1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
//! UDP for IOCP
//!
//! Note that most of this module is quite similar to the TCP module, so if
//! something seems odd you may also want to try the docs over there.
use std::fmt;
use std::io::prelude::*;
use std::io;
use std::mem;
use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::sync::{Mutex, MutexGuard};
#[allow(unused_imports)]
use net2::{UdpBuilder, UdpSocketExt};
use winapi::*;
use miow::iocp::CompletionStatus;
use miow::net::SocketAddrBuf;
use miow::net::UdpSocketExt as MiowUdpSocketExt;
use {poll, Ready, Poll, PollOpt, Token};
use event::Evented;
use sys::windows::from_raw_arc::FromRawArc;
use sys::windows::selector::{Overlapped, ReadyBinding};
pub struct UdpSocket {
imp: Imp,
registration: Mutex<Option<poll::Registration>>,
}
#[derive(Clone)]
struct Imp {
inner: FromRawArc<Io>,
}
struct Io {
read: Overlapped,
write: Overlapped,
socket: net::UdpSocket,
inner: Mutex<Inner>,
}
struct Inner {
iocp: ReadyBinding,
read: State<Vec<u8>, Vec<u8>>,
write: State<Vec<u8>, (Vec<u8>, usize)>,
read_buf: SocketAddrBuf,
}
enum State<T, U> {
Empty,
Pending(T),
Ready(U),
Error(io::Error),
}
impl UdpSocket {
pub fn new(socket: net::UdpSocket) -> io::Result<UdpSocket> {
Ok(UdpSocket {
registration: Mutex::new(None),
imp: Imp {
inner: FromRawArc::new(Io {
read: Overlapped::new(recv_done),
write: Overlapped::new(send_done),
socket: socket,
inner: Mutex::new(Inner {
iocp: ReadyBinding::new(),
read: State::Empty,
write: State::Empty,
read_buf: SocketAddrBuf::new(),
}),
}),
},
})
}
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.imp.inner.socket.local_addr()
}
pub fn try_clone(&self) -> io::Result<UdpSocket> {
self.imp.inner.socket.try_clone().and_then(UdpSocket::new)
}
/// Note that unlike `TcpStream::write` this function will not attempt to
/// continue writing `buf` until its entirely written.
///
/// TODO: This... may be wrong in the long run. We're reporting that we
/// successfully wrote all of the bytes in `buf` but it's possible
/// that we don't actually end up writing all of them!
pub fn send_to(&self, buf: &[u8], target: &SocketAddr)
-> io::Result<usize> {
let mut me = self.inner();
let me = &mut *me;
match me.write {
State::Empty => {}
_ => return Err(io::ErrorKind::WouldBlock.into()),
}
if !me.iocp.registered() {
return Err(io::ErrorKind::WouldBlock.into())
}
let interest = me.iocp.readiness();
me.iocp.set_readiness(interest - Ready::writable());
let mut owned_buf = me.iocp.get_buffer(64 * 1024);
let amt = owned_buf.write(buf)?;
unsafe {
trace!("scheduling a send");
self.imp.inner.socket.send_to_overlapped(&owned_buf, target,
self.imp.inner.write.as_mut_ptr())
}?;
me.write = State::Pending(owned_buf);
mem::forget(self.imp.clone());
Ok(amt)
}
/// Note that unlike `TcpStream::write` this function will not attempt to
/// continue writing `buf` until its entirely written.
///
/// TODO: This... may be wrong in the long run. We're reporting that we
/// successfully wrote all of the bytes in `buf` but it's possible
/// that we don't actually end up writing all of them!
pub fn send(&self, buf: &[u8]) -> io::Result<usize> {
let mut me = self.inner();
let me = &mut *me;
match me.write {
State::Empty => {}
_ => return Err(io::ErrorKind::WouldBlock.into()),
}
if !me.iocp.registered() {
return Err(io::ErrorKind::WouldBlock.into())
}
let interest = me.iocp.readiness();
me.iocp.set_readiness(interest - Ready::writable());
let mut owned_buf = me.iocp.get_buffer(64 * 1024);
let amt = owned_buf.write(buf)?;
unsafe {
trace!("scheduling a send");
self.imp.inner.socket.send_overlapped(&owned_buf, self.imp.inner.write.as_mut_ptr())
}?;
me.write = State::Pending(owned_buf);
mem::forget(self.imp.clone());
Ok(amt)
}
pub fn recv_from(&self, mut buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
let mut me = self.inner();
match mem::replace(&mut me.read, State::Empty) {
State::Empty => Err(io::ErrorKind::WouldBlock.into()),
State::Pending(b) => { me.read = State::Pending(b); Err(io::ErrorKind::WouldBlock.into()) }
State::Ready(data) => {
// If we weren't provided enough space to receive the message
// then don't actually read any data, just return an error.
if buf.len() < data.len() {
me.read = State::Ready(data);
Err(io::Error::from_raw_os_error(WSAEMSGSIZE as i32))
} else {
let r = if let Some(addr) = me.read_buf.to_socket_addr() {
buf.write(&data).unwrap();
Ok((data.len(), addr))
} else {
Err(io::Error::new(io::ErrorKind::Other,
"failed to parse socket address"))
};
me.iocp.put_buffer(data);
self.imp.schedule_read_from(&mut me);
r
}
}
State::Error(e) => {
self.imp.schedule_read_from(&mut me);
Err(e)
}
}
}
pub fn recv(&self, buf: &mut [u8])
-> io::Result<usize> {
//Since recv_from can be used on connected sockets just call it and drop the address.
self.recv_from(buf).map(|(size,_)| size)
}
pub fn connect(&self, addr: SocketAddr) -> io::Result<()> {
self.imp.inner.socket.connect(addr)
}
pub fn broadcast(&self) -> io::Result<bool> {
self.imp.inner.socket.broadcast()
}
pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
self.imp.inner.socket.set_broadcast(on)
}
pub fn multicast_loop_v4(&self) -> io::Result<bool> {
self.imp.inner.socket.multicast_loop_v4()
}
pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> {
self.imp.inner.socket.set_multicast_loop_v4(on)
}
pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
self.imp.inner.socket.multicast_ttl_v4()
}
pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
self.imp.inner.socket.set_multicast_ttl_v4(ttl)
}
pub fn multicast_loop_v6(&self) -> io::Result<bool> {
self.imp.inner.socket.multicast_loop_v6()
}
pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> {
self.imp.inner.socket.set_multicast_loop_v6(on)
}
pub fn ttl(&self) -> io::Result<u32> {
self.imp.inner.socket.ttl()
}
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.imp.inner.socket.set_ttl(ttl)
}
pub fn join_multicast_v4(&self,
multiaddr: &Ipv4Addr,
interface: &Ipv4Addr) -> io::Result<()> {
self.imp.inner.socket.join_multicast_v4(multiaddr, interface)
}
pub fn join_multicast_v6(&self,
multiaddr: &Ipv6Addr,
interface: u32) -> io::Result<()> {
self.imp.inner.socket.join_multicast_v6(multiaddr, interface)
}
pub fn leave_multicast_v4(&self,
multiaddr: &Ipv4Addr,
interface: &Ipv4Addr) -> io::Result<()> {
self.imp.inner.socket.leave_multicast_v4(multiaddr, interface)
}
pub fn leave_multicast_v6(&self,
multiaddr: &Ipv6Addr,
interface: u32) -> io::Result<()> {
self.imp.inner.socket.leave_multicast_v6(multiaddr, interface)
}
pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
self.imp.inner.socket.set_only_v6(only_v6)
}
pub fn only_v6(&self) -> io::Result<bool> {
self.imp.inner.socket.only_v6()
}
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.imp.inner.socket.take_error()
}
fn inner(&self) -> MutexGuard<Inner> {
self.imp.inner()
}
fn post_register(&self, interest: Ready, me: &mut Inner) {
if interest.is_readable() {
//We use recv_from here since it is well specified for both
//connected and non-connected sockets and we can discard the address
//when calling recv().
self.imp.schedule_read_from(me);
}
// See comments in TcpSocket::post_register for what's going on here
if interest.is_writable() {
if let State::Empty = me.write {
self.imp.add_readiness(me, Ready::writable());
}
}
}
}
impl Imp {
fn inner(&self) -> MutexGuard<Inner> {
self.inner.inner.lock().unwrap()
}
fn schedule_read_from(&self, me: &mut Inner) {
match me.read {
State::Empty => {}
_ => return,
}
let interest = me.iocp.readiness();
me.iocp.set_readiness(interest - Ready::readable());
let mut buf = me.iocp.get_buffer(64 * 1024);
let res = unsafe {
trace!("scheduling a read");
let cap = buf.capacity();
buf.set_len(cap);
self.inner.socket.recv_from_overlapped(&mut buf, &mut me.read_buf,
self.inner.read.as_mut_ptr())
};
match res {
Ok(_) => {
me.read = State::Pending(buf);
mem::forget(self.clone());
}
Err(e) => {
me.read = State::Error(e);
self.add_readiness(me, Ready::readable());
me.iocp.put_buffer(buf);
}
}
}
// See comments in tcp::StreamImp::push
fn add_readiness(&self, me: &Inner, set: Ready) {
me.iocp.set_readiness(set | me.iocp.readiness());
}
}
impl Evented for UdpSocket {
fn register(&self, poll: &Poll, token: Token,
interest: Ready, opts: PollOpt) -> io::Result<()> {
let mut me = self.inner();
me.iocp.register_socket(&self.imp.inner.socket,
poll, token, interest, opts,
&self.registration)?;
self.post_register(interest, &mut me);
Ok(())
}
fn reregister(&self, poll: &Poll, token: Token,
interest: Ready, opts: PollOpt) -> io::Result<()> {
let mut me = self.inner();
me.iocp.reregister_socket(&self.imp.inner.socket,
poll, token, interest,
opts, &self.registration)?;
self.post_register(interest, &mut me);
Ok(())
}
fn deregister(&self, poll: &Poll) -> io::Result<()> {
self.inner().iocp.deregister(&self.imp.inner.socket,
poll, &self.registration)
}
}
impl fmt::Debug for UdpSocket {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("UdpSocket")
.finish()
}
}
impl Drop for UdpSocket {
fn drop(&mut self) {
let inner = self.inner();
// If we're still internally reading, we're no longer interested. Note
// though that we don't cancel any writes which may have been issued to
// preserve the same semantics as Unix.
unsafe {
match inner.read {
State::Pending(_) => {
drop(super::cancel(&self.imp.inner.socket,
&self.imp.inner.read));
}
State::Empty |
State::Ready(_) |
State::Error(_) => {}
}
}
}
}
fn send_done(status: &OVERLAPPED_ENTRY) {
let status = CompletionStatus::from_entry(status);
trace!("finished a send {}", status.bytes_transferred());
let me2 = Imp {
inner: unsafe { overlapped2arc!(status.overlapped(), Io, write) },
};
let mut me = me2.inner();
me.write = State::Empty;
me2.add_readiness(&mut me, Ready::writable());
}
fn recv_done(status: &OVERLAPPED_ENTRY) {
let status = CompletionStatus::from_entry(status);
trace!("finished a recv {}", status.bytes_transferred());
let me2 = Imp {
inner: unsafe { overlapped2arc!(status.overlapped(), Io, read) },
};
let mut me = me2.inner();
let mut buf = match mem::replace(&mut me.read, State::Empty) {
State::Pending(buf) => buf,
_ => unreachable!(),
};
unsafe {
buf.set_len(status.bytes_transferred() as usize);
}
me.read = State::Ready(buf);
me2.add_readiness(&mut me, Ready::readable());
}
|