summaryrefslogtreecommitdiffstats
path: root/third_party/rust/lucet-module-wasmsbx/src/functions.rs
blob: 87f0b68d97152dc129ae36eff06dae726a1041ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use crate::traps::{TrapManifest, TrapSite};
use cranelift_entity::entity_impl;
use serde::{Deserialize, Serialize};

use std::slice::from_raw_parts;

/// FunctionIndex is an identifier for a function, imported, exported, or external. The space of
/// FunctionIndex is shared for all of these, so `FunctionIndex(N)` may identify exported function
/// #2, `FunctionIndex(N + 1)` may identify an internal function, and `FunctionIndex(N + 2)` may
/// identify an imported function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Serialize, Deserialize)]
pub struct FunctionIndex(u32);

impl FunctionIndex {
    pub fn from_u32(idx: u32) -> FunctionIndex {
        FunctionIndex(idx)
    }
    pub fn as_u32(&self) -> u32 {
        self.0
    }
}

/// ImportFunction describes an internal function - its internal function index and the name/module
/// pair that function should be found in.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Serialize, Deserialize)]
pub struct ImportFunction<'a> {
    pub fn_idx: FunctionIndex,
    pub module: &'a str,
    pub name: &'a str,
}

/// ExportFunction describes an exported function - its internal function index and a name that
/// function has been exported under.
#[derive(Clone, PartialEq, Eq, Hash, Debug, Serialize, Deserialize)]
pub struct ExportFunction<'a> {
    pub fn_idx: FunctionIndex,
    #[serde(borrow)]
    pub names: Vec<&'a str>,
}

pub struct OwnedExportFunction {
    pub fn_idx: FunctionIndex,
    pub names: Vec<String>,
}

impl OwnedExportFunction {
    pub fn to_ref<'a>(&'a self) -> ExportFunction<'a> {
        ExportFunction {
            fn_idx: self.fn_idx.clone(),
            names: self.names.iter().map(|x| x.as_str()).collect(),
        }
    }
}

pub struct OwnedImportFunction {
    pub fn_idx: FunctionIndex,
    pub module: String,
    pub name: String,
}

impl OwnedImportFunction {
    pub fn to_ref<'a>(&'a self) -> ImportFunction<'a> {
        ImportFunction {
            fn_idx: self.fn_idx.clone(),
            module: self.module.as_str(),
            name: self.name.as_str(),
        }
    }
}

/// UniqueSignatureIndex names a signature after collapsing duplicate signatures to a single
/// identifier, whereas SignatureIndex is directly what the original module specifies, and may
/// specify duplicates of types that are structurally equal.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct UniqueSignatureIndex(u32);
entity_impl!(UniqueSignatureIndex);

/// FunctionPointer serves entirely as a safer way to work with function pointers than as raw u64
/// or usize values. It also avoids the need to write them as `fn` types, which cannot be freely
/// cast from one to another with `as`. If you need to call a `FunctionPointer`, use `as_usize()`
/// and transmute the resulting usize to a `fn` type with appropriate signature.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FunctionPointer(usize);

impl FunctionPointer {
    pub fn from_usize(ptr: usize) -> FunctionPointer {
        FunctionPointer(ptr)
    }
    pub fn as_usize(&self) -> usize {
        self.0
    }
}

/// Information about the corresponding function.
///
/// This is split from but closely related to a [`FunctionSpec`]. The distinction is largely for
/// serialization/deserialization simplicity, as [`FunctionSpec`] contains fields that need
/// cooperation from a loader, with manual layout and serialization as a result.
/// [`FunctionMetadata`] is the remainder of fields that can be automatically
/// serialized/deserialied and are small enough copying isn't a large concern.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct FunctionMetadata<'a> {
    pub signature: UniqueSignatureIndex,
    /// the "name" field is some human-friendly name, not necessarily the same as used to reach
    /// this function (through an export, for example), and may not even indicate that a function
    /// is exported at all.
    /// TODO: at some point when possible, this field ought to be set from the names section of a
    /// wasm module. At the moment that information is lost at parse time.
    #[serde(borrow)]
    pub name: Option<&'a str>,
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct OwnedFunctionMetadata {
    pub signature: UniqueSignatureIndex,
    pub name: Option<String>,
}

impl OwnedFunctionMetadata {
    pub fn to_ref(&self) -> FunctionMetadata<'_> {
        FunctionMetadata {
            signature: self.signature.clone(),
            name: self.name.as_ref().map(|n| n.as_str()),
        }
    }
}

pub struct FunctionHandle {
    pub ptr: FunctionPointer,
    pub id: FunctionIndex,
}

// The layout of this struct is very tightly coupled to lucetc's `write_function_manifest`!
//
// Specifically, `write_function_manifest` sets up relocations on `code_addr` and `traps_addr`.
// It does not explicitly serialize a correctly formed `FunctionSpec`, because addresses
// for these fields do not exist until the object is loaded in the future.
//
// So `write_function_manifest` has implicit knowledge of the layout of this structure
// (including padding bytes between `code_len` and `traps_addr`)
#[repr(C)]
#[derive(Clone, Debug)]
pub struct FunctionSpec {
    code_addr: u64,
    code_len: u32,
    traps_addr: u64,
    traps_len: u64,
}

impl FunctionSpec {
    pub fn new(code_addr: u64, code_len: u32, traps_addr: u64, traps_len: u64) -> Self {
        FunctionSpec {
            code_addr,
            code_len,
            traps_addr,
            traps_len,
        }
    }
    pub fn ptr(&self) -> FunctionPointer {
        FunctionPointer::from_usize(self.code_addr as usize)
    }
    pub fn code_len(&self) -> u32 {
        self.code_len
    }
    pub fn traps_len(&self) -> u64 {
        self.traps_len
    }
    pub fn contains(&self, addr: u64) -> bool {
        addr >= self.code_addr && (addr - self.code_addr) < (self.code_len as u64)
    }
    pub fn relative_addr(&self, addr: u64) -> Option<u32> {
        if let Some(offset) = addr.checked_sub(self.code_addr) {
            if offset < (self.code_len as u64) {
                // self.code_len is u32, so if the above check succeeded
                // offset must implicitly be <= u32::MAX - the following
                // conversion will not truncate bits
                return Some(offset as u32);
            }
        }

        None
    }
    pub fn traps(&self) -> Option<TrapManifest<'_>> {
        let traps_ptr = self.traps_addr as *const TrapSite;
        if !traps_ptr.is_null() {
            let traps_slice = unsafe { from_raw_parts(traps_ptr, self.traps_len as usize) };
            Some(TrapManifest::new(traps_slice))
        } else {
            None
        }
    }
}