1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
//! Windows-specific types for signal handling.
//!
//! This module is only defined on Windows and contains the primary `Event` type
//! for receiving notifications of events. These events are listened for via the
//! `SetConsoleCtrlHandler` function which receives events of the type
//! `CTRL_C_EVENT` and `CTRL_BREAK_EVENT`
#![cfg(windows)]
use crate::signal::registry::{globals, EventId, EventInfo, Init, Storage};
use crate::sync::mpsc::{channel, Receiver};
use std::convert::TryFrom;
use std::io;
use std::sync::Once;
use std::task::{Context, Poll};
use winapi::shared::minwindef::*;
use winapi::um::consoleapi::SetConsoleCtrlHandler;
use winapi::um::wincon::*;
#[derive(Debug)]
pub(crate) struct OsStorage {
ctrl_c: EventInfo,
ctrl_break: EventInfo,
}
impl Init for OsStorage {
fn init() -> Self {
Self {
ctrl_c: EventInfo::default(),
ctrl_break: EventInfo::default(),
}
}
}
impl Storage for OsStorage {
fn event_info(&self, id: EventId) -> Option<&EventInfo> {
match DWORD::try_from(id) {
Ok(CTRL_C_EVENT) => Some(&self.ctrl_c),
Ok(CTRL_BREAK_EVENT) => Some(&self.ctrl_break),
_ => None,
}
}
fn for_each<'a, F>(&'a self, mut f: F)
where
F: FnMut(&'a EventInfo),
{
f(&self.ctrl_c);
f(&self.ctrl_break);
}
}
#[derive(Debug)]
pub(crate) struct OsExtraData {}
impl Init for OsExtraData {
fn init() -> Self {
Self {}
}
}
/// Stream of events discovered via `SetConsoleCtrlHandler`.
///
/// This structure can be used to listen for events of the type `CTRL_C_EVENT`
/// and `CTRL_BREAK_EVENT`. The `Stream` trait is implemented for this struct
/// and will resolve for each notification received by the process. Note that
/// there are few limitations with this as well:
///
/// * A notification to this process notifies *all* `Event` streams for that
/// event type.
/// * Notifications to an `Event` stream **are coalesced** if they aren't
/// processed quickly enough. This means that if two notifications are
/// received back-to-back, then the stream may only receive one item about the
/// two notifications.
#[must_use = "streams do nothing unless polled"]
#[derive(Debug)]
pub(crate) struct Event {
rx: Receiver<()>,
}
pub(crate) fn ctrl_c() -> io::Result<Event> {
Event::new(CTRL_C_EVENT)
}
impl Event {
fn new(signum: DWORD) -> io::Result<Self> {
global_init()?;
let (tx, rx) = channel(1);
globals().register_listener(signum as EventId, tx);
Ok(Event { rx })
}
pub(crate) async fn recv(&mut self) -> Option<()> {
use crate::future::poll_fn;
poll_fn(|cx| self.rx.poll_recv(cx)).await
}
}
fn global_init() -> io::Result<()> {
static INIT: Once = Once::new();
let mut init = None;
INIT.call_once(|| unsafe {
let rc = SetConsoleCtrlHandler(Some(handler), TRUE);
let ret = if rc == 0 {
Err(io::Error::last_os_error())
} else {
Ok(())
};
init = Some(ret);
});
init.unwrap_or_else(|| Ok(()))
}
unsafe extern "system" fn handler(ty: DWORD) -> BOOL {
let globals = globals();
globals.record_event(ty as EventId);
// According to https://docs.microsoft.com/en-us/windows/console/handlerroutine
// the handler routine is always invoked in a new thread, thus we don't
// have the same restrictions as in Unix signal handlers, meaning we can
// go ahead and perform the broadcast here.
if globals.broadcast() {
TRUE
} else {
// No one is listening for this notification any more
// let the OS fire the next (possibly the default) handler.
FALSE
}
}
/// Represents a stream which receives "ctrl-break" notifications sent to the process
/// via `SetConsoleCtrlHandler`.
///
/// A notification to this process notifies *all* streams listening for
/// this event. Moreover, the notifications **are coalesced** if they aren't processed
/// quickly enough. This means that if two notifications are received back-to-back,
/// then the stream may only receive one item about the two notifications.
#[must_use = "streams do nothing unless polled"]
#[derive(Debug)]
pub struct CtrlBreak {
inner: Event,
}
impl CtrlBreak {
/// Receives the next signal notification event.
///
/// `None` is returned if no more events can be received by this stream.
///
/// # Examples
///
/// ```rust,no_run
/// use tokio::signal::windows::ctrl_break;
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // An infinite stream of CTRL-BREAK events.
/// let mut stream = ctrl_break()?;
///
/// // Print whenever a CTRL-BREAK event is received
/// loop {
/// stream.recv().await;
/// println!("got signal CTRL-BREAK");
/// }
/// }
/// ```
pub async fn recv(&mut self) -> Option<()> {
use crate::future::poll_fn;
poll_fn(|cx| self.poll_recv(cx)).await
}
/// Polls to receive the next signal notification event, outside of an
/// `async` context.
///
/// `None` is returned if no more events can be received by this stream.
///
/// # Examples
///
/// Polling from a manually implemented future
///
/// ```rust,no_run
/// use std::pin::Pin;
/// use std::future::Future;
/// use std::task::{Context, Poll};
/// use tokio::signal::windows::CtrlBreak;
///
/// struct MyFuture {
/// ctrl_break: CtrlBreak,
/// }
///
/// impl Future for MyFuture {
/// type Output = Option<()>;
///
/// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
/// println!("polling MyFuture");
/// self.ctrl_break.poll_recv(cx)
/// }
/// }
/// ```
pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>> {
self.inner.rx.poll_recv(cx)
}
}
cfg_stream! {
impl crate::stream::Stream for CtrlBreak {
type Item = ();
fn poll_next(mut self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<()>> {
self.poll_recv(cx)
}
}
}
/// Creates a new stream which receives "ctrl-break" notifications sent to the
/// process.
///
/// # Examples
///
/// ```rust,no_run
/// use tokio::signal::windows::ctrl_break;
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // An infinite stream of CTRL-BREAK events.
/// let mut stream = ctrl_break()?;
///
/// // Print whenever a CTRL-BREAK event is received
/// loop {
/// stream.recv().await;
/// println!("got signal CTRL-BREAK");
/// }
/// }
/// ```
pub fn ctrl_break() -> io::Result<CtrlBreak> {
Event::new(CTRL_BREAK_EVENT).map(|inner| CtrlBreak { inner })
}
#[cfg(all(test, not(loom)))]
mod tests {
use super::*;
use crate::runtime::Runtime;
use crate::stream::StreamExt;
use tokio_test::{assert_ok, assert_pending, assert_ready_ok, task};
#[test]
fn ctrl_c() {
let rt = rt();
rt.enter(|| {
let mut ctrl_c = task::spawn(crate::signal::ctrl_c());
assert_pending!(ctrl_c.poll());
// Windows doesn't have a good programmatic way of sending events
// like sending signals on Unix, so we'll stub out the actual OS
// integration and test that our handling works.
unsafe {
super::handler(CTRL_C_EVENT);
}
assert_ready_ok!(ctrl_c.poll());
});
}
#[test]
fn ctrl_break() {
let mut rt = rt();
rt.block_on(async {
let mut ctrl_break = assert_ok!(super::ctrl_break());
// Windows doesn't have a good programmatic way of sending events
// like sending signals on Unix, so we'll stub out the actual OS
// integration and test that our handling works.
unsafe {
super::handler(CTRL_BREAK_EVENT);
}
ctrl_break.next().await.unwrap();
});
}
fn rt() -> Runtime {
crate::runtime::Builder::new()
.basic_scheduler()
.build()
.unwrap()
}
}
|