summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/test-data/boids.wgsl
blob: 9bc98052e9de60580a3c9f9346eb2aac558a58c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2020 The Tint Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import "GLSL.std.450" as std;

# vertex shader

[[location(0)]] var<in> a_particlePos : vec2<f32>;
[[location(1)]] var<in> a_particleVel : vec2<f32>;
[[location(2)]] var<in> a_pos : vec2<f32>;
[[builtin(position)]] var gl_Position : vec4<f32>;

[[stage(vertex)]]
fn main() -> void {
  var angle : f32 = -std::atan2(a_particleVel.x, a_particleVel.y);
  var pos : vec2<f32> = vec2<f32>(
      (a_pos.x * std::cos(angle)) - (a_pos.y * std::sin(angle)),
      (a_pos.x * std::sin(angle)) + (a_pos.y * std::cos(angle)));
  gl_Position = vec4<f32>(pos + a_particlePos, 0.0, 1.0);
  return;
}

# fragment shader
[[location(0)]] var<out> fragColor : vec4<f32>;

[[stage(fragment)]]
fn main() -> void {
  fragColor = vec4<f32>(1.0, 1.0, 1.0, 1.0);
  return;
}

# compute shader
type Particle = struct {
  [[offset(0)]] pos : vec2<f32>;
  [[offset(8)]] vel : vec2<f32>;
};

type SimParams = struct {
  [[offset(0)]] deltaT : f32;
  [[offset(4)]] rule1Distance : f32;
  [[offset(8)]] rule2Distance : f32;
  [[offset(12)]] rule3Distance : f32;
  [[offset(16)]] rule1Scale : f32;
  [[offset(20)]] rule2Scale : f32;
  [[offset(24)]] rule3Scale : f32;
};

type Particles = struct {
  [[offset(0)]] particles : [[stride 16]] array<Particle, 5>;
};

[[group(0), binding(0)]] var<uniform> params : SimParams;
[[group(0), binding(1)]] var<storage> particlesA : Particles;
[[group(0), binding(2)]] var<storage> particlesB : Particles;

[[builtin(global_invocation_id)]] var gl_GlobalInvocationID : vec3<u32>;

# https://github.com/austinEng/Project6-Vulkan-Flocking/blob/master/data/shaders/computeparticles/particle.comp
[[stage(compute), workgroup_size(1)]]
fn main() -> void {
  var index : u32 = gl_GlobalInvocationID.x;
  if (index >= u32(5)) {
    return;
  }

  var vPos : vec2<f32> = particlesA.particles[index].pos;
  var vVel : vec2<f32> = particlesA.particles[index].vel;

  var cMass : vec2<f32> = vec2<f32>(0.0, 0.0);
  var cVel : vec2<f32> = vec2<f32>(0.0, 0.0);
  var colVel : vec2<f32> = vec2<f32>(0.0, 0.0);
  var cMassCount : i32 = 0;
  var cVelCount : i32 = 0;

  var pos : vec2<f32>;
  var vel : vec2<f32>;
  var i : u32 = 0;
  loop {
    if (i >= u32(5)) {
      break;
    }
    if (i == index) {
      continue;
    }

    pos = particlesA.particles[i].pos.xy;
    vel = particlesA.particles[i].vel.xy;

    if (std::distance(pos, vPos) < params.rule1Distance) {
      cMass = cMass + pos;
      cMassCount = cMassCount + 1;
    }
    if (std::distance(pos, vPos) < params.rule2Distance) {
      colVel = colVel - (pos - vPos);
    }
    if (std::distance(pos, vPos) < params.rule3Distance) {
      cVel = cVel + vel;
      cVelCount = cVelCount + 1;
    }

    continuing {
      i = i + u32(1);
    }
  }
  if (cMassCount > 0) {
    cMass = (cMass / vec2<f32>(cMassCount, cMassCount)) + vPos;
  }
  if (cVelCount > 0) {
    cVel = cVel / vec2<f32>(cVelCount, cVelCount);
  }

  vVel = vVel + (cMass * params.rule1Scale) + (colVel * params.rule2Scale) +
      (cVel * params.rule3Scale);

  # clamp velocity for a more pleasing simulation
  vVel = std::normalize(vVel) * std::fclamp(std::length(vVel), 0.0, 0.1);

  # kinematic update
  vPos = vPos + (vVel * params.deltaT);

  # Wrap around boundary
  if (vPos.x < -1.0) {
    vPos.x = 1.0;
  }
  if (vPos.x > 1.0) {
    vPos.x = -1.0;
  }
  if (vPos.y < -1.0) {
    vPos.y = 1.0;
  }
  if (vPos.y > 1.0) {
    vPos.y = -1.0;
  }

  # Write back
  particlesB.particles[index].pos = vPos;
  particlesB.particles[index].vel = vVel;

  return;
}