1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
|
//! AVL trees with a private allocation pool.
//!
//! AVL tree internals are public, so that backtracking.rs can do custom
//! traversals of the tree as it wishes.
use smallvec::SmallVec;
use std::cmp::Ordering;
//=============================================================================
// Data structures for AVLTree
#[derive(Clone, PartialEq)]
pub enum AVLTag {
Free, // This pool entry is not in use
None, // This pool entry is in use. Neither subtree is higher.
Left, // This pool entry is in use. The left subtree is higher.
Right, // This pool entry is in use. The right subtree is higher.
}
#[derive(Clone)]
pub struct AVLNode<T> {
pub tag: AVLTag,
pub left: u32,
pub right: u32,
pub item: T,
}
impl<T> AVLNode<T> {
fn new(tag: AVLTag, left: u32, right: u32, item: T) -> Self {
Self {
tag,
left,
right,
item,
}
}
}
pub const AVL_NULL: u32 = 0xFFFF_FFFF;
pub struct AVLTree<T> {
// The storage area. There can be at most 2^32-2 entries, since AVL_NULL
// (== 2^32-1) is used to mean "the null pointer".
pub pool: Vec<AVLNode<T>>,
// A default value for the stored item. We don't care what this is;
// unfortunately Rust forces us to have one so that additions to the free
// list will be fully initialised.
default: T,
// The freelist head. This is a list of available entries. Each item on
// the freelist must have its .tag be AVLTag::Free, and will use its .left
// field as the link to the next freelist item. A freelist link value of
// AVL_NULL denotes the end of the list. If `freelist` itself is AVL_NULL
// then the list is empty.
freelist: u32,
// Last but not least, the root node.
pub root: u32,
}
//=============================================================================
// Storage management functions for AVLTree
impl<T: Clone> AVLTree<T> {
// Create a new tree and its associated storage pool. This requires knowing
// the default item value.
pub fn new(default: T) -> Self {
// Pre-allocate a few entries so as to save a few reallocs later, on the
// assumption that most trees will get quite large.
let pool = Vec::with_capacity(16);
let freelist = AVL_NULL;
let root = AVL_NULL;
Self {
pool,
default,
freelist,
root,
}
}
// Private function: free a tree node and put it back on the storage pool's
// freelist.
fn free(&mut self, index: u32) {
assert!(index != AVL_NULL);
assert!(self.pool[index as usize].tag != AVLTag::Free);
self.pool[index as usize] =
AVLNode::new(AVLTag::Free, self.freelist, AVL_NULL, self.default.clone());
self.freelist = index;
}
// Private function: allocate a tree node from the storage pool, resizing
// the pool if necessary. This will decline to expand the tree past about
// 1.75 billion items.
fn alloc(&mut self) -> u32 {
// Check to see if the freelist is empty, and if so allocate a bunch more
// slots.
if self.freelist == AVL_NULL {
let start = self.pool.len();
let fill_item = AVLNode::new(AVLTag::Free, AVL_NULL, AVL_NULL, self.default.clone());
// What happens if this OOMs? At least guard against u32 overflow by
// doing this:
if start >= 0x7000_0000 {
// 1.75 billion elements in the tree should be enough for any
// reasonable use of this register allocator.
panic!("AVLTree<T>::alloc: too many items");
}
self.pool.resize(2 * start + 2, fill_item);
let end_plus_1 = self.pool.len();
debug_assert!(end_plus_1 >= 2);
self.pool[end_plus_1 - 1].left = self.freelist;
let mut i = end_plus_1 - 2;
while i >= start {
// The entry is already marked as free, but we must set the link.
self.pool[i].left = i as u32 + 1;
if i == 0 {
break;
}
i -= 1;
}
self.freelist = start as u32;
debug_assert!(self.freelist != AVL_NULL);
}
// And now allocate.
let new = self.freelist;
assert!(self.pool[new as usize].tag == AVLTag::Free);
// The caller is responsible for filling in the entry. But at least set
// the tag to non-Free, for sanity.
self.pool[new as usize].tag = AVLTag::None;
self.freelist = self.pool[new as usize].left;
new
}
}
//=============================================================================
// Tree-wrangling machinery for AVLTree (private)
// For the public interface, see below.
// The functions 'insert' and 'delete', and all supporting functions reachable
// from them, are derived from a public domain implementation by Georg Kraml.
// Unfortunately the relevant web site is long gone, and can only be found on
// the Wayback Machine.
//
// https://web.archive.org/web/20010419134337/
// http://www.kraml.at/georg/avltree/index.html
//
// https://web.archive.org/web/20030926063347/
// http://www.kraml.at/georg/avltree/avlmonolithic.c
//
// https://web.archive.org/web/20030401124003/http://www.kraml.at/src/howto/
//
// For relicensing clearance, see Mozilla bug 1620332, at
// https://bugzilla.mozilla.org/show_bug.cgi?id=1620332.
// Did a given insertion/deletion succeed, and what do we do next?
#[derive(Clone, Copy, PartialEq)]
enum AVLRes {
Error,
OK,
Balance,
}
impl<T: Clone + PartialOrd> AVLTree<T> {
// Private function: rotleft: perform counterclockwise rotation
// Takes the root of the tree to rotate, returns the new root
fn rotleft(&mut self, old_root: u32) -> u32 {
let new_root = self.pool[old_root as usize].right;
self.pool[old_root as usize].right = self.pool[new_root as usize].left;
self.pool[new_root as usize].left = old_root;
new_root
}
// Private function: rotright: perform clockwise rotation
// Takes the root of the tree to rotate, returns the new root
fn rotright(&mut self, old_root: u32) -> u32 {
let new_root = self.pool[old_root as usize].left;
self.pool[old_root as usize].left = self.pool[new_root as usize].right;
self.pool[new_root as usize].right = old_root;
new_root
}
// Private function: leftgrown: helper function for `insert`
//
// Parameters:
//
// root Root of a tree. This node's left
// subtree has just grown due to item insertion; its
// "tag" flag needs adjustment, and the local tree
// (the subtree of which this node is the root node) may
// have become unbalanced.
//
// Return values:
//
// The new root of the subtree, plus either:
//
// OK The local tree could be rebalanced or was balanced
// from the start. The parent activations of the avlinsert
// activation that called this function may assume the
// entire tree is valid.
// or
// BALANCE The local tree was balanced, but has grown in height.
// Do not assume the entire tree is valid.
//
// This function has been split into two pieces: `leftgrown`, which is small and hot, and is
// marked always-inline, and `leftgrown_left`, which handles a more complex and less
// frequent case, and is marked never-inline. The intent is to have the common case always
// inlined without having to deal with the extra register pressure from inlining the less
// frequent code. The dual function `rightgrown` is split similarly.
#[inline(never)]
fn leftgrown_left(&mut self, mut root: u32) -> (u32, AVLRes) {
if self.pool[self.pool[root as usize].left as usize].tag == AVLTag::Left {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].left;
self.pool[t as usize].tag = AVLTag::None;
root = self.rotright(root);
} else {
match self.pool[self.pool[self.pool[root as usize].left as usize].right as usize].tag {
AVLTag::Left => {
self.pool[root as usize].tag = AVLTag::Right;
let t = self.pool[root as usize].left;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Right => {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].left;
self.pool[t as usize].tag = AVLTag::Left;
}
AVLTag::None => {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].left;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Free => panic!("AVLTree::leftgrown_left: unallocated node in tree"),
}
let t = self.pool[self.pool[root as usize].left as usize].right;
self.pool[t as usize].tag = AVLTag::None;
self.pool[root as usize].left = self.rotleft(self.pool[root as usize].left);
root = self.rotright(root);
}
return (root, AVLRes::OK);
}
#[inline(always)]
fn leftgrown(&mut self, root: u32) -> (u32, AVLRes) {
let root_node = &mut self.pool[root as usize];
match root_node.tag {
AVLTag::Left => self.leftgrown_left(root),
AVLTag::Right => {
root_node.tag = AVLTag::None;
return (root, AVLRes::OK);
}
AVLTag::None => {
root_node.tag = AVLTag::Left;
return (root, AVLRes::Balance);
}
AVLTag::Free => panic!("AVLTree::leftgrown: unallocated node in tree"),
}
}
// Private function: rightgrown: helper function for `insert`
//
// See leftgrown for details.
#[inline(never)]
fn rightgrown_right(&mut self, mut root: u32) -> (u32, AVLRes) {
if self.pool[self.pool[root as usize].right as usize].tag == AVLTag::Right {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].right as usize;
self.pool[t].tag = AVLTag::None;
root = self.rotleft(root);
} else {
match self.pool[self.pool[self.pool[root as usize].right as usize].left as usize].tag {
AVLTag::Right => {
self.pool[root as usize].tag = AVLTag::Left;
let t = self.pool[root as usize].right;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Left => {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].right;
self.pool[t as usize].tag = AVLTag::Right;
}
AVLTag::None => {
self.pool[root as usize].tag = AVLTag::None;
let t = self.pool[root as usize].right;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Free => panic!("AVLTree::rightgrown_right: unallocated node in tree"),
}
let t = self.pool[self.pool[root as usize].right as usize].left;
self.pool[t as usize].tag = AVLTag::None;
self.pool[root as usize].right = self.rotright(self.pool[root as usize].right);
root = self.rotleft(root);
}
return (root, AVLRes::OK);
}
#[inline(always)]
fn rightgrown(&mut self, root: u32) -> (u32, AVLRes) {
match self.pool[root as usize].tag {
AVLTag::Left => {
self.pool[root as usize].tag = AVLTag::None;
return (root, AVLRes::OK);
}
AVLTag::Right => self.rightgrown_right(root),
AVLTag::None => {
self.pool[root as usize].tag = AVLTag::Right;
return (root, AVLRes::Balance);
}
AVLTag::Free => panic!("AVLTree::rightgrown: unallocated node in tree"),
}
}
// Private function: insert_wrk: insert a node into the AVL tree
// (worker function)
//
// Parameters:
//
// root Root of the tree in whch to insert `d`.
//
// item Item to be inserted.
//
// Returns AVL_NULL if the value is already in the tree. Otherwise returns the index of the
// new root (which is obviously always non-AVL_NULL). This is infallible in the sense that,
// if allocation of a new node fails, it won't return -- `self.alloc()` will panic.
//
// This function relies on the fact that any non-AVL_NULL value will have its top bit (bit
// 31) clear, since that bit is used as a boolean in the `stack`. That property is
// guaranteed us by `fn alloc`, which ensures that the max number of nodes in the tree is
// 0x70000000.
fn insert_wrk<F>(&mut self, mut root: u32, item: T, mb_cmp: Option<&F>) -> u32
where
F: Fn(T, T) -> Option<Ordering>,
{
#[inline(always)]
fn stack_entry_set_is_left(node: u32) -> u32 {
node | 0x8000_0000
}
#[inline(always)]
fn stack_entry_get_is_left(ent: u32) -> u32 {
ent & 0x8000_0000
}
#[inline(always)]
fn stack_entry_get_node(ent: u32) -> u32 {
ent & 0x7FFF_FFFF
}
// The stack will hold a root-leaf path. Give that the max number of elements allowed
// in the tree is 0x70000000, which is (7/8) * 2^31, and that the max depth is 1.44 *
// log2(elems), a 64 entry stack should always be sufficient. Hence there should never
// be any dynamic allocation here. In fact a 48 entry stack would also suffice, but
// SmallVec doesn't provide that size.
let mut stack = SmallVec::<[u32; 64]>::new();
// In the first phase, walk down the tree to find the place where the new node should be
// inserted. This loop is cloned so as to allow the test on `mb_cmp` to be done just
// once.
match mb_cmp {
None => {
while root != AVL_NULL {
let cmp_loc_right = &self.pool[root as usize];
let cmp_arg_right: T = cmp_loc_right.item.clone();
let cmp_arg_left: T = item.clone();
debug_assert!(stack_entry_get_is_left(root) == 0);
match cmp_arg_left.partial_cmp(&cmp_arg_right) {
None => panic!("AVLTree::insert_wrk: unordered elements(1)"),
Some(Ordering::Less) => {
stack.push(stack_entry_set_is_left(root));
root = cmp_loc_right.left;
}
Some(Ordering::Greater) => {
stack.push(root);
root = cmp_loc_right.right;
}
Some(Ordering::Equal) => {
// Item is already in the tree.
return AVL_NULL;
}
}
}
}
Some(cmp) => {
while root != AVL_NULL {
let cmp_loc_right = &self.pool[root as usize];
let cmp_arg_right: T = cmp_loc_right.item.clone();
let cmp_arg_left: T = item.clone();
debug_assert!(stack_entry_get_is_left(root) == 0);
match cmp(cmp_arg_left, cmp_arg_right) {
None => panic!("AVLTree::insert_wrk: unordered elements(2)"),
Some(Ordering::Less) => {
stack.push(stack_entry_set_is_left(root));
root = cmp_loc_right.left;
}
Some(Ordering::Greater) => {
stack.push(root);
root = cmp_loc_right.right;
}
Some(Ordering::Equal) => {
// Item is already in the tree.
return AVL_NULL;
}
}
}
}
}
// Now allocate the new node.
debug_assert!(root == AVL_NULL);
let new_node = self.alloc();
self.pool[new_node as usize] = AVLNode::new(AVLTag::None, AVL_NULL, AVL_NULL, item.clone());
// And unwind the stack, back to the root, rebalancing as we go. Once get to a place
// where the new subtree doesn't need to be rebalanced, we can stop this upward scan,
// because no nodes above it will need to be rebalanced either.
let mut curr_node = new_node;
let mut curr_node_action = AVLRes::Balance;
while let Some(parent_node_tagged) = stack.pop() {
let parent_node = stack_entry_get_node(parent_node_tagged);
if stack_entry_get_is_left(parent_node_tagged) != 0 {
self.pool[parent_node as usize].left = curr_node;
if curr_node_action == AVLRes::Balance {
let pair = self.leftgrown(parent_node);
curr_node = pair.0;
curr_node_action = pair.1;
} else {
curr_node = parent_node;
break;
}
} else {
self.pool[parent_node as usize].right = curr_node;
if curr_node_action == AVLRes::Balance {
let pair = self.rightgrown(parent_node);
curr_node = pair.0;
curr_node_action = pair.1;
} else {
curr_node = parent_node;
break;
}
}
}
if !stack.is_empty() {
curr_node = stack_entry_get_node(stack[0]);
}
debug_assert!(curr_node != AVL_NULL);
return curr_node;
}
// Private function: leftshrunk: helper function for delete and
// findlowest
//
// Parameters:
//
// n Address of a pointer to a node. The node's left
// subtree has just shrunk due to item removal; its
// "skew" flag needs adjustment, and the local tree
// (the subtree of which this node is the root node) may
// have become unbalanced.
//
// Return values:
//
// OK The parent activation of the delete activation
// that called this function may assume the entire
// tree is valid.
//
// BALANCE Do not assume the entire tree is valid.
fn leftshrunk(&mut self, mut n: u32) -> (u32, AVLRes) {
match self.pool[n as usize].tag {
AVLTag::Left => {
self.pool[n as usize].tag = AVLTag::None;
return (n, AVLRes::Balance);
}
AVLTag::Right => {
if self.pool[self.pool[n as usize].right as usize].tag == AVLTag::Right {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].right;
self.pool[t as usize].tag = AVLTag::None;
n = self.rotleft(n);
return (n, AVLRes::Balance);
} else if self.pool[self.pool[n as usize].right as usize].tag == AVLTag::None {
self.pool[n as usize].tag = AVLTag::Right;
let t = self.pool[n as usize].right;
self.pool[t as usize].tag = AVLTag::Left;
n = self.rotleft(n);
return (n, AVLRes::OK);
} else {
match self.pool[self.pool[self.pool[n as usize].right as usize].left as usize]
.tag
{
AVLTag::Left => {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].right;
self.pool[t as usize].tag = AVLTag::Right;
}
AVLTag::Right => {
self.pool[n as usize].tag = AVLTag::Left;
let t = self.pool[n as usize].right;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::None => {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].right;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Free => {
panic!("AVLTree::leftshrunk(1): unallocated node in tree");
}
}
{
let t = self.pool[self.pool[n as usize].right as usize].left;
self.pool[t as usize].tag = AVLTag::None;
}
{
let t = self.rotright(self.pool[n as usize].right);
self.pool[n as usize].right = t;
}
n = self.rotleft(n);
return (n, AVLRes::Balance);
}
}
AVLTag::None => {
self.pool[n as usize].tag = AVLTag::Right;
return (n, AVLRes::OK);
}
AVLTag::Free => {
panic!("AVLTree::leftshrunk(2): unallocated node in tree");
}
}
}
// Private function: rightshrunk: helper function for delete and
// findhighest
//
// See leftshrunk for details.
fn rightshrunk(&mut self, mut n: u32) -> (u32, AVLRes) {
match self.pool[n as usize].tag {
AVLTag::Right => {
self.pool[n as usize].tag = AVLTag::None;
return (n, AVLRes::Balance);
}
AVLTag::Left => {
if self.pool[self.pool[n as usize].left as usize].tag == AVLTag::Left {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].left;
self.pool[t as usize].tag = AVLTag::None;
n = self.rotright(n);
return (n, AVLRes::Balance);
} else if self.pool[self.pool[n as usize].left as usize].tag == AVLTag::None {
self.pool[n as usize].tag = AVLTag::Left;
let t = self.pool[n as usize].left;
self.pool[t as usize].tag = AVLTag::Right;
n = self.rotright(n);
return (n, AVLRes::OK);
} else {
match self.pool[self.pool[self.pool[n as usize].left as usize].right as usize]
.tag
{
AVLTag::Left => {
self.pool[n as usize].tag = AVLTag::Right;
let t = self.pool[n as usize].left;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Right => {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].left;
self.pool[t as usize].tag = AVLTag::Left;
}
AVLTag::None => {
self.pool[n as usize].tag = AVLTag::None;
let t = self.pool[n as usize].left;
self.pool[t as usize].tag = AVLTag::None;
}
AVLTag::Free => {
panic!("AVLTree::rightshrunk(1): unallocated node in tree");
}
}
{
let t = self.pool[self.pool[n as usize].left as usize].right;
self.pool[t as usize].tag = AVLTag::None;
}
{
let t = self.rotleft(self.pool[n as usize].left);
self.pool[n as usize].left = t;
}
n = self.rotright(n);
return (n, AVLRes::Balance);
}
}
AVLTag::None => {
self.pool[n as usize].tag = AVLTag::Left;
return (n, AVLRes::OK);
}
AVLTag::Free => {
panic!("AVLTree::rightshrunk(2): unallocated node in tree");
}
}
}
// Private function: findhighest: replace a node with a subtree's
// highest-ranking item.
//
// Parameters:
//
// target Pointer to node to be replaced.
//
// n Address of pointer to subtree.
//
// res Pointer to variable used to tell the caller whether
// further checks are necessary; analog to the return
// values of leftgrown and leftshrunk (see there).
//
// Return values:
//
// True A node was found; the target node has been replaced.
//
// False The target node could not be replaced because
// the subtree provided was empty.
//
fn findhighest(&mut self, target: u32, mut n: u32) -> Option<(u32, AVLRes)> {
if n == AVL_NULL {
return None;
}
let mut res = AVLRes::Balance;
if self.pool[n as usize].right != AVL_NULL {
let rec = self.findhighest(target, self.pool[n as usize].right);
if let Some((new_n_right, new_res)) = rec {
self.pool[n as usize].right = new_n_right;
res = new_res;
if res == AVLRes::Balance {
let (new_n, new_res) = self.rightshrunk(n);
n = new_n;
res = new_res;
}
return Some((n, res));
} else {
return None;
}
}
self.pool[target as usize].item = self.pool[n as usize].item.clone();
let tmp = n;
n = self.pool[n as usize].left;
self.free(tmp);
Some((n, res))
}
// Private function: findlowest: replace node with a subtree's
// lowest-ranking item.
//
// See findhighest for the details.
fn findlowest(&mut self, target: u32, mut n: u32) -> Option<(u32, AVLRes)> {
if n == AVL_NULL {
return None;
}
let mut res = AVLRes::Balance;
if self.pool[n as usize].left != AVL_NULL {
let rec = self.findlowest(target, self.pool[n as usize].left);
if let Some((new_n_left, new_res)) = rec {
self.pool[n as usize].left = new_n_left;
res = new_res;
if res == AVLRes::Balance {
let (new_n, new_res) = self.leftshrunk(n);
n = new_n;
res = new_res;
}
return Some((n, res));
} else {
return None;
}
}
self.pool[target as usize].item = self.pool[n as usize].item.clone();
let tmp = n;
n = self.pool[n as usize].right;
self.free(tmp);
Some((n, res))
}
// Private function: delete_wrk: delete an item from the tree.
// (worker function)
//
// Parameters:
//
// n Address of a pointer to a node.
//
// key AVLKEY of item to be removed.
//
// Return values:
//
// nonzero The item has been removed. The exact value of
// nonzero yields if of no concern to user code; when
// delete recursively calls itself, the number
// returned tells the parent activation if the AVL tree
// may have become unbalanced; specifically:
//
// OK None of the subtrees of the node that n points to
// has shrunk, the AVL tree is valid.
//
// BALANCE One of the subtrees of the node that n points to
// has shrunk, the node's "skew" flag needs adjustment,
// and the AVL tree may have become unbalanced.
//
// zero The tree does not contain an item yielding the
// AVLKEY value provided by the caller.
fn delete_wrk<F>(&mut self, mut root: u32, item: T, mb_cmp: Option<&F>) -> (u32, AVLRes)
where
F: Fn(T, T) -> Option<Ordering>,
{
let mut tmp = AVLRes::Balance;
if root == AVL_NULL {
return (root, AVLRes::Error);
}
let cmp_arg_left: T = item.clone();
let cmp_arg_right: T = self.pool[root as usize].item.clone();
let cmp_res = match mb_cmp {
None => cmp_arg_left.partial_cmp(&cmp_arg_right),
Some(cmp) => cmp(cmp_arg_left, cmp_arg_right),
};
match cmp_res {
None => panic!("AVLTree::delete_wrk: unordered elements"),
Some(Ordering::Less) => {
let root_left = self.pool[root as usize].left;
let (new_root_left, new_tmp) = self.delete_wrk(root_left, item, mb_cmp);
self.pool[root as usize].left = new_root_left;
tmp = new_tmp;
if tmp == AVLRes::Balance {
let (new_root, new_res) = self.leftshrunk(root);
root = new_root;
tmp = new_res;
}
return (root, tmp);
}
Some(Ordering::Greater) => {
let root_right = self.pool[root as usize].right;
let (new_root_right, new_tmp) = self.delete_wrk(root_right, item, mb_cmp);
self.pool[root as usize].right = new_root_right;
tmp = new_tmp;
if tmp == AVLRes::Balance {
let (new_root, new_res) = self.rightshrunk(root);
root = new_root;
tmp = new_res;
}
return (root, tmp);
}
Some(Ordering::Equal) => {
if self.pool[root as usize].left != AVL_NULL {
let root_left = self.pool[root as usize].left;
if let Some((new_root_left, new_tmp)) = self.findhighest(root, root_left) {
self.pool[root as usize].left = new_root_left;
tmp = new_tmp;
if new_tmp == AVLRes::Balance {
let (new_root, new_res) = self.leftshrunk(root);
root = new_root;
tmp = new_res;
}
}
return (root, tmp);
}
if self.pool[root as usize].right != AVL_NULL {
let root_right = self.pool[root as usize].right;
if let Some((new_root_right, new_tmp)) = self.findlowest(root, root_right) {
self.pool[root as usize].right = new_root_right;
tmp = new_tmp;
if new_tmp == AVLRes::Balance {
let (new_root, new_res) = self.rightshrunk(root);
root = new_root;
tmp = new_res;
}
}
return (root, tmp);
}
self.free(root);
root = AVL_NULL;
return (root, AVLRes::Balance);
}
}
}
// Private fn: count the number of items in the tree. Warning: costs O(N) !
#[cfg(test)]
fn count_wrk(&self, n: u32) -> usize {
if n == AVL_NULL {
return 0;
}
1 + self.count_wrk(self.pool[n as usize].left) + self.count_wrk(self.pool[n as usize].right)
}
// Private fn: find the max depth of the tree. Warning: costs O(N) !
#[cfg(test)]
fn depth_wrk(&self, n: u32) -> usize {
if n == AVL_NULL {
return 0;
}
let d_left = self.depth_wrk(self.pool[n as usize].left);
let d_right = self.depth_wrk(self.pool[n as usize].right);
1 + if d_left > d_right { d_left } else { d_right }
}
}
// Machinery for iterating over the tree, enumerating nodes in ascending order.
// Unfortunately AVLTreeIter has to be public.
pub struct AVLTreeIter<'t, 's, T> {
tree: &'t AVLTree<T>,
stack: &'s mut Vec<u32>,
}
impl<'t, 's, T> AVLTreeIter<'t, 's, T> {
#[allow(dead_code)]
fn new(tree: &'t AVLTree<T>, stack: &'s mut Vec<u32>) -> Self {
let mut iter = AVLTreeIter { tree, stack };
if tree.root != AVL_NULL {
iter.stack.push(tree.root);
iter.visit_left_children(tree.root);
}
iter
}
fn visit_left_children(&mut self, root: u32) {
let mut cur = root;
loop {
let left = self.tree.pool[cur as usize].left;
if left == AVL_NULL {
break;
}
self.stack.push(left);
cur = left;
}
}
}
impl<'s, 't, T: Copy> Iterator for AVLTreeIter<'s, 't, T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let ret = match self.stack.pop() {
Some(ret) => ret,
None => return None,
};
let right = self.tree.pool[ret as usize].right;
if right != AVL_NULL {
self.stack.push(right);
self.visit_left_children(right);
}
Some(self.tree.pool[ret as usize].item)
}
}
//=============================================================================
// Public interface for AVLTree
impl<T: Clone + PartialOrd> AVLTree<T> {
// The core functions (insert, delete, contains) take a comparator argument
//
// mb_cmp: Option<&F>
// where
// F: Fn(T, T) -> Option<Ordering>
//
// which allows control over how node comparison is done. If this is None,
// then comparison is done directly using PartialOrd for the T values.
//
// If this is Some(cmp), then comparison is done by passing the two T values
// to `cmp`. In this case, the routines will complain (panic) if `cmp`
// indicates that its arguments are unordered.
// Insert a value in the tree. Returns true if an insert happened, false if
// the item was already present.
pub fn insert<F>(&mut self, item: T, mb_cmp: Option<&F>) -> bool
where
F: Fn(T, T) -> Option<Ordering>,
{
let new_root = self.insert_wrk(self.root, item, mb_cmp);
if new_root == AVL_NULL {
return false; // already in tree
} else {
self.root = new_root;
return true;
}
}
// Remove an item from the tree. Returns a bool which indicates whether the
// value was in there in the first place. (meaning, true == a removal
// actually occurred).
pub fn delete<F>(&mut self, item: T, mb_cmp: Option<&F>) -> bool
where
F: Fn(T, T) -> Option<Ordering>,
{
let (new_root, res) = self.delete_wrk(self.root, item, mb_cmp);
if res == AVLRes::Error {
return false;
} else {
self.root = new_root;
return true;
}
}
// Find `item` in the tree, and replace it with `replacement`. `item` and `replacement`
// must compare equal per the comparison function `cmp`. Returns a bool indicating whether
// `item` was found (and hence, replaced). There's no comparison fast-path here
// (meaning, `cmp` is `&F` and not `Option<&F>`) only because so far there is no use case
// for it.
pub fn find_and_replace<F>(&mut self, item: T, replacement: T, cmp: &F) -> bool
where
F: Fn(T, T) -> Option<Ordering>,
{
let mut n = self.root;
loop {
if n == AVL_NULL {
return false;
}
let cmp_arg_left: T = item.clone();
let cmp_arg_right: T = self.pool[n as usize].item.clone();
match cmp(cmp_arg_left, cmp_arg_right) {
Some(Ordering::Less) => {
n = self.pool[n as usize].left;
}
Some(Ordering::Greater) => {
n = self.pool[n as usize].right;
}
Some(Ordering::Equal) => {
// Do what we can to ensure the caller can't mess up the total ordering in
// the tree. This is more restrictive than it needs to be, but loosening
// it requires finding the largest item below `item` and the smallest one
// above it, which is expensive.
assert!(cmp(item, replacement.clone()) == Some(Ordering::Equal));
self.pool[n as usize].item = replacement.clone();
return true;
}
None => {
panic!("AVLTree::find_and_replace: unordered elements in search!");
}
}
}
}
// Determine whether an item is in the tree.
// sewardj 2020Mar31: this is not used; I assume all users of the trees
// do their own custom traversals. Remove #[cfg(test)] if any real uses
// appear.
#[cfg(test)]
pub fn contains<F>(&self, item: T, mb_cmp: Option<&F>) -> bool
where
F: Fn(T, T) -> Option<Ordering>,
{
let mut n = self.root;
// Lookup needs to be really fast, so have two versions of the loop, one
// for direct comparison, one for indirect.
match mb_cmp {
None => {
// Do comparisons directly on the items.
loop {
if n == AVL_NULL {
return false;
}
let cmp_arg_left: T = item.clone();
let cmp_arg_right: T = self.pool[n as usize].item.clone();
match cmp_arg_left.partial_cmp(&cmp_arg_right) {
Some(Ordering::Less) => {
n = self.pool[n as usize].left;
}
Some(Ordering::Greater) => {
n = self.pool[n as usize].right;
}
Some(Ordering::Equal) => {
return true;
}
None => {
panic!("AVLTree::contains(1): unordered elements in search!");
}
}
}
}
Some(cmp) => {
// Do comparisons by handing off to the supplied function.
loop {
if n == AVL_NULL {
return false;
}
let cmp_arg_left: T = item.clone();
let cmp_arg_right: T = self.pool[n as usize].item.clone();
match cmp(cmp_arg_left, cmp_arg_right) {
Some(Ordering::Less) => {
n = self.pool[n as usize].left;
}
Some(Ordering::Greater) => {
n = self.pool[n as usize].right;
}
Some(Ordering::Equal) => {
return true;
}
None => {
panic!("AVLTree::contains(2): unordered elements in search!");
}
}
}
}
}
}
// Count the number of items in the tree. Warning: costs O(N) !
#[cfg(test)]
fn count(&self) -> usize {
self.count_wrk(self.root)
}
// Private fn: find the max depth of the tree. Warning: costs O(N) !
#[cfg(test)]
fn depth(&self) -> usize {
self.depth_wrk(self.root)
}
pub fn to_vec(&self) -> Vec<T> {
// BEGIN helper fn
fn walk<U: Clone>(res: &mut Vec<U>, root: u32, pool: &Vec<AVLNode<U>>) {
let root_left = pool[root as usize].left;
if root_left != AVL_NULL {
walk(res, root_left, pool);
}
res.push(pool[root as usize].item.clone());
let root_right = pool[root as usize].right;
if root_right != AVL_NULL {
walk(res, root_right, pool);
}
}
// END helper fn
let mut res = Vec::<T>::new();
if self.root != AVL_NULL {
walk(&mut res, self.root, &self.pool);
}
res
}
#[allow(dead_code)]
pub fn iter<'t, 's>(&'t self, storage: &'s mut Vec<u32>) -> AVLTreeIter<'t, 's, T> {
storage.clear();
AVLTreeIter::new(self, storage)
}
// Show the tree. (For debugging only.)
//pub fn show(&self, depth: i32, node: u32) {
// if node != AVL_NULL {
// self.show(depth + 1, self.pool[node as usize].left);
// for _ in 0..depth {
// print!(" ");
// }
// println!("{}", ToFromU32::to_u32(self.pool[node as usize].item));
// self.show(depth + 1, self.pool[node as usize].right);
// }
//}
}
//=============================================================================
// Testing machinery for AVLTree
#[cfg(test)]
mod avl_tree_test_utils {
use crate::data_structures::Set;
use std::cmp::Ordering;
// Perform various checks on the tree, and assert if it is not OK.
pub fn check_tree(
tree: &super::AVLTree<u32>,
should_be_in_tree: &Set<u32>,
univ_min: u32,
univ_max: u32,
) {
// Same cardinality
let n_in_set = should_be_in_tree.card();
let n_in_tree = tree.count();
assert!(n_in_set == n_in_tree);
// Tree is not wildly out of balance. Depth should not exceed 1.44 *
// log2(size).
let tree_depth = tree.depth();
let mut log2_size = 0;
{
let mut n: usize = n_in_tree;
while n > 0 {
n = n >> 1;
log2_size += 1;
}
}
// Actually a tighter limit than stated above. For these test cases, the
// tree is either perfectly balanced or within one level of being so
// (hence the +1).
assert!(tree_depth <= log2_size + 1);
// Check that everything that should be in the tree is in it, and vice
// versa.
for i in univ_min..univ_max {
let should_be_in = should_be_in_tree.contains(i);
// Look it up with a null comparator (so `contains` compares
// directly)
let is_in = tree.contains::<fn(u32, u32) -> Option<Ordering>>(i, None);
assert!(is_in == should_be_in);
// We should get the same result with a custom comparator that does the
// same as the null comparator.
let is_in_w_cmp = tree.contains(
i,
Some(&(|x_left: u32, x_right: u32| x_left.partial_cmp(&x_right))),
);
assert!(is_in_w_cmp == is_in);
// And even when the comparator is actually a closure
let forty_two: u32 = 52;
let is_in_w_cmp_closure = tree.contains(
i,
Some(
&(|x_left: u32, x_right: u32| {
(x_left + forty_two).partial_cmp(&(x_right + forty_two))
}),
),
);
assert!(is_in_w_cmp_closure == is_in);
}
// We could even test that the tree items are in-order, but it hardly
// seems worth the hassle, since the previous test would surely have
// failed if that wasn't the case.
}
}
#[test]
fn test_avl_tree1() {
use crate::data_structures::Set;
// Perform tests on an AVL tree. Use as values, every third number between
// 5000 and 5999 inclusive. This is to ensure that there's no confusion
// between element values and internal tree indices (although I think the
// typechecker guarantees that anyway).
//
// Also carry along a Set<u32>, which keeps track of which values should be
// in the tree at the current point.
const UNIV_MIN: u32 = 5000;
const UNIV_MAX: u32 = 5999;
const UNIV_SIZE: u32 = UNIV_MAX - UNIV_MIN + 1;
let mut tree = AVLTree::<u32>::new(0);
let mut should_be_in_tree = Set::<u32>::empty();
// Add numbers to the tree, checking as we go.
for i in UNIV_MIN..UNIV_MAX {
// Idiotic but simple
if i % 3 != 0 {
continue;
}
let was_added = tree.insert::<fn(u32, u32) -> Option<Ordering>>(i, None);
should_be_in_tree.insert(i);
assert!(was_added == true);
avl_tree_test_utils::check_tree(&tree, &should_be_in_tree, UNIV_MIN, UNIV_MAX);
}
// Then remove the middle half of the tree, also checking.
for i in UNIV_MIN + UNIV_SIZE / 4..UNIV_MIN + 3 * (UNIV_SIZE / 4) {
// Note that here, we're asking to delete a bunch of numbers that aren't
// in the tree. It should remain valid throughout.
let was_removed = tree.delete::<fn(u32, u32) -> Option<Ordering>>(i, None);
let should_have_been_removed = should_be_in_tree.contains(i);
assert!(was_removed == should_have_been_removed);
should_be_in_tree.delete(i);
avl_tree_test_utils::check_tree(&tree, &should_be_in_tree, UNIV_MIN, UNIV_MAX);
}
// Now add some numbers which are already in the tree.
for i in UNIV_MIN..UNIV_MIN + UNIV_SIZE / 4 {
if i % 3 != 0 {
continue;
}
let was_added = tree.insert::<fn(u32, u32) -> Option<Ordering>>(i, None);
let should_have_been_added = !should_be_in_tree.contains(i);
assert!(was_added == should_have_been_added);
should_be_in_tree.insert(i);
avl_tree_test_utils::check_tree(&tree, &should_be_in_tree, UNIV_MIN, UNIV_MAX);
}
// Then remove all numbers from the tree, in reverse order.
for ir in UNIV_MIN..UNIV_MAX {
let i = UNIV_MIN + (UNIV_MAX - ir);
let was_removed = tree.delete::<fn(u32, u32) -> Option<Ordering>>(i, None);
let should_have_been_removed = should_be_in_tree.contains(i);
assert!(was_removed == should_have_been_removed);
should_be_in_tree.delete(i);
avl_tree_test_utils::check_tree(&tree, &should_be_in_tree, UNIV_MIN, UNIV_MAX);
}
// Now the tree should be empty.
assert!(should_be_in_tree.is_empty());
assert!(tree.count() == 0);
// Now delete some more stuff. Tree should still be empty :-)
for i in UNIV_MIN + 10..UNIV_MIN + 100 {
assert!(should_be_in_tree.is_empty());
assert!(tree.count() == 0);
tree.delete::<fn(u32, u32) -> Option<Ordering>>(i, None);
avl_tree_test_utils::check_tree(&tree, &should_be_in_tree, UNIV_MIN, UNIV_MAX);
}
// The tree root should be NULL.
assert!(tree.root == AVL_NULL);
assert!(tree.freelist != AVL_NULL);
// Check the freelist: all entries are of the expected form.
for e in &tree.pool {
assert!(e.tag == AVLTag::Free);
assert!(e.left == AVL_NULL || (e.left as usize) < tree.pool.len());
assert!(e.right == AVL_NULL);
assert!(e.item == 0);
}
// Check the freelist: it's non-circular, and contains the expected number
// of elements.
let mut n_in_freelist = 0;
let mut cursor: u32 = tree.freelist;
while cursor != AVL_NULL {
assert!((cursor as usize) < tree.pool.len());
n_in_freelist += 1;
assert!(n_in_freelist < 100000 /*arbitrary*/); // else it has a cycle
cursor = tree.pool[cursor as usize].left;
}
// If we get here, the freelist at least doesn't have a cycle.
// All elements in the pool are on the freelist.
assert!(n_in_freelist == tree.pool.len());
}
#[test]
fn test_avl_tree2() {
use std::cmp::Ordering;
// Do some simple testing using a custom comparator, which inverts the order
// of items in the tree, so as to check custom comparators work right.
let mut tree = AVLTree::<u32>::new(0);
let nums = [31, 41, 59, 27, 14, 35, 62, 25, 18, 28, 45, 90, 61];
fn reverse_cmp(x: u32, y: u32) -> Option<Ordering> {
y.partial_cmp(&x)
}
// Insert
for n in &nums {
let insert_happened = tree.insert(*n, Some(&reverse_cmp));
assert!(insert_happened == true);
}
// Check membership
for n in 0..100 {
let is_in = tree.contains(n, Some(&reverse_cmp));
let should_be_in = nums.iter().any(|m| n == *m);
assert!(is_in == should_be_in);
}
// Delete
for n in 0..100 {
let remove_happened = tree.delete(n, Some(&reverse_cmp));
let remove_should_have_happened = nums.iter().any(|m| n == *m);
assert!(remove_happened == remove_should_have_happened);
}
// Final check
assert!(tree.root == AVL_NULL);
assert!(tree.count() == 0);
}
#[test]
fn test_avl_tree_iter() {
let mut storage = Vec::new();
let tree = AVLTree::<u32>::new(0);
assert!(tree.iter(&mut storage).next().is_none());
const FROM: u32 = 0;
const TO: u32 = 10000;
let mut tree = AVLTree::<u32>::new(0);
for i in FROM..TO {
tree.insert(i, Some(&|a: u32, b: u32| a.partial_cmp(&b)));
}
let as_vec = tree.to_vec();
for (i, val) in tree.iter(&mut storage).enumerate() {
assert_eq!(as_vec[i], val, "not equal for i={}", i);
}
}
|