1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
#![warn(rust_2018_idioms)]
#![cfg(feature = "full")]
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::{TcpListener, TcpStream};
use tokio::runtime::{self, Runtime};
use tokio::sync::oneshot;
use tokio_test::{assert_err, assert_ok};
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::Relaxed;
use std::sync::{mpsc, Arc};
use std::task::{Context, Poll};
#[test]
fn single_thread() {
// No panic when starting a runtime w/ a single thread
let _ = runtime::Builder::new()
.threaded_scheduler()
.enable_all()
.core_threads(1)
.build();
}
#[test]
fn many_oneshot_futures() {
// used for notifying the main thread
const NUM: usize = 1_000;
for _ in 0..5 {
let (tx, rx) = mpsc::channel();
let rt = rt();
let cnt = Arc::new(AtomicUsize::new(0));
for _ in 0..NUM {
let cnt = cnt.clone();
let tx = tx.clone();
rt.spawn(async move {
let num = cnt.fetch_add(1, Relaxed) + 1;
if num == NUM {
tx.send(()).unwrap();
}
});
}
rx.recv().unwrap();
// Wait for the pool to shutdown
drop(rt);
}
}
#[test]
fn many_multishot_futures() {
use tokio::sync::mpsc;
const CHAIN: usize = 200;
const CYCLES: usize = 5;
const TRACKS: usize = 50;
for _ in 0..50 {
let mut rt = rt();
let mut start_txs = Vec::with_capacity(TRACKS);
let mut final_rxs = Vec::with_capacity(TRACKS);
for _ in 0..TRACKS {
let (start_tx, mut chain_rx) = mpsc::channel(10);
for _ in 0..CHAIN {
let (mut next_tx, next_rx) = mpsc::channel(10);
// Forward all the messages
rt.spawn(async move {
while let Some(v) = chain_rx.recv().await {
next_tx.send(v).await.unwrap();
}
});
chain_rx = next_rx;
}
// This final task cycles if needed
let (mut final_tx, final_rx) = mpsc::channel(10);
let mut cycle_tx = start_tx.clone();
let mut rem = CYCLES;
rt.spawn(async move {
for _ in 0..CYCLES {
let msg = chain_rx.recv().await.unwrap();
rem -= 1;
if rem == 0 {
final_tx.send(msg).await.unwrap();
} else {
cycle_tx.send(msg).await.unwrap();
}
}
});
start_txs.push(start_tx);
final_rxs.push(final_rx);
}
{
rt.block_on(async move {
for mut start_tx in start_txs {
start_tx.send("ping").await.unwrap();
}
for mut final_rx in final_rxs {
final_rx.recv().await.unwrap();
}
});
}
}
}
#[test]
fn spawn_shutdown() {
let mut rt = rt();
let (tx, rx) = mpsc::channel();
rt.block_on(async {
tokio::spawn(client_server(tx.clone()));
});
// Use spawner
rt.spawn(client_server(tx));
assert_ok!(rx.recv());
assert_ok!(rx.recv());
drop(rt);
assert_err!(rx.try_recv());
}
async fn client_server(tx: mpsc::Sender<()>) {
let mut server = assert_ok!(TcpListener::bind("127.0.0.1:0").await);
// Get the assigned address
let addr = assert_ok!(server.local_addr());
// Spawn the server
tokio::spawn(async move {
// Accept a socket
let (mut socket, _) = server.accept().await.unwrap();
// Write some data
socket.write_all(b"hello").await.unwrap();
});
let mut client = TcpStream::connect(&addr).await.unwrap();
let mut buf = vec![];
client.read_to_end(&mut buf).await.unwrap();
assert_eq!(buf, b"hello");
tx.send(()).unwrap();
}
#[test]
fn drop_threadpool_drops_futures() {
for _ in 0..1_000 {
let num_inc = Arc::new(AtomicUsize::new(0));
let num_dec = Arc::new(AtomicUsize::new(0));
let num_drop = Arc::new(AtomicUsize::new(0));
struct Never(Arc<AtomicUsize>);
impl Future for Never {
type Output = ();
fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<()> {
Poll::Pending
}
}
impl Drop for Never {
fn drop(&mut self) {
self.0.fetch_add(1, Relaxed);
}
}
let a = num_inc.clone();
let b = num_dec.clone();
let rt = runtime::Builder::new()
.threaded_scheduler()
.enable_all()
.on_thread_start(move || {
a.fetch_add(1, Relaxed);
})
.on_thread_stop(move || {
b.fetch_add(1, Relaxed);
})
.build()
.unwrap();
rt.spawn(Never(num_drop.clone()));
// Wait for the pool to shutdown
drop(rt);
// Assert that only a single thread was spawned.
let a = num_inc.load(Relaxed);
assert!(a >= 1);
// Assert that all threads shutdown
let b = num_dec.load(Relaxed);
assert_eq!(a, b);
// Assert that the future was dropped
let c = num_drop.load(Relaxed);
assert_eq!(c, 1);
}
}
#[test]
fn start_stop_callbacks_called() {
use std::sync::atomic::{AtomicUsize, Ordering};
let after_start = Arc::new(AtomicUsize::new(0));
let before_stop = Arc::new(AtomicUsize::new(0));
let after_inner = after_start.clone();
let before_inner = before_stop.clone();
let mut rt = tokio::runtime::Builder::new()
.threaded_scheduler()
.enable_all()
.on_thread_start(move || {
after_inner.clone().fetch_add(1, Ordering::Relaxed);
})
.on_thread_stop(move || {
before_inner.clone().fetch_add(1, Ordering::Relaxed);
})
.build()
.unwrap();
let (tx, rx) = oneshot::channel();
rt.spawn(async move {
assert_ok!(tx.send(()));
});
assert_ok!(rt.block_on(rx));
drop(rt);
assert!(after_start.load(Ordering::Relaxed) > 0);
assert!(before_stop.load(Ordering::Relaxed) > 0);
}
#[test]
fn blocking() {
// used for notifying the main thread
const NUM: usize = 1_000;
for _ in 0..10 {
let (tx, rx) = mpsc::channel();
let rt = rt();
let cnt = Arc::new(AtomicUsize::new(0));
// there are four workers in the pool
// so, if we run 4 blocking tasks, we know that handoff must have happened
let block = Arc::new(std::sync::Barrier::new(5));
for _ in 0..4 {
let block = block.clone();
rt.spawn(async move {
tokio::task::block_in_place(move || {
block.wait();
block.wait();
})
});
}
block.wait();
for _ in 0..NUM {
let cnt = cnt.clone();
let tx = tx.clone();
rt.spawn(async move {
let num = cnt.fetch_add(1, Relaxed) + 1;
if num == NUM {
tx.send(()).unwrap();
}
});
}
rx.recv().unwrap();
// Wait for the pool to shutdown
block.wait();
}
}
#[test]
fn multi_threadpool() {
use tokio::sync::oneshot;
let rt1 = rt();
let rt2 = rt();
let (tx, rx) = oneshot::channel();
let (done_tx, done_rx) = mpsc::channel();
rt2.spawn(async move {
rx.await.unwrap();
done_tx.send(()).unwrap();
});
rt1.spawn(async move {
tx.send(()).unwrap();
});
done_rx.recv().unwrap();
}
fn rt() -> Runtime {
Runtime::new().unwrap()
}
|