1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
|
use crate::checker::Inst as CheckerInst;
use crate::checker::{CheckerContext, CheckerErrors};
use crate::data_structures::{
BlockIx, InstIx, InstPoint, Point, RangeFrag, RealReg, RealRegUniverse, Reg, SpillSlot,
TypedIxVec, VirtualReg, Writable,
};
use crate::{reg_maps::VrangeRegUsageMapper, Function, RegAllocError};
use log::trace;
use std::result::Result;
//=============================================================================
// InstToInsert and InstToInsertAndPoint
#[derive(Clone, Debug)]
pub(crate) enum InstToInsert {
Spill {
to_slot: SpillSlot,
from_reg: RealReg,
for_vreg: Option<VirtualReg>,
},
Reload {
to_reg: Writable<RealReg>,
from_slot: SpillSlot,
for_vreg: Option<VirtualReg>,
},
Move {
to_reg: Writable<RealReg>,
from_reg: RealReg,
for_vreg: VirtualReg,
},
/// A spillslot reassignment (to another vreg). In the edited instruction
/// stream, this is a nop, but this is needed for the checker to properly
/// track the symbolic values in slots. Always originates from a move
/// in the original user program whose source and dest vregs are both
/// spilled.
ChangeSpillSlotOwnership {
inst_ix: InstIx,
slot: SpillSlot,
from_reg: Reg,
to_reg: Reg,
},
}
impl InstToInsert {
pub(crate) fn construct<F: Function>(&self, f: &F) -> Option<F::Inst> {
match self {
&InstToInsert::Spill {
to_slot,
from_reg,
for_vreg,
} => Some(f.gen_spill(to_slot, from_reg, for_vreg)),
&InstToInsert::Reload {
to_reg,
from_slot,
for_vreg,
} => Some(f.gen_reload(to_reg, from_slot, for_vreg)),
&InstToInsert::Move {
to_reg,
from_reg,
for_vreg,
} => Some(f.gen_move(to_reg, from_reg, for_vreg)),
&InstToInsert::ChangeSpillSlotOwnership { .. } => None,
}
}
pub(crate) fn to_checker_inst(&self) -> CheckerInst {
match self {
&InstToInsert::Spill {
to_slot, from_reg, ..
} => CheckerInst::Spill {
into: to_slot,
from: from_reg,
},
&InstToInsert::Reload {
to_reg, from_slot, ..
} => CheckerInst::Reload {
into: to_reg,
from: from_slot,
},
&InstToInsert::Move {
to_reg, from_reg, ..
} => CheckerInst::Move {
into: to_reg,
from: from_reg,
},
&InstToInsert::ChangeSpillSlotOwnership {
inst_ix,
slot,
from_reg,
to_reg,
} => CheckerInst::ChangeSpillSlotOwnership {
inst_ix,
slot,
from_reg,
to_reg,
},
}
}
}
// ExtPoint is an extended version of Point. It plays no role in dataflow analysis or in the
// specification of live ranges. It exists only to describe where to place the "extra"
// spill/reload instructions required to make stackmap/reftype support work. If there was no
// need to support stackmaps/reftypes, ExtPoint would not be needed, and Point would be
// adequate.
//
// Recall that Point can denote 4 places within an instruction, with R < U < D < S:
//
// * R(eload): this is where any reload insns for the insn itself are
// considered to live.
//
// * U(se): this is where the insn is considered to use values from those of
// its register operands that appear in a Read or Modify role.
//
// * D(ef): this is where the insn is considered to define new values for
// those of its register operands that appear in a Write or Modify role.
//
// * S(pill): this is where any spill insns for the insn itself are considered
// to live.
//
// ExtPoint extends that to six places, by adding a new point in between Reload and Use, and one
// between Def and Spill, giving: R < SB < U < D < RA < S:
//
// * (R)eload: unchanged
//
// * SB (Spill before): at this point, reftyped regs will be spilled, if this insn is a safepoint
//
// * (U)se: unchanged
//
// * (D)ef: unchanged
//
// * RA (Reload after): at this point, reftyped regs spilled at SB will be reloaded, if needed,
// and if this insn is a safepoint
//
// * (S)pill: unchanged
//
// From this it can be seen that the SB and RA points are closest to the instruction "core" --
// the U and D points. SB and RA describe places where reftyped regs must be spilled/reloaded
// around the core. Because the SB-RA range falls inside the R-S range, it means the the
// safepoint spill/reload instructions can be added after "normal" spill/reload instructions
// have been created, and it doesn't interact with the logic to create those "normal"
// spill/reload instructions.
//
// In the worst case scenario, a value could be reloaded at R, immediately spilled at SB, then
// possibly modified in memory at the safepoint proper, reloaded at RA, and spilled at S. That
// is considered to be an unlikely scenario, though.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum ExtPoint {
Reload = 0,
SpillBefore = 1,
Use = 2,
Def = 3,
ReloadAfter = 4,
Spill = 5,
}
impl ExtPoint {
// Promote a Point to an ExtPoint
#[inline(always)]
pub fn from_point(pt: Point) -> Self {
match pt {
Point::Reload => ExtPoint::Reload,
Point::Use => ExtPoint::Use,
Point::Def => ExtPoint::Def,
Point::Spill => ExtPoint::Spill,
}
}
}
// As the direct analogy to InstPoint, a InstExtPoint pairs an InstIx with an ExtPoint. In
// contrast to InstPoint, these aren't so performance critical, so there's no fancy bit-packed
// representation as there is for InstPoint.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct InstExtPoint {
pub iix: InstIx,
pub extpt: ExtPoint,
}
impl InstExtPoint {
#[inline(always)]
pub fn new(iix: InstIx, extpt: ExtPoint) -> Self {
Self { iix, extpt }
}
// Promote an InstPoint to an InstExtPoint
#[inline(always)]
pub fn from_inst_point(inst_pt: InstPoint) -> Self {
InstExtPoint {
iix: inst_pt.iix(),
extpt: ExtPoint::from_point(inst_pt.pt()),
}
}
}
// So, finally, we can specify what we want: an instruction to insert, and a place to insert it.
#[derive(Debug)]
pub(crate) struct InstToInsertAndExtPoint {
pub(crate) inst: InstToInsert,
pub(crate) iep: InstExtPoint,
}
impl InstToInsertAndExtPoint {
#[inline(always)]
pub(crate) fn new(inst: InstToInsert, iep: InstExtPoint) -> Self {
Self { inst, iep }
}
}
//=============================================================================
// Apply all vreg->rreg mappings for the function's instructions, and run
// the checker if required. This also removes instructions that the core
// algorithm wants removed, by nop-ing them out.
#[inline(never)]
fn map_vregs_to_rregs<F: Function>(
func: &mut F,
frag_map: Vec<(RangeFrag, VirtualReg, RealReg)>,
insts_to_add: &Vec<InstToInsertAndExtPoint>,
iixs_to_nop_out: &Vec<InstIx>,
reg_universe: &RealRegUniverse,
use_checker: bool,
safepoint_insns: &[InstIx],
stackmaps: &[Vec<SpillSlot>],
reftyped_vregs: &[VirtualReg],
) -> Result<(), CheckerErrors> {
// Set up checker state, if indicated by our configuration.
let mut checker: Option<CheckerContext> = None;
let mut insn_blocks: Vec<BlockIx> = vec![];
if use_checker {
checker = Some(CheckerContext::new(
func,
reg_universe,
insts_to_add,
safepoint_insns,
stackmaps,
reftyped_vregs,
));
insn_blocks.resize(func.insns().len(), BlockIx::new(0));
for block_ix in func.blocks() {
for insn_ix in func.block_insns(block_ix) {
insn_blocks[insn_ix.get() as usize] = block_ix;
}
}
}
// Sort the insn nop-out index list, so we can advance through it
// during the main loop.
let mut iixs_to_nop_out = iixs_to_nop_out.clone();
iixs_to_nop_out.sort();
// Make two copies of the fragment mapping, one sorted by the fragment start
// points (just the InstIx numbers, ignoring the Point), and one sorted by
// fragment end points.
let mut frag_maps_by_start = frag_map.clone();
let mut frag_maps_by_end = frag_map;
// -------- Edit the instruction stream --------
frag_maps_by_start.sort_unstable_by(|(frag, _, _), (other_frag, _, _)| {
frag.first
.iix()
.partial_cmp(&other_frag.first.iix())
.unwrap()
});
frag_maps_by_end.sort_unstable_by(|(frag, _, _), (other_frag, _, _)| {
frag.last.iix().partial_cmp(&other_frag.last.iix()).unwrap()
});
let mut cursor_starts = 0;
let mut cursor_ends = 0;
let mut cursor_nop = 0;
// Allocate the "mapper" data structure that we update incrementally and
// pass to instruction reg-mapping routines to query.
let mut mapper = VrangeRegUsageMapper::new(func.get_num_vregs());
fn is_sane(frag: &RangeFrag) -> bool {
// "Normal" frag (unrelated to spilling). No normal frag may start or
// end at a .s or a .r point.
if frag.first.pt().is_use_or_def()
&& frag.last.pt().is_use_or_def()
&& frag.first.iix() <= frag.last.iix()
{
return true;
}
// A spill-related ("bridge") frag. There are three possibilities,
// and they correspond exactly to `BridgeKind`.
if frag.first.pt().is_reload()
&& frag.last.pt().is_use()
&& frag.last.iix() == frag.first.iix()
{
// BridgeKind::RtoU
return true;
}
if frag.first.pt().is_reload()
&& frag.last.pt().is_spill()
&& frag.last.iix() == frag.first.iix()
{
// BridgeKind::RtoS
return true;
}
if frag.first.pt().is_def()
&& frag.last.pt().is_spill()
&& frag.last.iix() == frag.first.iix()
{
// BridgeKind::DtoS
return true;
}
// None of the above apply. This RangeFrag is insane \o/
false
}
let mut last_insn_ix = -1;
for insn_ix in func.insn_indices() {
// Ensure instruction indices are in order. Logic below requires this.
assert!(insn_ix.get() as i32 > last_insn_ix);
last_insn_ix = insn_ix.get() as i32;
// advance [cursorStarts, +num_starts) to the group for insn_ix
while cursor_starts < frag_maps_by_start.len()
&& frag_maps_by_start[cursor_starts].0.first.iix() < insn_ix
{
cursor_starts += 1;
}
let mut num_starts = 0;
while cursor_starts + num_starts < frag_maps_by_start.len()
&& frag_maps_by_start[cursor_starts + num_starts].0.first.iix() == insn_ix
{
num_starts += 1;
}
// advance [cursorEnds, +num_ends) to the group for insn_ix
while cursor_ends < frag_maps_by_end.len()
&& frag_maps_by_end[cursor_ends].0.last.iix() < insn_ix
{
cursor_ends += 1;
}
let mut num_ends = 0;
while cursor_ends + num_ends < frag_maps_by_end.len()
&& frag_maps_by_end[cursor_ends + num_ends].0.last.iix() == insn_ix
{
num_ends += 1;
}
// advance cursor_nop in the iixs_to_nop_out list.
while cursor_nop < iixs_to_nop_out.len() && iixs_to_nop_out[cursor_nop] < insn_ix {
cursor_nop += 1;
}
let nop_this_insn =
cursor_nop < iixs_to_nop_out.len() && iixs_to_nop_out[cursor_nop] == insn_ix;
// So now, fragMapsByStart[cursorStarts, +num_starts) are the mappings
// for fragments that begin at this instruction, in no particular
// order. And fragMapsByEnd[cursorEnd, +numEnd) are the RangeFragIxs
// for fragments that end at this instruction.
// Sanity check all frags. In particular, reload and spill frags are
// heavily constrained. No functional effect.
for j in cursor_starts..cursor_starts + num_starts {
let frag = &frag_maps_by_start[j].0;
// "It really starts here, as claimed."
debug_assert!(frag.first.iix() == insn_ix);
debug_assert!(is_sane(&frag));
}
for j in cursor_ends..cursor_ends + num_ends {
let frag = &frag_maps_by_end[j].0;
// "It really ends here, as claimed."
debug_assert!(frag.last.iix() == insn_ix);
debug_assert!(is_sane(frag));
}
// Here's the plan, conceptually (we don't actually clone the map):
// Update map for I.r:
// add frags starting at I.r
// no frags should end at I.r (it's a reload insn)
// Update map for I.u:
// add frags starting at I.u
// map_uses := map
// remove frags ending at I.u
// Update map for I.d:
// add frags starting at I.d
// map_defs := map
// remove frags ending at I.d
// Update map for I.s:
// no frags should start at I.s (it's a spill insn)
// remove frags ending at I.s
// apply map_uses/map_defs to I
// To update the running mapper, we:
// - call `mapper.set_direct(vreg, Some(rreg))` with pre-insn starts.
// ("use"-map snapshot conceptually happens here)
// - call `mapper.set_overlay(vreg, None)` with pre-insn, post-reload ends.
// - call `mapper.set_overlay(vreg, Some(rreg))` with post-insn, pre-spill starts.
// ("post"-map snapshot conceptually happens here)
// - call `mapper.finish_overlay()`.
//
// - Use the map. `pre` and `post` are correct wrt the instruction.
//
// - call `mapper.merge_overlay()` to merge post-updates to main map.
// - call `mapper.set_direct(vreg, None)` with post-insn, post-spill
// ends.
trace!("current mapper {:?}", mapper);
// Update map for I.r:
// add frags starting at I.r
// no frags should end at I.r (it's a reload insn)
for j in cursor_starts..cursor_starts + num_starts {
let frag = &frag_maps_by_start[j].0;
if frag.first.pt().is_reload() {
//////// STARTS at I.r
mapper.set_direct(frag_maps_by_start[j].1, Some(frag_maps_by_start[j].2));
}
}
// Update map for I.u:
// add frags starting at I.u
// map_uses := map
// remove frags ending at I.u
for j in cursor_starts..cursor_starts + num_starts {
let frag = &frag_maps_by_start[j].0;
if frag.first.pt().is_use() {
//////// STARTS at I.u
mapper.set_direct(frag_maps_by_start[j].1, Some(frag_maps_by_start[j].2));
}
}
for j in cursor_ends..cursor_ends + num_ends {
let frag = &frag_maps_by_end[j].0;
if frag.last.pt().is_use() {
//////// ENDS at I.U
mapper.set_overlay(frag_maps_by_end[j].1, None);
}
}
trace!("maps after I.u {:?}", mapper);
// Update map for I.d:
// add frags starting at I.d
// map_defs := map
// remove frags ending at I.d
for j in cursor_starts..cursor_starts + num_starts {
let frag = &frag_maps_by_start[j].0;
if frag.first.pt().is_def() {
//////// STARTS at I.d
mapper.set_overlay(frag_maps_by_start[j].1, Some(frag_maps_by_start[j].2));
}
}
mapper.finish_overlay();
trace!("maps after I.d {:?}", mapper);
// If we have a checker, update it with spills, reloads, moves, and this
// instruction, while we have `map_uses` and `map_defs` available.
if let &mut Some(ref mut checker) = &mut checker {
let block_ix = insn_blocks[insn_ix.get() as usize];
checker
.handle_insn(reg_universe, func, block_ix, insn_ix, &mapper)
.unwrap();
}
// Finally, we have map_uses/map_defs set correctly for this instruction.
// Apply it.
if !nop_this_insn {
trace!("map_regs for {:?}", insn_ix);
let mut insn = func.get_insn_mut(insn_ix);
F::map_regs(&mut insn, &mapper);
trace!("mapped instruction: {:?}", insn);
} else {
// N.B. We nop out instructions as requested only *here*, after the
// checker call, because the checker must observe even elided moves
// (they may carry useful information about a move between two virtual
// locations mapped to the same physical location).
trace!("nop'ing out {:?}", insn_ix);
let nop = func.gen_zero_len_nop();
let insn = func.get_insn_mut(insn_ix);
*insn = nop;
}
mapper.merge_overlay();
for j in cursor_ends..cursor_ends + num_ends {
let frag = &frag_maps_by_end[j].0;
if frag.last.pt().is_def() {
//////// ENDS at I.d
mapper.set_direct(frag_maps_by_end[j].1, None);
}
}
// Update map for I.s:
// no frags should start at I.s (it's a spill insn)
// remove frags ending at I.s
for j in cursor_ends..cursor_ends + num_ends {
let frag = &frag_maps_by_end[j].0;
if frag.last.pt().is_spill() {
//////// ENDS at I.s
mapper.set_direct(frag_maps_by_end[j].1, None);
}
}
// Update cursorStarts and cursorEnds for the next iteration
cursor_starts += num_starts;
cursor_ends += num_ends;
}
debug_assert!(mapper.is_empty());
if use_checker {
checker.unwrap().run()
} else {
Ok(())
}
}
//=============================================================================
// Take the real-register-only code created by `map_vregs_to_rregs` and
// interleave extra instructions (spills, reloads and moves) that the core
// algorithm has asked us to add.
#[inline(never)]
pub(crate) fn add_spills_reloads_and_moves<F: Function>(
func: &mut F,
safepoint_insns: &Vec<InstIx>,
mut insts_to_add: Vec<InstToInsertAndExtPoint>,
) -> Result<
(
Vec<F::Inst>,
TypedIxVec<BlockIx, InstIx>,
TypedIxVec<InstIx, InstIx>,
Vec<InstIx>,
),
String,
> {
// Construct the final code by interleaving the mapped code with the the
// spills, reloads and moves that we have been requested to insert. To do
// that requires having the latter sorted by InstPoint.
//
// We also need to examine and update Func::blocks. This is assumed to
// be arranged in ascending order of the Block::start fields.
//
// Also, if the client requested stackmap creation, then `safepoint_insns` will be
// non-empty, and we will have to return a vector of the same length, that indicates the
// location of each safepoint insn in the final code. `safepoint_insns` is assumed to be
// sorted in ascending order and duplicate-free.
//
// Linear scan relies on the sort being stable here, so make sure to not
// use an unstable sort. See the comment in `resolve_moves_across blocks`
// in linear scan's code.
insts_to_add.sort_by_key(|to_add| to_add.iep.clone());
let mut cur_inst_to_add = 0;
let mut cur_block = BlockIx::new(0);
let mut insns: Vec<F::Inst> = vec![];
let mut target_map: TypedIxVec<BlockIx, InstIx> = TypedIxVec::new();
let mut new_to_old_insn_map: TypedIxVec<InstIx, InstIx> = TypedIxVec::new();
target_map.reserve(func.blocks().len());
new_to_old_insn_map.reserve(func.insn_indices().len() + insts_to_add.len());
// Index in `safepoint_insns` of the next safepoint insn we will encounter
let mut next_safepoint_insn_index = 0;
let mut new_safepoint_insns = Vec::<InstIx>::new();
new_safepoint_insns.reserve(safepoint_insns.len());
for iix in func.insn_indices() {
// Is `iix` the first instruction in a block? Meaning, are we
// starting a new block?
debug_assert!(cur_block.get() < func.blocks().len() as u32);
if func.block_insns(cur_block).start() == iix {
assert!(cur_block.get() == target_map.len());
target_map.push(InstIx::new(insns.len() as u32));
}
// Copy to the output vector, the first the extra insts that are to be placed at the
// reload point of `iix`, and then the extras for the spill-before point of `iix`.
while cur_inst_to_add < insts_to_add.len()
&& insts_to_add[cur_inst_to_add].iep <= InstExtPoint::new(iix, ExtPoint::SpillBefore)
{
if let Some(inst) = insts_to_add[cur_inst_to_add].inst.construct(func) {
insns.push(inst);
new_to_old_insn_map.push(InstIx::invalid_value());
}
cur_inst_to_add += 1;
}
// Copy the inst at `iix` itself
if next_safepoint_insn_index < safepoint_insns.len()
&& iix == safepoint_insns[next_safepoint_insn_index]
{
new_safepoint_insns.push(InstIx::new(insns.len() as u32));
next_safepoint_insn_index += 1;
}
new_to_old_insn_map.push(iix);
insns.push(func.get_insn(iix).clone());
// And copy first, the extra insts that are to be placed at the reload-after point
// of `iix`, followed by those to be placed at the spill point of `iix`.
while cur_inst_to_add < insts_to_add.len()
&& insts_to_add[cur_inst_to_add].iep <= InstExtPoint::new(iix, ExtPoint::Spill)
{
if let Some(inst) = insts_to_add[cur_inst_to_add].inst.construct(func) {
insns.push(inst);
new_to_old_insn_map.push(InstIx::invalid_value());
}
cur_inst_to_add += 1;
}
// Is `iix` the last instruction in a block?
if iix == func.block_insns(cur_block).last() {
debug_assert!(cur_block.get() < func.blocks().len() as u32);
cur_block = cur_block.plus(1);
}
}
debug_assert!(cur_inst_to_add == insts_to_add.len());
debug_assert!(cur_block.get() == func.blocks().len() as u32);
debug_assert!(next_safepoint_insn_index == safepoint_insns.len());
debug_assert!(new_safepoint_insns.len() == safepoint_insns.len());
Ok((insns, target_map, new_to_old_insn_map, new_safepoint_insns))
}
//=============================================================================
// Main function
#[inline(never)]
pub(crate) fn edit_inst_stream<F: Function>(
func: &mut F,
safepoint_insns: &Vec<InstIx>,
insts_to_add: Vec<InstToInsertAndExtPoint>,
iixs_to_nop_out: &Vec<InstIx>,
frag_map: Vec<(RangeFrag, VirtualReg, RealReg)>,
reg_universe: &RealRegUniverse,
use_checker: bool,
stackmaps: &[Vec<SpillSlot>],
reftyped_vregs: &[VirtualReg],
) -> Result<
(
Vec<F::Inst>,
TypedIxVec<BlockIx, InstIx>,
TypedIxVec<InstIx, InstIx>,
Vec<InstIx>,
),
RegAllocError,
> {
map_vregs_to_rregs(
func,
frag_map,
&insts_to_add,
iixs_to_nop_out,
reg_universe,
use_checker,
&safepoint_insns[..],
stackmaps,
reftyped_vregs,
)
.map_err(|e| RegAllocError::RegChecker(e))?;
add_spills_reloads_and_moves(func, safepoint_insns, insts_to_add)
.map_err(|e| RegAllocError::Other(e))
}
|