1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
use crate::{is_zero, Intersection, Plane, Polygon, Splitter};
use binary_space_partition::{BspNode, Plane as BspPlane, PlaneCut};
use euclid::{approxeq::ApproxEq, Point3D, Vector3D};
use num_traits::{Float, One, Zero};
use std::{fmt, iter, ops};
impl<T, U, A> BspPlane for Polygon<T, U, A>
where
T: Copy
+ fmt::Debug
+ ApproxEq<T>
+ ops::Sub<T, Output = T>
+ ops::Add<T, Output = T>
+ ops::Mul<T, Output = T>
+ ops::Div<T, Output = T>
+ Zero
+ Float,
U: fmt::Debug,
A: Copy + fmt::Debug,
{
fn cut(&self, mut poly: Self) -> PlaneCut<Self> {
log::debug!("\tCutting anchor {:?} by {:?}", poly.anchor, self.anchor);
log::trace!("\t\tbase {:?}", self.plane);
//Note: we treat `self` as a plane, and `poly` as a concrete polygon here
let (intersection, dist) = match self.plane.intersect(&poly.plane) {
None => {
let ndot = self.plane.normal.dot(poly.plane.normal);
log::debug!("\t\tNormals are aligned with {:?}", ndot);
let dist = self.plane.offset - ndot * poly.plane.offset;
(Intersection::Coplanar, dist)
}
Some(_) if self.plane.are_outside(&poly.points) => {
//Note: we can't start with `are_outside` because it's subject to FP precision
let dist = self.plane.signed_distance_sum_to(&poly);
(Intersection::Outside, dist)
}
Some(line) => {
//Note: distance isn't relevant here
(Intersection::Inside(line), T::zero())
}
};
match intersection {
//Note: we deliberately make the comparison wider than just with T::epsilon().
// This is done to avoid mistakenly ordering items that should be on the same
// plane but end up slightly different due to the floating point precision.
Intersection::Coplanar if is_zero(dist) => {
log::debug!("\t\tCoplanar at {:?}", dist);
PlaneCut::Sibling(poly)
}
Intersection::Coplanar | Intersection::Outside => {
log::debug!("\t\tOutside at {:?}", dist);
if dist > T::zero() {
PlaneCut::Cut {
front: vec![poly],
back: vec![],
}
} else {
PlaneCut::Cut {
front: vec![],
back: vec![poly],
}
}
}
Intersection::Inside(line) => {
log::debug!("\t\tCut across {:?}", line);
let (res_add1, res_add2) = poly.split_with_normal(&line, &self.plane.normal);
let mut front = Vec::new();
let mut back = Vec::new();
for sub in iter::once(poly)
.chain(res_add1)
.chain(res_add2)
.filter(|p| !p.is_empty())
{
let dist = self.plane.signed_distance_sum_to(&sub);
if dist > T::zero() {
log::trace!("\t\t\tdist {:?} -> front: {:?}", dist, sub);
front.push(sub)
} else {
log::trace!("\t\t\tdist {:?} -> back: {:?}", dist, sub);
back.push(sub)
}
}
PlaneCut::Cut { front, back }
}
}
}
fn is_aligned(&self, other: &Self) -> bool {
self.plane.normal.dot(other.plane.normal) > T::zero()
}
}
/// Binary Space Partitioning splitter, uses a BSP tree.
pub struct BspSplitter<T, U, A> {
tree: BspNode<Polygon<T, U, A>>,
result: Vec<Polygon<T, U, A>>,
}
impl<T, U, A> BspSplitter<T, U, A> {
/// Create a new BSP splitter.
pub fn new() -> Self {
BspSplitter {
tree: BspNode::new(),
result: Vec::new(),
}
}
}
impl<T, U, A> Splitter<T, U, A> for BspSplitter<T, U, A>
where
T: Copy
+ fmt::Debug
+ ApproxEq<T>
+ ops::Sub<T, Output = T>
+ ops::Add<T, Output = T>
+ ops::Mul<T, Output = T>
+ ops::Div<T, Output = T>
+ Zero
+ One
+ Float,
U: fmt::Debug,
A: Copy + fmt::Debug + Default,
{
fn reset(&mut self) {
self.tree = BspNode::new();
}
fn add(&mut self, poly: Polygon<T, U, A>) {
self.tree.insert(poly);
}
fn sort(&mut self, view: Vector3D<T, U>) -> &[Polygon<T, U, A>] {
//debug!("\t\ttree before sorting {:?}", self.tree);
let poly = Polygon {
points: [Point3D::origin(); 4],
plane: Plane {
normal: -view, //Note: BSP `order()` is back to front
offset: T::zero(),
},
anchor: A::default(),
};
self.result.clear();
self.tree.order(&poly, &mut self.result);
&self.result
}
}
|