summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regalloc/src/reg_maps.rs
blob: f65ea372a30fd664679d241c1a911b42c572b370 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use crate::{RealReg, RegUsageMapper, VirtualReg};
use smallvec::SmallVec;
use std::mem;

/// This data structure holds the mappings needed to map an instruction's uses, mods and defs from
/// virtual to real registers.
///
/// It remembers the sets of mappings (of a virtual register to a real register) over time, based
/// on precise virtual ranges and their allocations.
///
/// This is the right implementation to use when a register allocation algorithm keeps track of
/// precise virtual ranges, and maintains them over time.
#[derive(Debug)]
pub struct VrangeRegUsageMapper {
    /// Dense vector-map indexed by virtual register number. This is consulted
    /// directly for use-queries and augmented with the overlay for def-queries.
    slots: Vec<RealReg>,

    /// Overlay for def-queries. This is a set of updates that occurs "during"
    /// the instruction in question, and will be applied to the slots array
    /// once we are done processing this instruction (in preparation for
    /// the next one).
    overlay: SmallVec<[(VirtualReg, RealReg); 16]>,
}

impl VrangeRegUsageMapper {
    /// Allocate a reg-usage mapper with the given predicted vreg capacity.
    pub(crate) fn new(vreg_capacity: usize) -> VrangeRegUsageMapper {
        VrangeRegUsageMapper {
            slots: Vec::with_capacity(vreg_capacity),
            overlay: SmallVec::new(),
        }
    }

    /// Is the overlay past the sorted-size threshold?
    fn is_overlay_large_enough_to_sort(&self) -> bool {
        // Use the SmallVec spill-to-heap threshold as a threshold for "large
        // enough to sort"; this has the effect of amortizing the cost of
        // sorting along with the cost of copying out to heap memory, and also
        // ensures that when we access heap (more likely to miss in cache), we
        // do it with O(log N) accesses instead of O(N).
        self.overlay.spilled()
    }

    /// Update the overlay.
    pub(crate) fn set_overlay(&mut self, vreg: VirtualReg, rreg: Option<RealReg>) {
        let rreg = rreg.unwrap_or(RealReg::invalid());
        self.overlay.push((vreg, rreg));
    }

    /// Finish updates to the overlay, sorting if necessary.
    pub(crate) fn finish_overlay(&mut self) {
        if self.overlay.len() == 0 || !self.is_overlay_large_enough_to_sort() {
            return;
        }

        // Sort stably, so that later updates continue to come after earlier
        // ones.
        self.overlay.sort_by_key(|pair| pair.0);
        // Remove duplicates by collapsing runs of same-vreg pairs down to
        // the last one.
        let mut last_vreg = self.overlay[0].0;
        let mut out = 0;
        for i in 1..self.overlay.len() {
            let this_vreg = self.overlay[i].0;
            if this_vreg != last_vreg {
                out += 1;
            }
            if i != out {
                self.overlay[out] = self.overlay[i];
            }
            last_vreg = this_vreg;
        }
        let new_len = out + 1;
        self.overlay.truncate(new_len);
    }

    /// Merge the overlay into the main map.
    pub(crate) fn merge_overlay(&mut self) {
        // Take the SmallVec and swap with empty to allow `&mut self` method
        // call below.
        let mappings = mem::replace(&mut self.overlay, SmallVec::new());
        for (vreg, rreg) in mappings.into_iter() {
            self.set_direct_internal(vreg, rreg);
        }
    }

    /// Make a direct update to the mapping. Only usable when the overlay
    /// is empty.
    pub(crate) fn set_direct(&mut self, vreg: VirtualReg, rreg: Option<RealReg>) {
        debug_assert!(self.overlay.is_empty());
        let rreg = rreg.unwrap_or(RealReg::invalid());
        self.set_direct_internal(vreg, rreg);
    }

    fn set_direct_internal(&mut self, vreg: VirtualReg, rreg: RealReg) {
        let idx = vreg.get_index();
        if idx >= self.slots.len() {
            self.slots.resize(idx + 1, RealReg::invalid());
        }
        self.slots[idx] = rreg;
    }

    /// Perform a lookup directly in the main map. Returns `None` for
    /// not-present.
    fn lookup_direct(&self, vreg: VirtualReg) -> Option<RealReg> {
        let idx = vreg.get_index();
        if idx >= self.slots.len() {
            None
        } else {
            Some(self.slots[idx])
        }
    }

    /// Perform a lookup in the overlay. Returns `None` for not-present. No
    /// fallback to main map (that happens in callers). Returns `Some` even
    /// if mapped to `RealReg::invalid()`, because this is a tombstone
    /// (represents deletion) in the overlay.
    fn lookup_overlay(&self, vreg: VirtualReg) -> Option<RealReg> {
        if self.is_overlay_large_enough_to_sort() {
            // Do a binary search; we are guaranteed to have at most one
            // matching because duplicates were collapsed after sorting.
            if let Ok(idx) = self.overlay.binary_search_by_key(&vreg, |pair| pair.0) {
                return Some(self.overlay[idx].1);
            }
        } else {
            // Search in reverse order to find later updates first.
            for &(this_vreg, this_rreg) in self.overlay.iter().rev() {
                if this_vreg == vreg {
                    return Some(this_rreg);
                }
            }
        }
        None
    }

    /// Sanity check: check that all slots are empty. Typically for use at the
    /// end of processing as a debug-assert.
    pub(crate) fn is_empty(&self) -> bool {
        self.overlay.iter().all(|pair| pair.1.is_invalid())
            && self.slots.iter().all(|rreg| rreg.is_invalid())
    }
}

impl RegUsageMapper for VrangeRegUsageMapper {
    /// Return the `RealReg` if mapped, or `None`, for `vreg` occuring as a use
    /// on the current instruction.
    fn get_use(&self, vreg: VirtualReg) -> Option<RealReg> {
        self.lookup_direct(vreg)
            // Convert Some(RealReg::invalid()) to None.
            .and_then(|reg| reg.maybe_valid())
    }

    /// Return the `RealReg` if mapped, or `None`, for `vreg` occuring as a def
    /// on the current instruction.
    fn get_def(&self, vreg: VirtualReg) -> Option<RealReg> {
        self.lookup_overlay(vreg)
            .or_else(|| self.lookup_direct(vreg))
            // Convert Some(RealReg::invalid()) to None.
            .and_then(|reg| reg.maybe_valid())
    }

    /// Return the `RealReg` if mapped, or `None`, for a `vreg` occuring as a
    /// mod on the current instruction.
    fn get_mod(&self, vreg: VirtualReg) -> Option<RealReg> {
        let result = self.get_use(vreg);
        debug_assert_eq!(result, self.get_def(vreg));
        result
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{Reg, RegClass, VirtualReg};

    fn vreg(idx: u32) -> VirtualReg {
        Reg::new_virtual(RegClass::I64, idx).to_virtual_reg()
    }
    fn rreg(idx: u8) -> RealReg {
        Reg::new_real(RegClass::I64, /* enc = */ 0, /* index = */ idx).to_real_reg()
    }

    #[test]
    fn test_reg_use_mapper() {
        let mut mapper = VrangeRegUsageMapper::new(/* estimated vregs = */ 16);
        assert_eq!(None, mapper.get_use(vreg(0)));
        assert_eq!(None, mapper.get_def(vreg(0)));
        assert_eq!(None, mapper.get_mod(vreg(0)));

        mapper.set_direct(vreg(0), Some(rreg(1)));
        mapper.set_direct(vreg(1), Some(rreg(2)));

        assert_eq!(Some(rreg(1)), mapper.get_use(vreg(0)));
        assert_eq!(Some(rreg(1)), mapper.get_def(vreg(0)));
        assert_eq!(Some(rreg(1)), mapper.get_mod(vreg(0)));
        assert_eq!(Some(rreg(2)), mapper.get_use(vreg(1)));
        assert_eq!(Some(rreg(2)), mapper.get_def(vreg(1)));
        assert_eq!(Some(rreg(2)), mapper.get_mod(vreg(1)));

        mapper.set_overlay(vreg(0), Some(rreg(3)));
        mapper.set_overlay(vreg(2), Some(rreg(4)));
        mapper.finish_overlay();

        assert_eq!(Some(rreg(1)), mapper.get_use(vreg(0)));
        assert_eq!(Some(rreg(3)), mapper.get_def(vreg(0)));
        // vreg 0 not valid for mod (use and def differ).
        assert_eq!(Some(rreg(2)), mapper.get_use(vreg(1)));
        assert_eq!(Some(rreg(2)), mapper.get_def(vreg(1)));
        assert_eq!(Some(rreg(2)), mapper.get_mod(vreg(1)));
        assert_eq!(None, mapper.get_use(vreg(2)));
        assert_eq!(Some(rreg(4)), mapper.get_def(vreg(2)));
        // vreg 2 not valid for mod (use and def differ).

        mapper.merge_overlay();
        assert_eq!(Some(rreg(3)), mapper.get_use(vreg(0)));
        assert_eq!(Some(rreg(2)), mapper.get_use(vreg(1)));
        assert_eq!(Some(rreg(4)), mapper.get_use(vreg(2)));
        assert_eq!(None, mapper.get_use(vreg(3)));

        // Check tombstoning behavior.
        mapper.set_overlay(vreg(0), None);
        mapper.finish_overlay();
        assert_eq!(Some(rreg(3)), mapper.get_use(vreg(0)));
        assert_eq!(None, mapper.get_def(vreg(0)));
        mapper.merge_overlay();

        // Check large (sorted) overlay mode.
        for i in (2..50).rev() {
            mapper.set_overlay(vreg(i), Some(rreg((i + 100) as u8)));
        }
        mapper.finish_overlay();
        assert_eq!(None, mapper.get_use(vreg(0)));
        assert_eq!(Some(rreg(2)), mapper.get_use(vreg(1)));
        assert_eq!(Some(rreg(4)), mapper.get_use(vreg(2)));
        for i in 2..50 {
            assert_eq!(Some(rreg((i + 100) as u8)), mapper.get_def(vreg(i)));
        }
        mapper.merge_overlay();

        for i in (0..100).rev() {
            mapper.set_overlay(vreg(i), None);
        }
        mapper.finish_overlay();
        for i in 0..100 {
            assert_eq!(None, mapper.get_def(vreg(i)));
        }
        assert_eq!(false, mapper.is_empty());
        mapper.merge_overlay();
        assert_eq!(true, mapper.is_empty());

        // Check multiple-update behavior in small mode.
        mapper.set_overlay(vreg(1), Some(rreg(1)));
        mapper.set_overlay(vreg(1), Some(rreg(2)));
        mapper.finish_overlay();
        assert_eq!(Some(rreg(2)), mapper.get_def(vreg(1)));
        mapper.merge_overlay();
        assert_eq!(Some(rreg(2)), mapper.get_use(vreg(1)));

        mapper.set_overlay(vreg(1), Some(rreg(2)));
        mapper.set_overlay(vreg(1), None);
        mapper.finish_overlay();
        assert_eq!(None, mapper.get_def(vreg(1)));
        mapper.merge_overlay();
        assert_eq!(None, mapper.get_use(vreg(1)));

        // Check multiple-update behavior in sorted mode.
        for i in 0..100 {
            mapper.set_overlay(vreg(2), Some(rreg(i)));
        }
        for i in 0..100 {
            mapper.set_overlay(vreg(2), Some(rreg(2 * i)));
        }
        mapper.finish_overlay();
        assert_eq!(Some(rreg(198)), mapper.get_def(vreg(2)));
        mapper.merge_overlay();
        assert_eq!(Some(rreg(198)), mapper.get_use(vreg(2)));

        for i in 0..100 {
            mapper.set_overlay(vreg(2), Some(rreg(i)));
        }
        for _ in 0..100 {
            mapper.set_overlay(vreg(2), None);
        }
        mapper.finish_overlay();
        assert_eq!(None, mapper.get_def(vreg(50)));
        mapper.merge_overlay();
        assert_eq!(None, mapper.get_use(vreg(50)));
    }
}

/// This implementation of RegUsageMapper relies on explicit mentions of vregs in instructions. The
/// caller must keep them, and for each instruction:
///
/// - clear the previous mappings, using `clear()`,
/// - feed the mappings from vregs to rregs for uses and defs, with `set_use`/`set_def`,
/// - then call the `Function::map_regs` function with this structure.
///
/// This avoids a lot of resizes, and makes it possible for algorithms that don't have precise live
/// ranges to fill in vreg -> rreg mappings.
#[derive(Debug)]
pub struct MentionRegUsageMapper {
    /// Sparse vector-map indexed by virtual register number. This is consulted for use-queries.
    uses: SmallVec<[(VirtualReg, RealReg); 8]>,

    /// Sparse vector-map indexed by virtual register number. This is consulted for def-queries.
    defs: SmallVec<[(VirtualReg, RealReg); 8]>,
}

impl MentionRegUsageMapper {
    pub(crate) fn new() -> Self {
        Self {
            uses: SmallVec::new(),
            defs: SmallVec::new(),
        }
    }
    pub(crate) fn clear(&mut self) {
        self.uses.clear();
        self.defs.clear();
    }
    pub(crate) fn lookup_use(&self, vreg: VirtualReg) -> Option<RealReg> {
        self.uses.iter().find(|&pair| pair.0 == vreg).map(|x| x.1)
    }
    pub(crate) fn lookup_def(&self, vreg: VirtualReg) -> Option<RealReg> {
        self.defs.iter().find(|&pair| pair.0 == vreg).map(|x| x.1)
    }
    pub(crate) fn set_use(&mut self, vreg: VirtualReg, rreg: RealReg) {
        self.uses.push((vreg, rreg));
    }
    pub(crate) fn set_def(&mut self, vreg: VirtualReg, rreg: RealReg) {
        self.defs.push((vreg, rreg));
    }
}

impl RegUsageMapper for MentionRegUsageMapper {
    fn get_use(&self, vreg: VirtualReg) -> Option<RealReg> {
        return self.lookup_use(vreg);
    }
    fn get_def(&self, vreg: VirtualReg) -> Option<RealReg> {
        return self.lookup_def(vreg);
    }
    fn get_mod(&self, vreg: VirtualReg) -> Option<RealReg> {
        let result = self.lookup_use(vreg);
        debug_assert_eq!(result, self.lookup_def(vreg));
        return result;
    }
}