1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
use integer::Integer;
use traits::Zero;
use biguint::BigUint;
struct MontyReducer<'a> {
n: &'a BigUint,
n0inv: u32,
}
// Calculate the modular inverse of `num`, using Extended GCD.
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
fn inv_mod_u32(num: u32) -> u32 {
// num needs to be relatively prime to 2**32 -- i.e. it must be odd.
assert!(num % 2 != 0);
let mut a: i64 = i64::from(num);
let mut b: i64 = i64::from(u32::max_value()) + 1;
// ExtendedGcd
// Input: positive integers a and b
// Output: integers (g, u, v) such that g = gcd(a, b) = ua + vb
// As we don't need v for modular inverse, we don't calculate it.
// 1: (u, w) <- (1, 0)
let mut u = 1;
let mut w = 0;
// 3: while b != 0
while b != 0 {
// 4: (q, r) <- DivRem(a, b)
let q = a / b;
let r = a % b;
// 5: (a, b) <- (b, r)
a = b;
b = r;
// 6: (u, w) <- (w, u - qw)
let m = u - w * q;
u = w;
w = m;
}
assert!(a == 1);
// Downcasting acts like a mod 2^32 too.
u as u32
}
impl<'a> MontyReducer<'a> {
fn new(n: &'a BigUint) -> Self {
let n0inv = inv_mod_u32(n.data[0]);
MontyReducer { n: n, n0inv: n0inv }
}
}
// Montgomery Reduction
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
let mut c = a.data;
let n = &mr.n.data;
let n_size = n.len();
// Allocate sufficient work space
c.resize(2 * n_size + 2, 0);
// β is the size of a word, in this case 32 bits. So "a mod β" is
// equivalent to masking a to 32 bits.
// mu <- -N^(-1) mod β
let mu = 0u32.wrapping_sub(mr.n0inv);
// 1: for i = 0 to (n-1)
for i in 0..n_size {
// 2: q_i <- mu*c_i mod β
let q_i = c[i].wrapping_mul(mu);
// 3: C <- C + q_i * N * β^i
super::algorithms::mac_digit(&mut c[i..], n, q_i);
}
// 4: R <- C * β^(-n)
// This is an n-word bitshift, equivalent to skipping n words.
let ret = BigUint::new(c[n_size..].to_vec());
// 5: if R >= β^n then return R-N else return R.
if &ret < mr.n {
ret
} else {
ret - mr.n
}
}
// Montgomery Multiplication
fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
monty_redc(a * b, mr)
}
// Montgomery Squaring
fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
// TODO: Replace with an optimised squaring function
monty_redc(&a * &a, mr)
}
pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
let mr = MontyReducer::new(modulus);
// Calculate the Montgomery parameter
let mut v = vec![0; modulus.data.len()];
v.push(1);
let r = BigUint::new(v);
// Map the base to the Montgomery domain
let mut apri = a * &r % modulus;
// Binary exponentiation
let mut ans = &r % modulus;
let mut e = exp.clone();
while !e.is_zero() {
if e.is_odd() {
ans = monty_mult(ans, &apri, &mr);
}
apri = monty_sqr(apri, &mr);
e = e >> 1;
}
// Map the result back to the residues domain
monty_redc(ans, &mr)
}
|