1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
use tests::memchr_tests;
use {Memchr, Memchr2, Memchr3};
#[test]
fn memchr1_iter() {
for test in memchr_tests() {
test.iter_one(false, Memchr::new);
}
}
#[test]
fn memchr2_iter() {
for test in memchr_tests() {
test.iter_two(false, Memchr2::new);
}
}
#[test]
fn memchr3_iter() {
for test in memchr_tests() {
test.iter_three(false, Memchr3::new);
}
}
#[test]
fn memrchr1_iter() {
for test in memchr_tests() {
test.iter_one(true, |n1, corpus| Memchr::new(n1, corpus).rev());
}
}
#[test]
fn memrchr2_iter() {
for test in memchr_tests() {
test.iter_two(true, |n1, n2, corpus| {
Memchr2::new(n1, n2, corpus).rev()
})
}
}
#[test]
fn memrchr3_iter() {
for test in memchr_tests() {
test.iter_three(true, |n1, n2, n3, corpus| {
Memchr3::new(n1, n2, n3, corpus).rev()
})
}
}
quickcheck! {
fn qc_memchr_double_ended_iter(
needle: u8, data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr::new(needle, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found.iter().cloned().eq(positions1(needle, &data))
}
fn qc_memchr2_double_ended_iter(
needle1: u8, needle2: u8, data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr2::new(needle1, needle2, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found.iter().cloned().eq(positions2(needle1, needle2, &data))
}
fn qc_memchr3_double_ended_iter(
needle1: u8, needle2: u8, needle3: u8,
data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr3::new(needle1, needle2, needle3, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found
.iter()
.cloned()
.eq(positions3(needle1, needle2, needle3, &data))
}
fn qc_memchr1_iter(data: Vec<u8>) -> bool {
let needle = 0;
let answer = positions1(needle, &data);
answer.eq(Memchr::new(needle, &data))
}
fn qc_memchr1_rev_iter(data: Vec<u8>) -> bool {
let needle = 0;
let answer = positions1(needle, &data);
answer.rev().eq(Memchr::new(needle, &data).rev())
}
fn qc_memchr2_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let answer = positions2(needle1, needle2, &data);
answer.eq(Memchr2::new(needle1, needle2, &data))
}
fn qc_memchr2_rev_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let answer = positions2(needle1, needle2, &data);
answer.rev().eq(Memchr2::new(needle1, needle2, &data).rev())
}
fn qc_memchr3_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let needle3 = 2;
let answer = positions3(needle1, needle2, needle3, &data);
answer.eq(Memchr3::new(needle1, needle2, needle3, &data))
}
fn qc_memchr3_rev_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let needle3 = 2;
let answer = positions3(needle1, needle2, needle3, &data);
answer.rev().eq(Memchr3::new(needle1, needle2, needle3, &data).rev())
}
fn qc_memchr1_iter_size_hint(data: Vec<u8>) -> bool {
// test that the size hint is within reasonable bounds
let needle = 0;
let mut iter = Memchr::new(needle, &data);
let mut real_count = data
.iter()
.filter(|&&elt| elt == needle)
.count();
while let Some(index) = iter.next() {
real_count -= 1;
let (lower, upper) = iter.size_hint();
assert!(lower <= real_count);
assert!(upper.unwrap() >= real_count);
assert!(upper.unwrap() <= data.len() - index);
}
true
}
}
// take items from a DEI, taking front for each true and back for each false.
// Return a vector with the concatenation of the fronts and the reverse of the
// backs.
fn double_ended_take<I, J>(mut iter: I, take_side: J) -> Vec<I::Item>
where
I: DoubleEndedIterator,
J: Iterator<Item = bool>,
{
let mut found_front = Vec::new();
let mut found_back = Vec::new();
for take_front in take_side {
if take_front {
if let Some(pos) = iter.next() {
found_front.push(pos);
} else {
break;
}
} else {
if let Some(pos) = iter.next_back() {
found_back.push(pos);
} else {
break;
}
};
}
let mut all_found = found_front;
all_found.extend(found_back.into_iter().rev());
all_found
}
// return an iterator of the 0-based indices of haystack that match the needle
fn positions1<'a>(
n1: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1)
.map(|t| t.0);
Box::new(it)
}
fn positions2<'a>(
n1: u8,
n2: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1 || b == n2)
.map(|t| t.0);
Box::new(it)
}
fn positions3<'a>(
n1: u8,
n2: u8,
n3: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1 || b == n2 || b == n3)
.map(|t| t.0);
Box::new(it)
}
|