1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
use std::convert::TryInto;
use std::mem::replace;
use std::ops;
use crate::drain::Drain;
use crate::free_pointer::FreePointer;
use crate::generation::Generation;
use crate::into_iter::IntoIter;
use crate::iter::Iter;
use crate::iter_mut::IterMut;
/// Container that can have elements inserted into it and removed from it.
///
/// Indices use the [`Index`][Index] type, created by inserting values with
/// [`Arena::insert`][Arena::insert].
#[derive(Debug, Clone)]
pub struct Arena<T> {
storage: Vec<Entry<T>>,
len: u32,
first_free: Option<FreePointer>,
}
/// Index type for [`Arena`][Arena] that has a generation attached to it.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Index {
pub(crate) slot: u32,
pub(crate) generation: Generation,
}
impl Index {
/// Convert this `Index` to an equivalent `u64` representation. Mostly
/// useful for passing to code outside of Rust.
#[allow(clippy::integer_arithmetic)]
pub fn to_bits(self) -> u64 {
// This is safe because a `u32` bit-shifted by 32 will still fit in a `u64`.
((self.generation.to_u32() as u64) << 32) | (self.slot as u64)
}
/// Convert back from a value generated with `Index::to_bits`. Don't call
/// this with arbitrary inputs; you'll almost certainly just get invalid
/// and/or malformed indices.
///
/// If fed an index which was not generated by thunderdome or even just run
/// `Index::from_bits(0)`, this function may panic!
#[allow(clippy::integer_arithmetic)]
pub fn from_bits(bits: u64) -> Self {
// By bit-shifting right by 32, we're undoing the left-shift in `to_bits`
// thus this is okay by the same rationale.
let generation = Generation::from_u32((bits >> 32) as u32);
let slot = bits as u32;
Self { generation, slot }
}
}
#[derive(Debug, Clone)]
pub(crate) enum Entry<T> {
Occupied(OccupiedEntry<T>),
Empty(EmptyEntry),
}
impl<T> Entry<T> {
/// Consume the entry, and if it's occupied, return the value.
fn into_value(self) -> Option<T> {
match self {
Entry::Occupied(occupied) => Some(occupied.value),
Entry::Empty(_) => None,
}
}
/// If the entry is empty, return a copy of the emptiness data.
fn get_empty(&self) -> Option<EmptyEntry> {
match self {
Entry::Empty(empty) => Some(*empty),
Entry::Occupied(_) => None,
}
}
}
#[derive(Debug, Clone)]
pub(crate) struct OccupiedEntry<T> {
pub(crate) generation: Generation,
pub(crate) value: T,
}
#[derive(Debug, Clone, Copy)]
pub(crate) struct EmptyEntry {
pub(crate) generation: Generation,
pub(crate) next_free: Option<FreePointer>,
}
impl<T> Arena<T> {
/// Construct an empty arena.
pub fn new() -> Self {
Self {
storage: Vec::new(),
len: 0,
first_free: None,
}
}
/// Construct an empty arena with space to hold exactly `capacity` elements
/// without reallocating.
pub fn with_capacity(capacity: usize) -> Self {
Self {
storage: Vec::with_capacity(capacity),
len: 0,
first_free: None,
}
}
/// Return the number of elements contained in the arena.
pub fn len(&self) -> usize {
self.len as usize
}
/// Return the number of elements the arena can hold without allocating,
/// including the elements currently in the arena.
pub fn capacity(&self) -> usize {
self.storage.capacity()
}
/// Returns whether the arena is empty.
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Insert a new value into the arena, returning an index that can be used
/// to later retrieve the value.
pub fn insert(&mut self, value: T) -> Index {
// This value will definitely be inserted, so we can update length now.
self.len = self
.len
.checked_add(1)
.unwrap_or_else(|| panic!("Cannot insert more than u32::MAX elements into Arena"));
// If there was a previously free entry, we can re-use its slot as long
// as we increment its generation.
if let Some(free_pointer) = self.first_free {
let slot = free_pointer.slot();
let entry = self.storage.get_mut(slot as usize).unwrap_or_else(|| {
unreachable!("first_free pointed past the end of the arena's storage")
});
let empty = entry
.get_empty()
.unwrap_or_else(|| unreachable!("first_free pointed to an occupied entry"));
// If there is another empty entry after this one, we'll update the
// arena to point to it to use it on the next insertion.
self.first_free = empty.next_free;
// Overwrite the entry directly using our mutable reference instead
// of indexing into our storage again. This should avoid an
// additional bounds check.
let generation = empty.generation.next();
*entry = Entry::Occupied(OccupiedEntry { generation, value });
Index { slot, generation }
} else {
// There were no more empty entries left in our free list, so we'll
// create a new first-generation entry and push it into storage.
let generation = Generation::first();
let slot: u32 = self.storage.len().try_into().unwrap_or_else(|_| {
unreachable!("Arena storage exceeded what can be represented by a u32")
});
self.storage
.push(Entry::Occupied(OccupiedEntry { generation, value }));
Index { slot, generation }
}
}
/// Get an immutable reference to a value inside the arena by
/// [`Index`][Index], returning `None` if the index is not contained in the
/// arena.
pub fn get(&self, index: Index) -> Option<&T> {
match self.storage.get(index.slot as usize) {
Some(Entry::Occupied(occupied)) if occupied.generation == index.generation => {
Some(&occupied.value)
}
_ => None,
}
}
/// Get a mutable reference to a value inside the arena by [`Index`][Index],
/// returning `None` if the index is not contained in the arena.
pub fn get_mut(&mut self, index: Index) -> Option<&mut T> {
match self.storage.get_mut(index.slot as usize) {
Some(Entry::Occupied(occupied)) if occupied.generation == index.generation => {
Some(&mut occupied.value)
}
_ => None,
}
}
/// Remove the value contained at the given index from the arena, returning
/// it if it was present.
pub fn remove(&mut self, index: Index) -> Option<T> {
let entry = self.storage.get_mut(index.slot as usize)?;
match entry {
Entry::Occupied(occupied) if occupied.generation == index.generation => {
// We can replace an occupied entry with an empty entry with the
// same generation. On next insertion, this generation will
// increment.
let new_entry = Entry::Empty(EmptyEntry {
generation: occupied.generation,
next_free: self.first_free,
});
// Swap our new entry into our storage and take ownership of the
// old entry. We'll consume it for its value so we can give that
// back to our caller.
let old_entry = replace(entry, new_entry);
let value = old_entry.into_value().unwrap_or_else(|| unreachable!());
// The next time we insert, we can re-use the empty entry we
// just created. If another removal happens before then, that
// entry will be used before this one (FILO).
self.first_free = Some(FreePointer::from_slot(index.slot));
self.len = self.len.checked_sub(1).unwrap_or_else(|| unreachable!());
Some(value)
}
_ => None,
}
}
/// Invalidate the given index and return a new index to the same value. This
/// is roughly equivalent to `remove` followed by `insert`, but much faster.
/// If the old index is already invalid, this method returns `None`.
pub fn invalidate(&mut self, index: Index) -> Option<Index> {
let entry = self.storage.get_mut(index.slot as usize)?;
match entry {
Entry::Occupied(occupied) if occupied.generation == index.generation => {
occupied.generation = occupied.generation.next();
Some(Index {
generation: occupied.generation,
..index
})
}
_ => None,
}
}
/// Clear the arena and drop all elements.
pub fn clear(&mut self) {
self.drain().for_each(drop);
}
/// Iterate over all of the indexes and values contained in the arena.
///
/// Iteration order is not defined.
pub fn iter(&self) -> Iter<'_, T> {
Iter {
inner: self.storage.iter().enumerate(),
len: self.len,
}
}
/// Iterate over all of the indexes and values contained in the arena, with
/// mutable access to each value.
///
/// Iteration order is not defined.
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut {
inner: self.storage.iter_mut().enumerate(),
len: self.len,
}
}
/// Returns an iterator that removes each element from the arena.
///
/// Iteration order is not defined.
///
/// If the iterator is dropped before it is fully consumed, any uniterated
/// items will be dropped from the arena, and the arena will be empty.
/// The arena's capacity will not be changed.
pub fn drain(&mut self) -> Drain<'_, T> {
Drain {
arena: self,
slot: 0,
}
}
}
/// Methods exposed only within the crate.
impl<T> Arena<T> {
/// This method is a lot like `remove`, but takes no generation. It's used
/// as part of `drain` and can likely be exposed as a public API eventually.
pub(crate) fn remove_entry_by_slot(&mut self, slot: u32) -> Option<(Index, T)> {
let entry = self.storage.get_mut(slot as usize)?;
match entry {
Entry::Occupied(occupied) => {
// Construct the index that would be used to access this entry.
let index = Index {
generation: occupied.generation,
slot,
};
// This occupied entry will be replaced with an empty one of the
// same generation. Generation will be incremented on the next
// insert.
let next_entry = Entry::Empty(EmptyEntry {
generation: occupied.generation,
next_free: self.first_free,
});
// Swap new entry into place and consume the old one.
let old_entry = replace(entry, next_entry);
let value = old_entry.into_value().unwrap_or_else(|| unreachable!());
// Set this entry as the next one that should be inserted into,
// should an insertion happen.
self.first_free = Some(FreePointer::from_slot(slot));
self.len = self.len.checked_sub(1).unwrap_or_else(|| unreachable!());
Some((index, value))
}
_ => None,
}
}
}
impl<T> Default for Arena<T> {
fn default() -> Self {
Arena::new()
}
}
impl<T> IntoIterator for Arena<T> {
type Item = (Index, T);
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
arena: self,
slot: 0,
}
}
}
impl<T> ops::Index<Index> for Arena<T> {
type Output = T;
fn index(&self, index: Index) -> &Self::Output {
self.get(index)
.unwrap_or_else(|| panic!("No entry at index {:?}", index))
}
}
impl<T> ops::IndexMut<Index> for Arena<T> {
fn index_mut(&mut self, index: Index) -> &mut Self::Output {
self.get_mut(index)
.unwrap_or_else(|| panic!("No entry at index {:?}", index))
}
}
#[cfg(test)]
mod test {
use super::{Arena, Index};
use std::mem::size_of;
#[test]
fn size_of_index() {
assert_eq!(size_of::<Index>(), 8);
assert_eq!(size_of::<Option<Index>>(), 8);
}
#[test]
fn new() {
let arena: Arena<u32> = Arena::new();
assert_eq!(arena.len(), 0);
assert_eq!(arena.capacity(), 0);
}
#[test]
fn with_capacity() {
let arena: Arena<u32> = Arena::with_capacity(8);
assert_eq!(arena.len(), 0);
assert_eq!(arena.capacity(), 8);
}
#[test]
fn insert_and_get() {
let mut arena = Arena::new();
let one = arena.insert(1);
assert_eq!(arena.len(), 1);
assert_eq!(arena.get(one), Some(&1));
let two = arena.insert(2);
assert_eq!(arena.len(), 2);
assert_eq!(arena.get(one), Some(&1));
assert_eq!(arena.get(two), Some(&2));
}
#[test]
fn insert_remove_get() {
let mut arena = Arena::new();
let one = arena.insert(1);
let two = arena.insert(2);
assert_eq!(arena.len(), 2);
assert_eq!(arena.remove(two), Some(2));
let three = arena.insert(3);
assert_eq!(arena.len(), 2);
assert_eq!(arena.get(one), Some(&1));
assert_eq!(arena.get(three), Some(&3));
assert_eq!(arena.get(two), None);
}
#[test]
fn get_mut() {
let mut arena = Arena::new();
let foo = arena.insert(5);
let handle = arena.get_mut(foo).unwrap();
*handle = 6;
assert_eq!(arena.get(foo), Some(&6));
}
#[test]
fn insert_remove_insert_capacity() {
let mut arena = Arena::with_capacity(2);
assert_eq!(arena.capacity(), 2);
let a = arena.insert("a");
let b = arena.insert("b");
assert_eq!(arena.len(), 2);
assert_eq!(arena.capacity(), 2);
arena.remove(a);
arena.remove(b);
assert_eq!(arena.len(), 0);
assert_eq!(arena.capacity(), 2);
let _a2 = arena.insert("a2");
let _b2 = arena.insert("b2");
assert_eq!(arena.len(), 2);
assert_eq!(arena.capacity(), 2);
}
#[test]
fn invalidate() {
let mut arena = Arena::new();
let a = arena.insert("a");
assert_eq!(arena.get(a), Some(&"a"));
let new_a = arena.invalidate(a).unwrap();
assert_eq!(arena.get(a), None);
assert_eq!(arena.get(new_a), Some(&"a"));
}
#[test]
fn index_bits_roundtrip() {
let index = Index::from_bits(0x1BADCAFE_DEADBEEF);
assert_eq!(index.to_bits(), 0x1BADCAFE_DEADBEEF);
}
#[test]
#[should_panic]
fn index_bits_panic_on_zero_generation() {
Index::from_bits(0x00000000_DEADBEEF);
}
}
|