1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
mod exponent;
mod mantissa;
use core::{mem, ptr};
use self::exponent::*;
use self::mantissa::*;
use common;
use d2s;
use d2s::*;
use f2s::*;
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
/// Print f64 to the given buffer and return number of bytes written.
///
/// At most 24 bytes will be written.
///
/// ## Special cases
///
/// This function **does not** check for NaN or infinity. If the input
/// number is not a finite float, the printed representation will be some
/// correctly formatted but unspecified numerical value.
///
/// Please check [`is_finite`] yourself before calling this function, or
/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
///
/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_finite
/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_nan
/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f64.html#method.is_infinite
///
/// ## Safety
///
/// The `result` pointer argument must point to sufficiently many writable bytes
/// to hold Ryū's representation of `f`.
///
/// ## Example
///
/// ```edition2018
/// use std::mem::MaybeUninit;
///
/// let f = 1.234f64;
///
/// unsafe {
/// let mut buffer: [MaybeUninit<u8>; 24] = MaybeUninit::uninit().assume_init();
/// let len = ryu::raw::format64(f, buffer.as_mut_ptr() as *mut u8);
/// let slice = std::slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
/// let print = std::str::from_utf8_unchecked(slice);
/// assert_eq!(print, "1.234");
/// }
/// ```
#[cfg_attr(must_use_return, must_use)]
#[cfg_attr(feature = "no-panic", no_panic)]
pub unsafe fn format64(f: f64, result: *mut u8) -> usize {
let bits = mem::transmute::<f64, u64>(f);
let sign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
let ieee_mantissa = bits & ((1u64 << DOUBLE_MANTISSA_BITS) - 1);
let ieee_exponent =
(bits >> DOUBLE_MANTISSA_BITS) as u32 & ((1u32 << DOUBLE_EXPONENT_BITS) - 1);
let mut index = 0isize;
if sign {
*result = b'-';
index += 1;
}
if ieee_exponent == 0 && ieee_mantissa == 0 {
ptr::copy_nonoverlapping(b"0.0".as_ptr(), result.offset(index), 3);
return sign as usize + 3;
}
let v = d2d(ieee_mantissa, ieee_exponent);
let length = d2s::decimal_length17(v.mantissa) as isize;
let k = v.exponent as isize;
let kk = length + k; // 10^(kk-1) <= v < 10^kk
debug_assert!(k >= -324);
if 0 <= k && kk <= 16 {
// 1234e7 -> 12340000000.0
write_mantissa_long(v.mantissa, result.offset(index + length));
for i in length..kk {
*result.offset(index + i) = b'0';
}
*result.offset(index + kk) = b'.';
*result.offset(index + kk + 1) = b'0';
index as usize + kk as usize + 2
} else if 0 < kk && kk <= 16 {
// 1234e-2 -> 12.34
write_mantissa_long(v.mantissa, result.offset(index + length + 1));
ptr::copy(result.offset(index + 1), result.offset(index), kk as usize);
*result.offset(index + kk) = b'.';
index as usize + length as usize + 1
} else if -5 < kk && kk <= 0 {
// 1234e-6 -> 0.001234
*result.offset(index) = b'0';
*result.offset(index + 1) = b'.';
let offset = 2 - kk;
for i in 2..offset {
*result.offset(index + i) = b'0';
}
write_mantissa_long(v.mantissa, result.offset(index + length + offset));
index as usize + length as usize + offset as usize
} else if length == 1 {
// 1e30
*result.offset(index) = b'0' + v.mantissa as u8;
*result.offset(index + 1) = b'e';
index as usize + 2 + write_exponent3(kk - 1, result.offset(index + 2))
} else {
// 1234e30 -> 1.234e33
write_mantissa_long(v.mantissa, result.offset(index + length + 1));
*result.offset(index) = *result.offset(index + 1);
*result.offset(index + 1) = b'.';
*result.offset(index + length + 1) = b'e';
index as usize
+ length as usize
+ 2
+ write_exponent3(kk - 1, result.offset(index + length + 2))
}
}
/// Print f32 to the given buffer and return number of bytes written.
///
/// At most 16 bytes will be written.
///
/// ## Special cases
///
/// This function **does not** check for NaN or infinity. If the input
/// number is not a finite float, the printed representation will be some
/// correctly formatted but unspecified numerical value.
///
/// Please check [`is_finite`] yourself before calling this function, or
/// check [`is_nan`] and [`is_infinite`] and handle those cases yourself.
///
/// [`is_finite`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_finite
/// [`is_nan`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan
/// [`is_infinite`]: https://doc.rust-lang.org/std/primitive.f32.html#method.is_infinite
///
/// ## Safety
///
/// The `result` pointer argument must point to sufficiently many writable bytes
/// to hold Ryū's representation of `f`.
///
/// ## Example
///
/// ```edition2018
/// use std::mem::MaybeUninit;
///
/// let f = 1.234f32;
///
/// unsafe {
/// let mut buffer: [MaybeUninit<u8>; 16] = MaybeUninit::uninit().assume_init();
/// let len = ryu::raw::format32(f, buffer.as_mut_ptr() as *mut u8);
/// let slice = std::slice::from_raw_parts(buffer.as_ptr() as *const u8, len);
/// let print = std::str::from_utf8_unchecked(slice);
/// assert_eq!(print, "1.234");
/// }
/// ```
#[cfg_attr(must_use_return, must_use)]
#[cfg_attr(feature = "no-panic", no_panic)]
pub unsafe fn format32(f: f32, result: *mut u8) -> usize {
let bits = mem::transmute::<f32, u32>(f);
let sign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
let ieee_mantissa = bits & ((1u32 << FLOAT_MANTISSA_BITS) - 1);
let ieee_exponent =
((bits >> FLOAT_MANTISSA_BITS) & ((1u32 << FLOAT_EXPONENT_BITS) - 1)) as u32;
let mut index = 0isize;
if sign {
*result = b'-';
index += 1;
}
if ieee_exponent == 0 && ieee_mantissa == 0 {
ptr::copy_nonoverlapping(b"0.0".as_ptr(), result.offset(index), 3);
return sign as usize + 3;
}
let v = f2d(ieee_mantissa, ieee_exponent);
let length = common::decimal_length9(v.mantissa) as isize;
let k = v.exponent as isize;
let kk = length + k; // 10^(kk-1) <= v < 10^kk
debug_assert!(k >= -45);
if 0 <= k && kk <= 13 {
// 1234e7 -> 12340000000.0
write_mantissa(v.mantissa, result.offset(index + length));
for i in length..kk {
*result.offset(index + i) = b'0';
}
*result.offset(index + kk) = b'.';
*result.offset(index + kk + 1) = b'0';
index as usize + kk as usize + 2
} else if 0 < kk && kk <= 13 {
// 1234e-2 -> 12.34
write_mantissa(v.mantissa, result.offset(index + length + 1));
ptr::copy(result.offset(index + 1), result.offset(index), kk as usize);
*result.offset(index + kk) = b'.';
index as usize + length as usize + 1
} else if -6 < kk && kk <= 0 {
// 1234e-6 -> 0.001234
*result.offset(index) = b'0';
*result.offset(index + 1) = b'.';
let offset = 2 - kk;
for i in 2..offset {
*result.offset(index + i) = b'0';
}
write_mantissa(v.mantissa, result.offset(index + length + offset));
index as usize + length as usize + offset as usize
} else if length == 1 {
// 1e30
*result.offset(index) = b'0' + v.mantissa as u8;
*result.offset(index + 1) = b'e';
index as usize + 2 + write_exponent2(kk - 1, result.offset(index + 2))
} else {
// 1234e30 -> 1.234e33
write_mantissa(v.mantissa, result.offset(index + length + 1));
*result.offset(index) = *result.offset(index + 1);
*result.offset(index + 1) = b'.';
*result.offset(index + length + 1) = b'e';
index as usize
+ length as usize
+ 2
+ write_exponent2(kk - 1, result.offset(index + length + 2))
}
}
|