1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
use std::fmt;
use ast::{self, Ast};
/// A trait for visiting an abstract syntax tree (AST) in depth first order.
///
/// The principle aim of this trait is to enable callers to perform case
/// analysis on an abstract syntax tree without necessarily using recursion.
/// In particular, this permits callers to do case analysis with constant stack
/// usage, which can be important since the size of an abstract syntax tree
/// may be proportional to end user input.
///
/// Typical usage of this trait involves providing an implementation and then
/// running it using the [`visit`](fn.visit.html) function.
///
/// Note that the abstract syntax tree for a regular expression is quite
/// complex. Unless you specifically need it, you might be able to use the
/// much simpler
/// [high-level intermediate representation](../hir/struct.Hir.html)
/// and its
/// [corresponding `Visitor` trait](../hir/trait.Visitor.html)
/// instead.
pub trait Visitor {
/// The result of visiting an AST.
type Output;
/// An error that visiting an AST might return.
type Err;
/// All implementors of `Visitor` must provide a `finish` method, which
/// yields the result of visiting the AST or an error.
fn finish(self) -> Result<Self::Output, Self::Err>;
/// This method is called before beginning traversal of the AST.
fn start(&mut self) {}
/// This method is called on an `Ast` before descending into child `Ast`
/// nodes.
fn visit_pre(&mut self, _ast: &Ast) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called on an `Ast` after descending all of its child
/// `Ast` nodes.
fn visit_post(&mut self, _ast: &Ast) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called between child nodes of an
/// [`Alternation`](struct.Alternation.html).
fn visit_alternation_in(&mut self) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called on every
/// [`ClassSetItem`](enum.ClassSetItem.html)
/// before descending into child nodes.
fn visit_class_set_item_pre(
&mut self,
_ast: &ast::ClassSetItem,
) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called on every
/// [`ClassSetItem`](enum.ClassSetItem.html)
/// after descending into child nodes.
fn visit_class_set_item_post(
&mut self,
_ast: &ast::ClassSetItem,
) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called on every
/// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html)
/// before descending into child nodes.
fn visit_class_set_binary_op_pre(
&mut self,
_ast: &ast::ClassSetBinaryOp,
) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called on every
/// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html)
/// after descending into child nodes.
fn visit_class_set_binary_op_post(
&mut self,
_ast: &ast::ClassSetBinaryOp,
) -> Result<(), Self::Err> {
Ok(())
}
/// This method is called between the left hand and right hand child nodes
/// of a [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html).
fn visit_class_set_binary_op_in(
&mut self,
_ast: &ast::ClassSetBinaryOp,
) -> Result<(), Self::Err> {
Ok(())
}
}
/// Executes an implementation of `Visitor` in constant stack space.
///
/// This function will visit every node in the given `Ast` while calling the
/// appropriate methods provided by the
/// [`Visitor`](trait.Visitor.html) trait.
///
/// The primary use case for this method is when one wants to perform case
/// analysis over an `Ast` without using a stack size proportional to the depth
/// of the `Ast`. Namely, this method will instead use constant stack size, but
/// will use heap space proportional to the size of the `Ast`. This may be
/// desirable in cases where the size of `Ast` is proportional to end user
/// input.
///
/// If the visitor returns an error at any point, then visiting is stopped and
/// the error is returned.
pub fn visit<V: Visitor>(ast: &Ast, visitor: V) -> Result<V::Output, V::Err> {
HeapVisitor::new().visit(ast, visitor)
}
/// HeapVisitor visits every item in an `Ast` recursively using constant stack
/// size and a heap size proportional to the size of the `Ast`.
struct HeapVisitor<'a> {
/// A stack of `Ast` nodes. This is roughly analogous to the call stack
/// used in a typical recursive visitor.
stack: Vec<(&'a Ast, Frame<'a>)>,
/// Similar to the `Ast` stack above, but is used only for character
/// classes. In particular, character classes embed their own mini
/// recursive syntax.
stack_class: Vec<(ClassInduct<'a>, ClassFrame<'a>)>,
}
/// Represents a single stack frame while performing structural induction over
/// an `Ast`.
enum Frame<'a> {
/// A stack frame allocated just before descending into a repetition
/// operator's child node.
Repetition(&'a ast::Repetition),
/// A stack frame allocated just before descending into a group's child
/// node.
Group(&'a ast::Group),
/// The stack frame used while visiting every child node of a concatenation
/// of expressions.
Concat {
/// The child node we are currently visiting.
head: &'a Ast,
/// The remaining child nodes to visit (which may be empty).
tail: &'a [Ast],
},
/// The stack frame used while visiting every child node of an alternation
/// of expressions.
Alternation {
/// The child node we are currently visiting.
head: &'a Ast,
/// The remaining child nodes to visit (which may be empty).
tail: &'a [Ast],
},
}
/// Represents a single stack frame while performing structural induction over
/// a character class.
enum ClassFrame<'a> {
/// The stack frame used while visiting every child node of a union of
/// character class items.
Union {
/// The child node we are currently visiting.
head: &'a ast::ClassSetItem,
/// The remaining child nodes to visit (which may be empty).
tail: &'a [ast::ClassSetItem],
},
/// The stack frame used while a binary class operation.
Binary { op: &'a ast::ClassSetBinaryOp },
/// A stack frame allocated just before descending into a binary operator's
/// left hand child node.
BinaryLHS {
op: &'a ast::ClassSetBinaryOp,
lhs: &'a ast::ClassSet,
rhs: &'a ast::ClassSet,
},
/// A stack frame allocated just before descending into a binary operator's
/// right hand child node.
BinaryRHS { op: &'a ast::ClassSetBinaryOp, rhs: &'a ast::ClassSet },
}
/// A representation of the inductive step when performing structural induction
/// over a character class.
///
/// Note that there is no analogous explicit type for the inductive step for
/// `Ast` nodes because the inductive step is just an `Ast`. For character
/// classes, the inductive step can produce one of two possible child nodes:
/// an item or a binary operation. (An item cannot be a binary operation
/// because that would imply binary operations can be unioned in the concrete
/// syntax, which is not possible.)
enum ClassInduct<'a> {
Item(&'a ast::ClassSetItem),
BinaryOp(&'a ast::ClassSetBinaryOp),
}
impl<'a> HeapVisitor<'a> {
fn new() -> HeapVisitor<'a> {
HeapVisitor { stack: vec![], stack_class: vec![] }
}
fn visit<V: Visitor>(
&mut self,
mut ast: &'a Ast,
mut visitor: V,
) -> Result<V::Output, V::Err> {
self.stack.clear();
self.stack_class.clear();
visitor.start();
loop {
visitor.visit_pre(ast)?;
if let Some(x) = self.induct(ast, &mut visitor)? {
let child = x.child();
self.stack.push((ast, x));
ast = child;
continue;
}
// No induction means we have a base case, so we can post visit
// it now.
visitor.visit_post(ast)?;
// At this point, we now try to pop our call stack until it is
// either empty or we hit another inductive case.
loop {
let (post_ast, frame) = match self.stack.pop() {
None => return visitor.finish(),
Some((post_ast, frame)) => (post_ast, frame),
};
// If this is a concat/alternate, then we might have additional
// inductive steps to process.
if let Some(x) = self.pop(frame) {
if let Frame::Alternation { .. } = x {
visitor.visit_alternation_in()?;
}
ast = x.child();
self.stack.push((post_ast, x));
break;
}
// Otherwise, we've finished visiting all the child nodes for
// this AST, so we can post visit it now.
visitor.visit_post(post_ast)?;
}
}
}
/// Build a stack frame for the given AST if one is needed (which occurs if
/// and only if there are child nodes in the AST). Otherwise, return None.
///
/// If this visits a class, then the underlying visitor implementation may
/// return an error which will be passed on here.
fn induct<V: Visitor>(
&mut self,
ast: &'a Ast,
visitor: &mut V,
) -> Result<Option<Frame<'a>>, V::Err> {
Ok(match *ast {
Ast::Class(ast::Class::Bracketed(ref x)) => {
self.visit_class(x, visitor)?;
None
}
Ast::Repetition(ref x) => Some(Frame::Repetition(x)),
Ast::Group(ref x) => Some(Frame::Group(x)),
Ast::Concat(ref x) if x.asts.is_empty() => None,
Ast::Concat(ref x) => {
Some(Frame::Concat { head: &x.asts[0], tail: &x.asts[1..] })
}
Ast::Alternation(ref x) if x.asts.is_empty() => None,
Ast::Alternation(ref x) => Some(Frame::Alternation {
head: &x.asts[0],
tail: &x.asts[1..],
}),
_ => None,
})
}
/// Pops the given frame. If the frame has an additional inductive step,
/// then return it, otherwise return `None`.
fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> {
match induct {
Frame::Repetition(_) => None,
Frame::Group(_) => None,
Frame::Concat { tail, .. } => {
if tail.is_empty() {
None
} else {
Some(Frame::Concat { head: &tail[0], tail: &tail[1..] })
}
}
Frame::Alternation { tail, .. } => {
if tail.is_empty() {
None
} else {
Some(Frame::Alternation {
head: &tail[0],
tail: &tail[1..],
})
}
}
}
}
fn visit_class<V: Visitor>(
&mut self,
ast: &'a ast::ClassBracketed,
visitor: &mut V,
) -> Result<(), V::Err> {
let mut ast = ClassInduct::from_bracketed(ast);
loop {
self.visit_class_pre(&ast, visitor)?;
if let Some(x) = self.induct_class(&ast) {
let child = x.child();
self.stack_class.push((ast, x));
ast = child;
continue;
}
self.visit_class_post(&ast, visitor)?;
// At this point, we now try to pop our call stack until it is
// either empty or we hit another inductive case.
loop {
let (post_ast, frame) = match self.stack_class.pop() {
None => return Ok(()),
Some((post_ast, frame)) => (post_ast, frame),
};
// If this is a union or a binary op, then we might have
// additional inductive steps to process.
if let Some(x) = self.pop_class(frame) {
if let ClassFrame::BinaryRHS { ref op, .. } = x {
visitor.visit_class_set_binary_op_in(op)?;
}
ast = x.child();
self.stack_class.push((post_ast, x));
break;
}
// Otherwise, we've finished visiting all the child nodes for
// this class node, so we can post visit it now.
self.visit_class_post(&post_ast, visitor)?;
}
}
}
/// Call the appropriate `Visitor` methods given an inductive step.
fn visit_class_pre<V: Visitor>(
&self,
ast: &ClassInduct<'a>,
visitor: &mut V,
) -> Result<(), V::Err> {
match *ast {
ClassInduct::Item(item) => {
visitor.visit_class_set_item_pre(item)?;
}
ClassInduct::BinaryOp(op) => {
visitor.visit_class_set_binary_op_pre(op)?;
}
}
Ok(())
}
/// Call the appropriate `Visitor` methods given an inductive step.
fn visit_class_post<V: Visitor>(
&self,
ast: &ClassInduct<'a>,
visitor: &mut V,
) -> Result<(), V::Err> {
match *ast {
ClassInduct::Item(item) => {
visitor.visit_class_set_item_post(item)?;
}
ClassInduct::BinaryOp(op) => {
visitor.visit_class_set_binary_op_post(op)?;
}
}
Ok(())
}
/// Build a stack frame for the given class node if one is needed (which
/// occurs if and only if there are child nodes). Otherwise, return None.
fn induct_class(&self, ast: &ClassInduct<'a>) -> Option<ClassFrame<'a>> {
match *ast {
ClassInduct::Item(&ast::ClassSetItem::Bracketed(ref x)) => {
match x.kind {
ast::ClassSet::Item(ref item) => {
Some(ClassFrame::Union { head: item, tail: &[] })
}
ast::ClassSet::BinaryOp(ref op) => {
Some(ClassFrame::Binary { op: op })
}
}
}
ClassInduct::Item(&ast::ClassSetItem::Union(ref x)) => {
if x.items.is_empty() {
None
} else {
Some(ClassFrame::Union {
head: &x.items[0],
tail: &x.items[1..],
})
}
}
ClassInduct::BinaryOp(op) => Some(ClassFrame::BinaryLHS {
op: op,
lhs: &op.lhs,
rhs: &op.rhs,
}),
_ => None,
}
}
/// Pops the given frame. If the frame has an additional inductive step,
/// then return it, otherwise return `None`.
fn pop_class(&self, induct: ClassFrame<'a>) -> Option<ClassFrame<'a>> {
match induct {
ClassFrame::Union { tail, .. } => {
if tail.is_empty() {
None
} else {
Some(ClassFrame::Union {
head: &tail[0],
tail: &tail[1..],
})
}
}
ClassFrame::Binary { .. } => None,
ClassFrame::BinaryLHS { op, rhs, .. } => {
Some(ClassFrame::BinaryRHS { op: op, rhs: rhs })
}
ClassFrame::BinaryRHS { .. } => None,
}
}
}
impl<'a> Frame<'a> {
/// Perform the next inductive step on this frame and return the next
/// child AST node to visit.
fn child(&self) -> &'a Ast {
match *self {
Frame::Repetition(rep) => &rep.ast,
Frame::Group(group) => &group.ast,
Frame::Concat { head, .. } => head,
Frame::Alternation { head, .. } => head,
}
}
}
impl<'a> ClassFrame<'a> {
/// Perform the next inductive step on this frame and return the next
/// child class node to visit.
fn child(&self) -> ClassInduct<'a> {
match *self {
ClassFrame::Union { head, .. } => ClassInduct::Item(head),
ClassFrame::Binary { op, .. } => ClassInduct::BinaryOp(op),
ClassFrame::BinaryLHS { ref lhs, .. } => {
ClassInduct::from_set(lhs)
}
ClassFrame::BinaryRHS { ref rhs, .. } => {
ClassInduct::from_set(rhs)
}
}
}
}
impl<'a> ClassInduct<'a> {
fn from_bracketed(ast: &'a ast::ClassBracketed) -> ClassInduct<'a> {
ClassInduct::from_set(&ast.kind)
}
fn from_set(ast: &'a ast::ClassSet) -> ClassInduct<'a> {
match *ast {
ast::ClassSet::Item(ref item) => ClassInduct::Item(item),
ast::ClassSet::BinaryOp(ref op) => ClassInduct::BinaryOp(op),
}
}
}
impl<'a> fmt::Debug for ClassFrame<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let x = match *self {
ClassFrame::Union { .. } => "Union",
ClassFrame::Binary { .. } => "Binary",
ClassFrame::BinaryLHS { .. } => "BinaryLHS",
ClassFrame::BinaryRHS { .. } => "BinaryRHS",
};
write!(f, "{}", x)
}
}
impl<'a> fmt::Debug for ClassInduct<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let x = match *self {
ClassInduct::Item(it) => match *it {
ast::ClassSetItem::Empty(_) => "Item(Empty)",
ast::ClassSetItem::Literal(_) => "Item(Literal)",
ast::ClassSetItem::Range(_) => "Item(Range)",
ast::ClassSetItem::Ascii(_) => "Item(Ascii)",
ast::ClassSetItem::Perl(_) => "Item(Perl)",
ast::ClassSetItem::Unicode(_) => "Item(Unicode)",
ast::ClassSetItem::Bracketed(_) => "Item(Bracketed)",
ast::ClassSetItem::Union(_) => "Item(Union)",
},
ClassInduct::BinaryOp(it) => match it.kind {
ast::ClassSetBinaryOpKind::Intersection => {
"BinaryOp(Intersection)"
}
ast::ClassSetBinaryOpKind::Difference => {
"BinaryOp(Difference)"
}
ast::ClassSetBinaryOpKind::SymmetricDifference => {
"BinaryOp(SymmetricDifference)"
}
},
};
write!(f, "{}", x)
}
}
|