &s[2]));
let y = a.iter().tuples::<(_, _, _)>();
itertools::equal(x, y)
}
fn equal_tuples_4(a: Vec<u8>) -> bool {
let x = a.chunks(4).filter(|s| s.len() == 4).map(|s| (&s[0], &s[1], &s[2], &s[3]));
let y = a.iter().tuples::<(_, _, _, _)>();
itertools::equal(x, y)
}
fn exact_tuple_buffer(a: Vec<u8>) -> bool {
let mut iter = a.iter().tuples::<(_, _, _, _)>();
(&mut iter).last();
let buffer = iter.into_buffer();
assert_eq!(buffer.len(), a.len() % 4);
exact_size(buffer)
}
}
// with_position
quickcheck! {
fn with_position_exact_size_1(a: Vec<u8>) -> bool {
exact_size_for_this(a.iter().with_position())
}
fn with_position_exact_size_2(a: Iter<u8, Exact>) -> bool {
exact_size_for_this(a.with_position())
}
}
quickcheck! {
fn correct_group_map_modulo_key(a: Vec<u8>, modulo: u8) -> () {
let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0`
let count = a.len();
let lookup = a.into_iter().map(|i| (i % modulo, i)).into_group_map();
assert_eq!(lookup.values().flat_map(|vals| vals.iter()).count(), count);
for (&key, vals) in lookup.iter() {
assert!(vals.iter().all(|&val| val % modulo == key));
}
}
}
/// A peculiar type: Equality compares both tuple items, but ordering only the
/// first item. This is so we can check the stability property easily.
#[derive(Clone, Debug, PartialEq, Eq)]
struct Val(u32, u32);
impl PartialOrd<Val> for Val {
fn partial_cmp(&self, other: &Val) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl Ord for Val {
fn cmp(&self, other: &Val) -> Ordering {
self.0.cmp(&other.0)
}
}
impl qc::Arbitrary for Val {
fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
let (x, y) = <(u32, u32)>::arbitrary(g);
Val(x, y)
}
fn shrink(&self) -> Box<Iterator<Item = Self>> {
Box::new((self.0, self.1).shrink().map(|(x, y)| Val(x, y)))
}
}
quickcheck! {
fn minmax(a: Vec<Val>) -> bool {
use itertools::MinMaxResult;
let minmax = a.iter().minmax();
let expected = match a.len() {
0 => MinMaxResult::NoElements,
1 => MinMaxResult::OneElement(&a[0]),
_ => MinMaxResult::MinMax(a.iter().min().unwrap(),
a.iter().max().unwrap()),
};
minmax == expected
}
}
quickcheck! {
fn minmax_f64(a: Vec<f64>) -> TestResult {
use itertools::MinMaxResult;
if a.iter().any(|x| x.is_nan()) {
return TestResult::discard();
}
let min = cloned(&a).fold1(f64::min);
let max = cloned(&a).fold1(f64::max);
let minmax = cloned(&a).minmax();
let expected = match a.len() {
0 => MinMaxResult::NoElements,
1 => MinMaxResult::OneElement(min.unwrap()),
_ => MinMaxResult::MinMax(min.unwrap(), max.unwrap()),
};
TestResult::from_bool(minmax == expected)
}
}
quickcheck! {
#[allow(deprecated)]
fn tree_fold1_f64(mut a: Vec<f64>) -> TestResult {
fn collapse_adjacent<F>(x: Vec<f64>, mut f: F) -> Vec<f64>
where F: FnMut(f64, f64) -> f64
{
let mut out = Vec::new();
for i in (0..x.len()).step(2) {
if i == x.len()-1 {
out.push(x[i])
} else {
out.push(f(x[i], x[i+1]));
}
}
out
}
if a.iter().any(|x| x.is_nan()) {
return TestResult::discard();
}
let actual = a.iter().cloned().tree_fold1(f64::atan2);
while a.len() > 1 {
a = collapse_adjacent(a, f64::atan2);
}
let expected = a.pop();
TestResult::from_bool(actual == expected)
}
}
|