1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
//! # Lucet Runtime for Sandboxed WebAssembly Applications
//!
//! This crate runs programs that were compiled with the `lucetc` WebAssembly to native code
//! compiler. It provides an interface for modules to be loaded from shared object files (see
//! `DlModule`), and for hosts to provide specialized functionality to guests (see
//! `Instance::embed_ctx()`).
//!
//! The runtime is a critical part of the safety and security story for Lucet. While the semantics
//! of WebAssembly and the `lucetc` compiler provide many guarantees, the runtime must be correct in
//! order for the assumptions of those guarantees to hold. For example, the runtime uses guard pages
//! to ensure that any attempts by guest programs to access memory past the end of the guest heap are
//! safely caught.
//!
//! The runtime is also extensible, and some of the key types are defined as traits for
//! flexibility. See the `lucet-runtime-internals` crate for details.
//!
//! ## Running a Lucet Program
//!
//! There are a few essential types for using the runtime:
//!
//! - [`Instance`](struct.Instance.html): a Lucet program, together with its dedicated memory and
//! signal handlers. Users of this API never own an `Instance` directly, but can own the
//! [`InstanceHandle`](struct.InstanceHandle.html) smart pointer.
//!
//! - [`Region`](trait.Region.html): the memory from which instances are created. This crate
//! includes [`MmapRegion`](struct.MmapRegion.html), an implementation backed by `mmap`.
//!
//! - [`Limits`](struct.Limits.html): upper bounds for the resources a Lucet instance may
//! consume. These may be larger or smaller than the limits described in the WebAssembly module
//! itself; the smaller limit is always enforced.
//!
//! - [`Module`](trait.Module.html): the read-only parts of a Lucet program, including its code and
//! initial heap configuration. This crate includes [`DlModule`](struct.DlModule.html), an
//! implementation backed by dynamic loading of shared objects.
//!
//! - [`Val`](enum.Val.html): an enum describing values in WebAssembly, used to provide
//! arguments. These can be created using `From` implementations of primitive types, for example
//! `5u64.into()` in the example below.
//!
//! - [`RunResult`](enum.RunResult.html): the result of running or resuming an instance. These
//! contain either `UntypedRetVal`s for WebAssembly functions that have returned, or `YieldedVal`s
//! for WebAssembly programs that have yielded.
//!
//! - [`UntypedRetVal`](struct.UntypedRetVal.html): values returned from WebAssembly
//! functions. These must be interpreted at the correct type by the user via `From` implementations
//! or `retval.as_T()` methods, for example `u64::from(retval)` in the example below.
//!
//! - [`YieldedVal`](struct.YieldedVal.html): dynamically-values yielded by WebAssembly
//! programs. Not all yield points are given values, so this may be empty. To use the values, if
//! present, you must first downcast them with the provided methods.
//!
//! To run a Lucet program, you start by creating a region, capable of backing a number of
//! instances. You then load a module and then create a new instance using the region and the
//! module. You can then run any of the functions that the Lucet program exports, retrieve return
//! values from those functions, and access the linear memory of the guest.
//!
//! ```no_run
//! use lucet_runtime::{DlModule, Limits, MmapRegion, Region};
//!
//! let module = DlModule::load("/my/lucet/module.so").unwrap();
//! let region = MmapRegion::create(1, &Limits::default()).unwrap();
//! let mut inst = region.new_instance(module).unwrap();
//!
//! let retval = inst.run("factorial", &[5u64.into()]).unwrap().unwrap_returned();
//! assert_eq!(u64::from(retval), 120u64);
//! ```
//!
//! ## Embedding With Hostcalls
//!
//! A "hostcall" is a function called by WebAssembly that is not defined in WebAssembly. Since
//! WebAssembly is such a minimal language, hostcalls are required for Lucet programs to do anything
//! interesting with the outside world. For example, in Fastly's [Terrarium
//! demo](https://wasm.fastly-labs.com/), hostcalls are provided for manipulating HTTP requests,
//! accessing a key/value store, etc.
//!
//! Some simple hostcalls can be implemented by wrapping an externed C function with the
//! [`lucet_hostcalls!`](macro.lucet_hostcalls.html] macro. The function must take a special `&mut
//! vmctx` argument for the guest context, similar to `&mut self` on methods. Hostcalls that require
//! access to some underlying state, such as the key/value store in Terrarium, can access a custom
//! embedder context through `vmctx`. For example, to make a `u32` available to hostcalls:
//!
//! ```no_run
//! use lucet_runtime::{DlModule, Limits, MmapRegion, Region, lucet_hostcalls};
//! use lucet_runtime::vmctx::{Vmctx, lucet_vmctx};
//!
//! struct MyContext { x: u32 }
//!
//! lucet_hostcalls! {
//! #[no_mangle]
//! pub unsafe extern "C" fn foo(
//! &mut vmctx,
//! ) -> () {
//! let mut hostcall_context = vmctx.get_embed_ctx_mut::<MyContext>();
//! hostcall_context.x = 42;
//! }
//! }
//!
//! let module = DlModule::load("/my/lucet/module.so").unwrap();
//! let region = MmapRegion::create(1, &Limits::default()).unwrap();
//! let mut inst = region
//! .new_instance_builder(module)
//! .with_embed_ctx(MyContext { x: 0 })
//! .build()
//! .unwrap();
//!
//! inst.run("call_foo", &[]).unwrap();
//!
//! let context_after = inst.get_embed_ctx::<MyContext>().unwrap().unwrap();
//! assert_eq!(context_after.x, 42);
//! ```
//!
//! The embedder context is backed by a structure that can hold a single value of any type. Rust
//! embedders should add their own custom state type (like `MyContext` above) for any context they
//! require, rather than using a common type (such as the `u32`) from the standard library. This
//! avoids collisions between libraries, and allows for easy composition of embeddings.
//!
//! For C-based embedders, the type `*mut libc::c_void` is privileged as the only type that the C
//! API provides. The following example shows how a Rust embedder can initialize a C-compatible
//! context:
//!
//! ```no_run
//! use lucet_runtime::{DlModule, Limits, MmapRegion, Region};
//!
//! let module = DlModule::load("/my/lucet/module.so").unwrap();
//! let region = MmapRegion::create(1, &Limits::default()).unwrap();
//! #[repr(C)]
//! struct MyForeignContext { x: u32 };
//! let mut foreign_ctx = Box::into_raw(Box::new(MyForeignContext{ x: 0 }));
//! let mut inst = region
//! .new_instance_builder(module)
//! .with_embed_ctx(foreign_ctx as *mut libc::c_void)
//! .build()
//! .unwrap();
//!
//! inst.run("main", &[]).unwrap();
//!
//! // clean up embedder context
//! drop(inst);
//! // foreign_ctx must outlive inst, but then must be turned back into a box
//! // in order to drop.
//! unsafe { Box::from_raw(foreign_ctx) };
//! ```
//!
//! ## Yielding and Resuming
//!
//! Lucet hostcalls can use the `vmctx` argument to yield, suspending themselves and optionally
//! returning a value back to the host context. A yielded instance can then be resumed by the host,
//! and execution will continue from the point of the yield.
//!
//! Four yield methods are available for hostcall implementors:
//!
//! | | Yields value? | Expects value? |
//! |-------------------------------------------------------------------------------------|---------------|----------------|
//! | [`yield_`](vmctx/struct.Vmctx.html#method.yield_) | ❌ | ❌ |
//! | [`yield_val`](vmctx/struct.Vmctx.html#method.yield_val) | ✅ | ❌ |
//! | [`yield_expecting_val`](vmctx/struct.Vmctx.html#method.yield_expecting_val) | ❌ | ✅ |
//! | [`yield_val_expecting_val`](vmctx/struct.Vmctx.html#method.yield_val_expecting_val) | ✅ | ✅ |
//!
//! The host is free to ignore values yielded by guests, but a yielded instance may only be resumed
//! with a value of the correct type using
//! [`Instance::resume_with_val()`](struct.Instance.html#method.resume_with_val), if one is
//! expected.
//!
//! ### Factorial example
//!
//! In this example, we use yielding and resuming to offload multiplication to the host context, and
//! to incrementally return results to the host. While certainly overkill for computing a factorial
//! function, this structure mirrors that of many asynchronous workflows.
//!
//! Since the focus of this example is on the behavior of hostcalls that yield, our Lucet guest
//! program just invokes a hostcall:
//!
//! ```no_run
//! // factorials_guest.rs
//! extern "C" {
//! fn hostcall_factorials(n: u64) -> u64;
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn run() -> u64 {
//! unsafe {
//! hostcall_factorials(5)
//! }
//! }
//! ```
//!
//! In our hostcall, there are two changes from a standard recursive implementation of factorial.
//!
//! - Instead of performing the `n * fact(n - 1)` multiplication ourselves, we yield the operands
//! and expect the product when resumed.
//!
//! - Whenever we have computed a factorial, including both intermediate values and the final
//! answer, we yield it.
//!
//! The final answer is returned normally as the result of the guest function.
//!
//! To implement this, we introduce a new `enum` type to represent what we want the host to do next,
//! and yield it when appropriate.
//!
//! ```no_run
//! use lucet_runtime::lucet_hostcalls;
//! use lucet_runtime::vmctx::Vmctx;
//!
//! pub enum FactorialsK {
//! Mult(u64, u64),
//! Result(u64),
//! }
//!
//! lucet_hostcalls! {
//! #[no_mangle]
//! pub unsafe extern "C" fn hostcall_factorials(
//! &mut vmctx,
//! n: u64,
//! ) -> u64 {
//! fn fact(vmctx: &mut Vmctx, n: u64) -> u64 {
//! let result = if n <= 1 {
//! 1
//! } else {
//! let n_rec = fact(vmctx, n - 1);
//! // yield a request for the host to perform multiplication
//! vmctx.yield_val_expecting_val(FactorialsK::Mult(n, n_rec))
//! // once resumed, that yield evaluates to the multiplication result
//! };
//! // yield a result
//! vmctx.yield_val(FactorialsK::Result(result));
//! result
//! }
//! fact(vmctx, n)
//! }
//! }
//! ```
//!
//! The host side of the code, then, is an interpreter that repeatedly checks the yielded value and
//! performs the appropriate operation. The hostcall returns normally with the final answer when it
//! is finished, so we exit the loop when the run/resume result is `Ok`.
//!
//! ```no_run
//! # pub enum FactorialsK {
//! # Mult(u64, u64),
//! # Result(u64),
//! # }
//! use lucet_runtime::{DlModule, Error, Limits, MmapRegion, Region};
//!
//! let module = DlModule::load("factorials_guest.so").unwrap();
//! let region = MmapRegion::create(1, &Limits::default()).unwrap();
//! let mut inst = region.new_instance(module).unwrap();
//!
//! let mut factorials = vec![];
//!
//! let mut res = inst.run("run", &[]).unwrap();
//!
//! while let Ok(val) = res.yielded_ref() {
//! if let Some(k) = val.downcast_ref::<FactorialsK>() {
//! match k {
//! FactorialsK::Mult(n, n_rec) => {
//! // guest wants us to multiply for it
//! res = inst.resume_with_val(n * n_rec).unwrap();
//! }
//! FactorialsK::Result(n) => {
//! // guest is returning an answer
//! factorials.push(*n);
//! res = inst.resume().unwrap();
//! }
//! }
//! } else {
//! panic!("didn't yield with expected type");
//! }
//! }
//!
//! // intermediate values are correct
//! assert_eq!(factorials.as_slice(), &[1, 2, 6, 24, 120]);
//! // final value is correct
//! assert_eq!(u64::from(res.unwrap_returned()), 120u64);
//! ```
//!
//! ## Custom Signal Handlers
//!
//! Since Lucet programs are run as native machine code, signals such as `SIGSEGV` and `SIGFPE` can
//! arise during execution. Rather than letting these signals bring down the entire process, the
//! Lucet runtime installs alternate signal handlers that limit the effects to just the instance
//! that raised the signal.
//!
//! By default, the signal handler sets the instance state to `State::Fault` and returns early from
//! the call to `Instance::run()`. You can, however, implement custom error recovery and logging
//! behavior by defining new signal handlers on a per-instance basis. For example, the following
//! signal handler increments a counter of signals it has seen before setting the fault state:
//!
//! ```no_run
//! use lucet_runtime::{
//! DlModule, Error, Instance, Limits, MmapRegion, Region, SignalBehavior, TrapCode,
//! };
//! use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT};
//!
//! static SIGNAL_COUNT: AtomicUsize = ATOMIC_USIZE_INIT;
//!
//! fn signal_handler_count(
//! _inst: &Instance,
//! _trapcode: &Option<TrapCode>,
//! _signum: libc::c_int,
//! _siginfo_ptr: *const libc::siginfo_t,
//! _ucontext_ptr: *const libc::c_void,
//! ) -> SignalBehavior {
//! SIGNAL_COUNT.fetch_add(1, Ordering::SeqCst);
//! SignalBehavior::Default
//! }
//!
//! let module = DlModule::load("/my/lucet/module.so").unwrap();
//! let region = MmapRegion::create(1, &Limits::default()).unwrap();
//! let mut inst = region.new_instance(module).unwrap();
//!
//! // install the handler
//! inst.set_signal_handler(signal_handler_count);
//!
//! match inst.run("raise_a_signal", &[]) {
//! Err(Error::RuntimeFault(_)) => {
//! println!("I've now handled {} signals!", SIGNAL_COUNT.load(Ordering::SeqCst));
//! }
//! res => panic!("unexpected result: {:?}", res),
//! }
//! ```
//!
//! When implementing custom signal handlers for the Lucet runtime, the usual caveats about signal
//! safety apply: see
//! [`signal-safety(7)`](http://man7.org/linux/man-pages/man7/signal-safety.7.html).
//!
//! ## Interaction With Host Signal Handlers
//!
//! Great care must be taken if host application installs or otherwise modifies signal handlers
//! anywhere in the process. Lucet installs handlers for `SIGBUS`, `SIGFPE`, `SIGILL`, and `SIGSEGV`
//! when the first Lucet instance begins running, and restores the preëxisting handlers when the
//! last Lucet instance terminates. During this time, other threads in the host process *must not*
//! modify those signal handlers, since signal handlers can only be installed on a process-wide
//! basis.
//!
//! Despite this limitation, Lucet is designed to compose with other signal handlers in the host
//! program. If one of the above signals is caught by the Lucet signal handler, but that thread is
//! not currently running a Lucet instance, the saved host signal handler is called. This means
//! that, for example, a `SIGSEGV` on a non-Lucet thread of a host program will still likely abort
//! the entire process.
#![deny(bare_trait_objects)]
pub mod c_api;
#[cfg(feature = "signature_checking")]
pub use lucet_module::PublicKey;
pub use lucet_module::TrapCode;
pub use lucet_runtime_internals::alloc::Limits;
pub use lucet_runtime_internals::error::Error;
pub use lucet_runtime_internals::instance::{
FaultDetails, Instance, InstanceHandle, RunResult, SignalBehavior, TerminationDetails,
YieldedVal,
};
pub use lucet_runtime_internals::module::{DlModule, Module};
pub use lucet_runtime_internals::region::mmap::MmapRegion;
pub use lucet_runtime_internals::region::{InstanceBuilder, Region, RegionCreate};
pub use lucet_runtime_internals::val::{UntypedRetVal, Val};
pub use lucet_runtime_internals::{lucet_hostcall_terminate, lucet_hostcalls, WASM_PAGE_SIZE};
pub mod vmctx {
//! Functions for manipulating instances from hostcalls.
//!
//! The Lucet compiler inserts an extra `*mut lucet_vmctx` argument to all functions defined and
//! called by WebAssembly code. Through this pointer, code running in the guest context can
//! access and manipulate the instance and its structures. These functions are intended for use
//! in hostcall implementations, and must only be used from within a running guest.
//!
//! # Panics
//!
//! All of the `Vmctx` methods will panic if the `Vmctx` was not created from a valid pointer
//! associated with a running instance. This should never occur if run in guest code on the
//! pointer argument inserted by the compiler.
pub use lucet_runtime_internals::vmctx::{lucet_vmctx, Vmctx};
}
/// Call this if you're having trouble with `lucet_*` symbols not being exported.
///
/// This is pretty hackish; we will hopefully be able to avoid this altogether once [this
/// issue](https://github.com/rust-lang/rust/issues/58037) is addressed.
#[no_mangle]
#[doc(hidden)]
pub extern "C" fn lucet_internal_ensure_linked() {
self::c_api::ensure_linked();
}
|