1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
|
use crate::{AliasSectionReader, InstanceSectionReader, ModuleSectionReader};
use crate::{BinaryReader, BinaryReaderError, FunctionBody, Range, Result};
use crate::{DataSectionReader, ElementSectionReader, ExportSectionReader};
use crate::{FunctionSectionReader, ImportSectionReader, TypeSectionReader};
use crate::{GlobalSectionReader, MemorySectionReader, TableSectionReader};
use std::convert::TryInto;
use std::fmt;
use std::iter;
/// An incremental parser of a binary WebAssembly module.
///
/// This type is intended to be used to incrementally parse a WebAssembly module
/// as bytes become available for the module. This can also be used to parse
/// modules that are already entirely resident within memory.
///
/// This primary function for a parser is the [`Parser::parse`] function which
/// will incrementally consume input. You can also use the [`Parser::parse_all`]
/// function to parse a module that is entirely resident in memory.
#[derive(Debug, Clone)]
pub struct Parser {
state: State,
offset: u64,
max_size: u64,
}
#[derive(Debug, Clone)]
enum State {
ModuleHeader,
SectionStart,
FunctionBody { remaining: u32, len: u32 },
ModuleCode { remaining: u32, len: u32 },
}
/// A successful return payload from [`Parser::parse`].
///
/// On success one of two possible values can be returned, either that more data
/// is needed to continue parsing or a chunk of the input was parsed, indicating
/// how much of it was parsed.
#[derive(Debug)]
pub enum Chunk<'a> {
/// This can be returned at any time and indicates that more data is needed
/// to proceed with parsing. Zero bytes were consumed from the input to
/// [`Parser::parse`]. The `usize` value here is a hint as to how many more
/// bytes are needed to continue parsing.
NeedMoreData(u64),
/// A chunk was successfully parsed.
Parsed {
/// This many bytes of the `data` input to [`Parser::parse`] were
/// consumed to produce `payload`.
consumed: usize,
/// The value that we actually parsed.
payload: Payload<'a>,
},
}
/// Values that can be parsed from a wasm module.
///
/// This enumeration is all possible chunks of pieces that can be parsed by a
/// [`Parser`] from a binary WebAssembly module. Note that for many sections the
/// entire section is parsed all at once, whereas other functions, like the code
/// section, are parsed incrementally. This is a distinction where some
/// sections, like the type section, are required to be fully resident in memory
/// (fully downloaded) before proceeding. Other sections, like the code section,
/// can be processed in a streaming fashion where each function is extracted
/// individually so it can possibly be shipped to another thread while you wait
/// for more functions to get downloaded.
///
/// Note that payloads, when returned, do not indicate that the wasm module is
/// valid. For example when you receive a `Payload::TypeSection` the type
/// section itself has not yet actually been parsed. The reader returned will be
/// able to parse it, but you'll have to actually iterate the reader to do the
/// full parse. Each payload returned is intended to be a *window* into the
/// original `data` passed to [`Parser::parse`] which can be further processed
/// if necessary.
pub enum Payload<'a> {
/// Indicates the header of a WebAssembly binary.
///
/// This header also indicates the version number that was parsed, which is
/// currently always 1.
Version {
/// The version number found
num: u32,
/// The range of bytes that were parsed to consume the header of the
/// module. Note that this range is relative to the start of the byte
/// stream.
range: Range,
},
/// A type section was received, and the provided reader can be used to
/// parse the contents of the type section.
TypeSection(crate::TypeSectionReader<'a>),
/// A import section was received, and the provided reader can be used to
/// parse the contents of the import section.
ImportSection(crate::ImportSectionReader<'a>),
/// An alias section was received, and the provided reader can be used to
/// parse the contents of the alias section.
AliasSection(crate::AliasSectionReader<'a>),
/// An instance section was received, and the provided reader can be used to
/// parse the contents of the instance section.
InstanceSection(crate::InstanceSectionReader<'a>),
/// A module section was received, and the provided reader can be used to
/// parse the contents of the module section.
ModuleSection(crate::ModuleSectionReader<'a>),
/// A function section was received, and the provided reader can be used to
/// parse the contents of the function section.
FunctionSection(crate::FunctionSectionReader<'a>),
/// A table section was received, and the provided reader can be used to
/// parse the contents of the table section.
TableSection(crate::TableSectionReader<'a>),
/// A memory section was received, and the provided reader can be used to
/// parse the contents of the memory section.
MemorySection(crate::MemorySectionReader<'a>),
/// A global section was received, and the provided reader can be used to
/// parse the contents of the global section.
GlobalSection(crate::GlobalSectionReader<'a>),
/// An export section was received, and the provided reader can be used to
/// parse the contents of the export section.
ExportSection(crate::ExportSectionReader<'a>),
/// A start section was received, and the `u32` here is the index of the
/// start function.
StartSection {
/// The start function index
func: u32,
/// The range of bytes that specify the `func` field, specified in
/// offsets relative to the start of the byte stream.
range: Range,
},
/// An element section was received, and the provided reader can be used to
/// parse the contents of the element section.
ElementSection(crate::ElementSectionReader<'a>),
/// A data count section was received, and the `u32` here is the contents of
/// the data count section.
DataCountSection {
/// The number of data segments.
count: u32,
/// The range of bytes that specify the `count` field, specified in
/// offsets relative to the start of the byte stream.
range: Range,
},
/// A data section was received, and the provided reader can be used to
/// parse the contents of the data section.
DataSection(crate::DataSectionReader<'a>),
/// A custom section was found.
CustomSection {
/// The name of the custom section.
name: &'a str,
/// The offset, relative to the start of the original module, that the
/// payload for this custom section starts at.
data_offset: usize,
/// The actual contents of the custom section.
data: &'a [u8],
},
/// Indicator of the start of the code section.
///
/// This entry is returned whenever the code section starts. The `count`
/// field indicates how many entries are in this code section. After
/// receiving this start marker you're guaranteed that the next `count`
/// items will be either `CodeSectionEntry` or an error will be returned.
///
/// This, unlike other sections, is intended to be used for streaming the
/// contents of the code section. The code section is not required to be
/// fully resident in memory when we parse it. Instead a [`Parser`] is
/// capable of parsing piece-by-piece of a code section.
CodeSectionStart {
/// The number of functions in this section.
count: u32,
/// The range of bytes that represent this section, specified in
/// offsets relative to the start of the byte stream.
range: Range,
/// The size, in bytes, of the remaining contents of this section.
///
/// This can be used in combination with [`Parser::skip_section`]
/// where the caller will know how many bytes to skip before feeding
/// bytes into `Parser` again.
size: u32,
},
/// An entry of the code section, a function, was parsed.
///
/// This entry indicates that a function was successfully received from the
/// code section, and the payload here is the window into the original input
/// where the function resides. Note that the function itself has not been
/// parsed, it's only been outlined. You'll need to process the
/// `FunctionBody` provided to test whether it parses and/or is valid.
CodeSectionEntry(crate::FunctionBody<'a>),
/// Indicator of the start of the module code section.
///
/// This behaves the same as the `CodeSectionStart` payload being returned.
/// You're guaranteed the next `count` items will be of type
/// `ModuleCodeSectionEntry`.
ModuleCodeSectionStart {
/// The number of inline modules in this section.
count: u32,
/// The range of bytes that represent this section, specified in
/// offsets relative to the start of the byte stream.
range: Range,
/// The size, in bytes, of the remaining contents of this section.
size: u32,
},
/// An entry of the module code section, a module, was parsed.
///
/// This variant is special in that it returns a sub-`Parser`. Upon
/// receiving a `ModuleCodeSectionEntry` it is expected that the returned
/// `Parser` will be used instead of the parent `Parser` until the parse has
/// finished. You'll need to feed data into the `Parser` returned until it
/// returns `Payload::End`. After that you'll switch back to the parent
/// parser to resume parsing the rest of the module code section.
///
/// Note that binaries will not be parsed correctly if you feed the data for
/// a nested module into the parent [`Parser`].
ModuleCodeSectionEntry {
/// The parser to use to parse the contents of the nested submodule.
/// This parser should be used until it reports `End`.
parser: Parser,
/// The range of bytes, relative to the start of the input stream, of
/// the bytes containing this submodule.
range: Range,
},
/// An unknown section was found.
///
/// This variant is returned for all unknown sections in a wasm file. This
/// likely wants to be interpreted as an error by consumers of the parser,
/// but this can also be used to parse sections unknown to wasmparser at
/// this time.
UnknownSection {
/// The 8-bit identifier for this section.
id: u8,
/// The contents of this section.
contents: &'a [u8],
/// The range of bytes, relative to the start of the original data
/// stream, that the contents of this section reside in.
range: Range,
},
/// The end of the WebAssembly module was reached.
End,
}
impl Parser {
/// Creates a new module parser.
///
/// Reports errors and ranges relative to `offset` provided, where `offset`
/// is some logical offset within the input stream that we're parsing.
pub fn new(offset: u64) -> Parser {
Parser {
state: State::ModuleHeader,
offset,
max_size: u64::max_value(),
}
}
/// Attempts to parse a chunk of data.
///
/// This method will attempt to parse the next incremental portion of a
/// WebAssembly binary. Data available for the module is provided as `data`,
/// and the data can be incomplete if more data has yet to arrive for the
/// module. The `eof` flag indicates whether `data` represents all possible
/// data for the module and no more data will ever be received.
///
/// There are two ways parsing can succeed with this method:
///
/// * `Chunk::NeedMoreData` - this indicates that there is not enough bytes
/// in `data` to parse a chunk of this module. The caller needs to wait
/// for more data to be available in this situation before calling this
/// method again. It is guaranteed that this is only returned if `eof` is
/// `false`.
///
/// * `Chunk::Parsed` - this indicates that a chunk of the input was
/// successfully parsed. The payload is available in this variant of what
/// was parsed, and this also indicates how many bytes of `data` was
/// consumed. It's expected that the caller will not provide these bytes
/// back to the [`Parser`] again.
///
/// Note that all `Chunk` return values are connected, with a lifetime, to
/// the input buffer. Each parsed chunk borrows the input buffer and is a
/// view into it for successfully parsed chunks.
///
/// It is expected that you'll call this method until `Payload::End` is
/// reached, at which point you're guaranteed that the module has completely
/// parsed. Note that complete parsing, for the top-level wasm module,
/// implies that `data` is empty and `eof` is `true`.
///
/// # Errors
///
/// Parse errors are returned as an `Err`. Errors can happen when the
/// structure of the module is unexpected, or if sections are too large for
/// example. Note that errors are not returned for malformed *contents* of
/// sections here. Sections are generally not individually parsed and each
/// returned [`Payload`] needs to be iterated over further to detect all
/// errors.
///
/// # Examples
///
/// An example of reading a wasm file from a stream (`std::io::Read`) and
/// incrementally parsing it.
///
/// ```
/// use std::io::Read;
/// use anyhow::Result;
/// use wasmparser::{Parser, Chunk, Payload::*};
///
/// fn parse(mut reader: impl Read) -> Result<()> {
/// let mut buf = Vec::new();
/// let mut parser = Parser::new(0);
/// let mut eof = false;
/// let mut stack = Vec::new();
///
/// loop {
/// let (payload, consumed) = match parser.parse(&buf, eof)? {
/// Chunk::NeedMoreData(hint) => {
/// assert!(!eof); // otherwise an error would be returned
///
/// // Use the hint to preallocate more space, then read
/// // some more data into our buffer.
/// //
/// // Note that the buffer management here is not ideal,
/// // but it's compact enough to fit in an example!
/// let len = buf.len();
/// buf.extend((0..hint).map(|_| 0u8));
/// let n = reader.read(&mut buf[len..])?;
/// buf.truncate(len + n);
/// eof = n == 0;
/// continue;
/// }
///
/// Chunk::Parsed { consumed, payload } => (payload, consumed),
/// };
///
/// match payload {
/// // Each of these would be handled individually as necessary
/// Version { .. } => { /* ... */ }
/// TypeSection(_) => { /* ... */ }
/// ImportSection(_) => { /* ... */ }
/// AliasSection(_) => { /* ... */ }
/// InstanceSection(_) => { /* ... */ }
/// ModuleSection(_) => { /* ... */ }
/// FunctionSection(_) => { /* ... */ }
/// TableSection(_) => { /* ... */ }
/// MemorySection(_) => { /* ... */ }
/// GlobalSection(_) => { /* ... */ }
/// ExportSection(_) => { /* ... */ }
/// StartSection { .. } => { /* ... */ }
/// ElementSection(_) => { /* ... */ }
/// DataCountSection { .. } => { /* ... */ }
/// DataSection(_) => { /* ... */ }
///
/// // Here we know how many functions we'll be receiving as
/// // `CodeSectionEntry`, so we can prepare for that, and
/// // afterwards we can parse and handle each function
/// // individually.
/// CodeSectionStart { .. } => { /* ... */ }
/// CodeSectionEntry(body) => {
/// // here we can iterate over `body` to parse the function
/// // and its locals
/// }
///
/// // When parsing nested modules we need to switch which
/// // `Parser` we're using.
/// ModuleCodeSectionStart { .. } => { /* ... */ }
/// ModuleCodeSectionEntry { parser: subparser, .. } => {
/// stack.push(parser);
/// parser = subparser;
/// }
///
/// CustomSection { name, .. } => { /* ... */ }
///
/// // most likely you'd return an error here
/// UnknownSection { id, .. } => { /* ... */ }
///
/// // Once we've reached the end of a module we either resume
/// // at the parent module or we break out of the loop because
/// // we're done.
/// End => {
/// if let Some(parent_parser) = stack.pop() {
/// parser = parent_parser;
/// } else {
/// break;
/// }
/// }
/// }
///
/// // once we're done processing the payload we can forget the
/// // original.
/// buf.drain(..consumed);
/// }
///
/// Ok(())
/// }
///
/// # parse(&b"\0asm\x01\0\0\0"[..]).unwrap();
/// ```
pub fn parse<'a>(&mut self, data: &'a [u8], eof: bool) -> Result<Chunk<'a>> {
let (data, eof) = if usize_to_u64(data.len()) > self.max_size {
(&data[..(self.max_size as usize)], true)
} else {
(data, eof)
};
// TODO: thread through `offset: u64` to `BinaryReader`, remove
// the cast here.
let mut reader = BinaryReader::new_with_offset(data, self.offset as usize);
match self.parse_reader(&mut reader, eof) {
Ok(payload) => {
// Be sure to update our offset with how far we got in the
// reader
self.offset += usize_to_u64(reader.position);
self.max_size -= usize_to_u64(reader.position);
Ok(Chunk::Parsed {
consumed: reader.position,
payload,
})
}
Err(e) => {
// If we're at EOF then there's no way we can recover from any
// error, so continue to propagate it.
if eof {
return Err(e);
}
// If our error doesn't look like it can be resolved with more
// data being pulled down, then propagate it, otherwise switch
// the error to "feed me please"
match e.inner.needed_hint {
Some(hint) => Ok(Chunk::NeedMoreData(usize_to_u64(hint))),
None => Err(e),
}
}
}
}
fn parse_reader<'a>(
&mut self,
reader: &mut BinaryReader<'a>,
eof: bool,
) -> Result<Payload<'a>> {
use Payload::*;
match self.state {
State::ModuleHeader => {
let start = reader.original_position();
let num = reader.read_file_header()?;
self.state = State::SectionStart;
Ok(Version {
num,
range: Range {
start,
end: reader.original_position(),
},
})
}
State::SectionStart => {
// If we're at eof and there are no bytes in our buffer, then
// that means we reached the end of the wasm file since it's
// just a bunch of sections concatenated after the module
// header.
if eof && reader.bytes_remaining() == 0 {
return Ok(Payload::End);
}
let id = reader.read_var_u7()? as u8;
let len_pos = reader.position;
let mut len = reader.read_var_u32()?;
// Test to make sure that this section actually fits within
// `Parser::max_size`. This doesn't matter for top-level modules
// but it is required for nested modules to correctly ensure
// that all sections live entirely within their section of the
// file.
let section_overflow = self
.max_size
.checked_sub(usize_to_u64(reader.position))
.and_then(|s| s.checked_sub(len.into()))
.is_none();
if section_overflow {
return Err(BinaryReaderError::new("section too large", len_pos));
}
match id {
0 => {
let mut content = subreader(reader, len)?;
// Note that if this fails we can't read any more bytes,
// so clear the "we'd succeed if we got this many more
// bytes" because we can't recover from "eof" at this point.
let name = content.read_string().map_err(clear_hint)?;
Ok(Payload::CustomSection {
name,
data_offset: content.original_position(),
data: content.remaining_buffer(),
})
}
1 => section(reader, len, TypeSectionReader::new, TypeSection),
2 => section(reader, len, ImportSectionReader::new, ImportSection),
3 => section(reader, len, FunctionSectionReader::new, FunctionSection),
4 => section(reader, len, TableSectionReader::new, TableSection),
5 => section(reader, len, MemorySectionReader::new, MemorySection),
6 => section(reader, len, GlobalSectionReader::new, GlobalSection),
7 => section(reader, len, ExportSectionReader::new, ExportSection),
8 => {
let (func, range) = single_u32(reader, len, "start")?;
Ok(StartSection { func, range })
}
9 => section(reader, len, ElementSectionReader::new, ElementSection),
10 => {
let start = reader.original_position();
let count = delimited(reader, &mut len, |r| r.read_var_u32())?;
let range = Range {
start,
end: reader.original_position() + len as usize,
};
self.state = State::FunctionBody {
remaining: count,
len,
};
Ok(CodeSectionStart {
count,
range,
size: len,
})
}
11 => section(reader, len, DataSectionReader::new, DataSection),
12 => {
let (count, range) = single_u32(reader, len, "data count")?;
Ok(DataCountSection { count, range })
}
100 => section(reader, len, ModuleSectionReader::new, ModuleSection),
101 => section(reader, len, InstanceSectionReader::new, InstanceSection),
102 => section(reader, len, AliasSectionReader::new, AliasSection),
103 => {
let start = reader.original_position();
let count = delimited(reader, &mut len, |r| r.read_var_u32())?;
let range = Range {
start,
end: reader.original_position() + len as usize,
};
self.state = State::ModuleCode {
remaining: count,
len,
};
Ok(ModuleCodeSectionStart {
count,
range,
size: len,
})
}
id => {
let offset = reader.original_position();
let contents = reader.read_bytes(len as usize)?;
let range = Range {
start: offset,
end: offset + len as usize,
};
Ok(UnknownSection {
id,
contents,
range,
})
}
}
}
// Once we hit 0 remaining incrementally parsed items, with 0
// remaining bytes in each section, we're done and can switch back
// to parsing sections.
State::FunctionBody {
remaining: 0,
len: 0,
}
| State::ModuleCode {
remaining: 0,
len: 0,
} => {
self.state = State::SectionStart;
self.parse_reader(reader, eof)
}
// ... otherwise trailing bytes with no remaining entries in these
// sections indicates an error.
State::FunctionBody { remaining: 0, len } | State::ModuleCode { remaining: 0, len } => {
debug_assert!(len > 0);
let offset = reader.original_position();
Err(BinaryReaderError::new(
"trailing bytes at end of section",
offset,
))
}
// Functions are relatively easy to parse when we know there's at
// least one remaining and at least one byte available to read
// things.
//
// We use the remaining length try to read a u32 size of the
// function, and using that size we require the entire function be
// resident in memory. This means that we're reading whole chunks of
// functions at a time.
//
// Limiting via `Parser::max_size` (nested modules) happens above in
// `fn parse`, and limiting by our section size happens via
// `delimited`. Actual parsing of the function body is delegated to
// the caller to iterate over the `FunctionBody` structure.
State::FunctionBody { remaining, mut len } => {
let body = delimited(reader, &mut len, |r| {
let size = r.read_var_u32()?;
let offset = r.original_position();
Ok(FunctionBody::new(offset, r.read_bytes(size as usize)?))
})?;
self.state = State::FunctionBody {
remaining: remaining - 1,
len,
};
Ok(CodeSectionEntry(body))
}
// Modules are trickier than functions. What's going to happen here
// is that we'll be offloading parsing to a sub-`Parser`. This
// sub-`Parser` will be delimited to not read past the size of the
// module that's specified.
//
// So the first thing that happens here is we read the size of the
// module. We use `delimited` to make sure the bytes specifying the
// size of the module are themselves within the module code section.
//
// Once we've read the size of a module, however, there's a few
// pieces of state that we need to update. We as a parser will not
// receive the next `size` bytes, so we need to update our internal
// bookkeeping to account for that:
//
// * The `len`, number of bytes remaining in this section, is
// decremented by `size`. This can underflow, however, meaning
// that the size of the module doesn't fit within the section.
//
// * Our `Parser::max_size` field needs to account for the bytes
// that we're reading. Note that this is guaranteed to not
// underflow, however, because whenever we parse a section header
// we guarantee that its contents fit within our `max_size`.
//
// To update `len` we do that when updating `self.state`, and to
// update `max_size` we do that inline. Note that this will get
// further tweaked after we return with the bytes we read specifying
// the size of the module itself.
State::ModuleCode { remaining, mut len } => {
let size = delimited(reader, &mut len, |r| r.read_var_u32())?;
match len.checked_sub(size) {
Some(i) => len = i,
None => {
return Err(BinaryReaderError::new(
"Unexpected EOF",
reader.original_position(),
));
}
}
self.state = State::ModuleCode {
remaining: remaining - 1,
len,
};
let range = Range {
start: reader.original_position(),
end: reader.original_position() + size as usize,
};
self.max_size -= u64::from(size);
self.offset += u64::from(size);
let mut parser = Parser::new(usize_to_u64(reader.original_position()));
parser.max_size = size.into();
Ok(ModuleCodeSectionEntry { parser, range })
}
}
}
/// Convenience function that can be used to parse a module entirely
/// resident in memory.
///
/// This function will parse the `data` provided as a WebAssembly module,
/// assuming that `data` represents the entire WebAssembly module.
///
/// Note that when this function yields `ModuleCodeSectionEntry`
/// no action needs to be taken with the returned parser. The parser will be
/// automatically switched to internally and more payloads will continue to
/// get returned.
pub fn parse_all<'a>(
self,
mut data: &'a [u8],
) -> impl Iterator<Item = Result<Payload<'a>>> + 'a {
let mut stack = Vec::new();
let mut cur = self;
let mut done = false;
iter::from_fn(move || {
if done {
return None;
}
let payload = match cur.parse(data, true) {
// Propagate all errors
Err(e) => return Some(Err(e)),
// This isn't possible because `eof` is always true.
Ok(Chunk::NeedMoreData(_)) => unreachable!(),
Ok(Chunk::Parsed { payload, consumed }) => {
data = &data[consumed..];
payload
}
};
match &payload {
// If a module ends then we either finished the current
// module or, if there's a parent, we switch back to
// resuming parsing the parent.
Payload::End => match stack.pop() {
Some(p) => cur = p,
None => done = true,
},
// When we enter a nested module then we need to update our
// current parser, saving off the previous state.
//
// Afterwards we turn the loop again to recurse in parsing the
// nested module.
Payload::ModuleCodeSectionEntry { parser, range: _ } => {
stack.push(cur.clone());
cur = parser.clone();
}
_ => {}
}
Some(Ok(payload))
})
}
/// Skip parsing the code or module code section entirely.
///
/// This function can be used to indicate, after receiving
/// `CodeSectionStart` or `ModuleCodeSectionStart`, that the section
/// will not be parsed.
///
/// The caller will be responsible for skipping `size` bytes (found in the
/// `CodeSectionStart` or `ModuleCodeSectionStart` payload). Bytes should
/// only be fed into `parse` after the `size` bytes have been skipped.
///
/// # Panics
///
/// This function will panic if the parser is not in a state where it's
/// parsing the code or module code section.
///
/// # Examples
///
/// ```
/// use wasmparser::{Result, Parser, Chunk, Range, SectionReader, Payload::*};
///
/// fn objdump_headers(mut wasm: &[u8]) -> Result<()> {
/// let mut parser = Parser::new(0);
/// loop {
/// let payload = match parser.parse(wasm, true)? {
/// Chunk::Parsed { consumed, payload } => {
/// wasm = &wasm[consumed..];
/// payload
/// }
/// // this state isn't possible with `eof = true`
/// Chunk::NeedMoreData(_) => unreachable!(),
/// };
/// match payload {
/// TypeSection(s) => print_range("type section", &s.range()),
/// ImportSection(s) => print_range("import section", &s.range()),
/// // .. other sections
///
/// // Print the range of the code section we see, but don't
/// // actually iterate over each individual function.
/// CodeSectionStart { range, size, .. } => {
/// print_range("code section", &range);
/// parser.skip_section();
/// wasm = &wasm[size as usize..];
/// }
/// End => break,
/// _ => {}
/// }
/// }
/// Ok(())
/// }
///
/// fn print_range(section: &str, range: &Range) {
/// println!("{:>40}: {:#010x} - {:#010x}", section, range.start, range.end);
/// }
/// ```
pub fn skip_section(&mut self) {
let skip = match self.state {
State::FunctionBody { remaining: _, len } | State::ModuleCode { remaining: _, len } => {
len
}
_ => panic!("wrong state to call `skip_section`"),
};
self.offset += u64::from(skip);
self.max_size -= u64::from(skip);
self.state = State::SectionStart;
}
}
fn usize_to_u64(a: usize) -> u64 {
a.try_into().unwrap()
}
/// Parses an entire section resident in memory into a `Payload`.
///
/// Requires that `len` bytes are resident in `reader` and uses `ctor`/`variant`
/// to construct the section to return.
fn section<'a, T>(
reader: &mut BinaryReader<'a>,
len: u32,
ctor: fn(&'a [u8], usize) -> Result<T>,
variant: fn(T) -> Payload<'a>,
) -> Result<Payload<'a>> {
let offset = reader.original_position();
let payload = reader.read_bytes(len as usize)?;
// clear the hint for "need this many more bytes" here because we already
// read all the bytes, so it's not possible to read more bytes if this
// fails.
let reader = ctor(payload, offset).map_err(clear_hint)?;
Ok(variant(reader))
}
/// Creates a new `BinaryReader` from the given `reader` which will be reading
/// the first `len` bytes.
///
/// This means that `len` bytes must be resident in memory at the time of this
/// reading.
fn subreader<'a>(reader: &mut BinaryReader<'a>, len: u32) -> Result<BinaryReader<'a>> {
let offset = reader.original_position();
let payload = reader.read_bytes(len as usize)?;
Ok(BinaryReader::new_with_offset(payload, offset))
}
/// Reads a section that is represented by a single uleb-encoded `u32`.
fn single_u32<'a>(reader: &mut BinaryReader<'a>, len: u32, desc: &str) -> Result<(u32, Range)> {
let range = Range {
start: reader.original_position(),
end: reader.original_position() + len as usize,
};
let mut content = subreader(reader, len)?;
// We can't recover from "unexpected eof" here because our entire section is
// already resident in memory, so clear the hint for how many more bytes are
// expected.
let index = content.read_var_u32().map_err(clear_hint)?;
if !content.eof() {
return Err(BinaryReaderError::new(
format!("Unexpected content in the {} section", desc),
content.original_position(),
));
}
Ok((index, range))
}
/// Attempts to parse using `f`.
///
/// This will update `*len` with the number of bytes consumed, and it will cause
/// a failure to be returned instead of the number of bytes consumed exceeds
/// what `*len` currently is.
fn delimited<'a, T>(
reader: &mut BinaryReader<'a>,
len: &mut u32,
f: impl FnOnce(&mut BinaryReader<'a>) -> Result<T>,
) -> Result<T> {
let start = reader.position;
let ret = f(reader)?;
*len = match (reader.position - start)
.try_into()
.ok()
.and_then(|i| len.checked_sub(i))
{
Some(i) => i,
None => return Err(BinaryReaderError::new("Unexpected EOF", start)),
};
Ok(ret)
}
impl Default for Parser {
fn default() -> Parser {
Parser::new(0)
}
}
impl fmt::Debug for Payload<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use Payload::*;
match self {
CustomSection {
name,
data_offset,
data: _,
} => f
.debug_struct("CustomSection")
.field("name", name)
.field("data_offset", data_offset)
.field("data", &"...")
.finish(),
Version { num, range } => f
.debug_struct("Version")
.field("num", num)
.field("range", range)
.finish(),
TypeSection(_) => f.debug_tuple("TypeSection").field(&"...").finish(),
ImportSection(_) => f.debug_tuple("ImportSection").field(&"...").finish(),
AliasSection(_) => f.debug_tuple("AliasSection").field(&"...").finish(),
InstanceSection(_) => f.debug_tuple("InstanceSection").field(&"...").finish(),
ModuleSection(_) => f.debug_tuple("ModuleSection").field(&"...").finish(),
FunctionSection(_) => f.debug_tuple("FunctionSection").field(&"...").finish(),
TableSection(_) => f.debug_tuple("TableSection").field(&"...").finish(),
MemorySection(_) => f.debug_tuple("MemorySection").field(&"...").finish(),
GlobalSection(_) => f.debug_tuple("GlobalSection").field(&"...").finish(),
ExportSection(_) => f.debug_tuple("ExportSection").field(&"...").finish(),
ElementSection(_) => f.debug_tuple("ElementSection").field(&"...").finish(),
DataSection(_) => f.debug_tuple("DataSection").field(&"...").finish(),
StartSection { func, range } => f
.debug_struct("StartSection")
.field("func", func)
.field("range", range)
.finish(),
DataCountSection { count, range } => f
.debug_struct("DataCountSection")
.field("count", count)
.field("range", range)
.finish(),
CodeSectionStart { count, range, size } => f
.debug_struct("CodeSectionStart")
.field("count", count)
.field("range", range)
.field("size", size)
.finish(),
CodeSectionEntry(_) => f.debug_tuple("CodeSectionEntry").field(&"...").finish(),
ModuleCodeSectionStart { count, range, size } => f
.debug_struct("ModuleCodeSectionStart")
.field("count", count)
.field("range", range)
.field("size", size)
.finish(),
ModuleCodeSectionEntry { parser: _, range } => f
.debug_struct("ModuleCodeSectionEntry")
.field("range", range)
.finish(),
UnknownSection { id, range, .. } => f
.debug_struct("UnknownSection")
.field("id", id)
.field("range", range)
.finish(),
End => f.write_str("End"),
}
}
}
fn clear_hint(mut err: BinaryReaderError) -> BinaryReaderError {
err.inner.needed_hint = None;
err
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! assert_matches {
($a:expr, $b:pat $(,)?) => {
match $a {
$b => {}
a => panic!("`{:?}` doesn't match `{}`", a, stringify!($b)),
}
};
}
#[test]
fn header() {
assert!(Parser::default().parse(&[], true).is_err());
assert_matches!(
Parser::default().parse(&[], false),
Ok(Chunk::NeedMoreData(4)),
);
assert_matches!(
Parser::default().parse(b"\0", false),
Ok(Chunk::NeedMoreData(3)),
);
assert_matches!(
Parser::default().parse(b"\0asm", false),
Ok(Chunk::NeedMoreData(4)),
);
assert_matches!(
Parser::default().parse(b"\0asm\x01\0\0\0", false),
Ok(Chunk::Parsed {
consumed: 8,
payload: Payload::Version { num: 1, .. },
}),
);
}
fn parser_after_header() -> Parser {
let mut p = Parser::default();
assert_matches!(
p.parse(b"\0asm\x01\0\0\0", false),
Ok(Chunk::Parsed {
consumed: 8,
payload: Payload::Version { num: 1, .. },
}),
);
return p;
}
#[test]
fn start_section() {
assert_matches!(
parser_after_header().parse(&[], false),
Ok(Chunk::NeedMoreData(1)),
);
assert!(parser_after_header().parse(&[8], true).is_err());
assert!(parser_after_header().parse(&[8, 1], true).is_err());
assert!(parser_after_header().parse(&[8, 2], true).is_err());
assert_matches!(
parser_after_header().parse(&[8], false),
Ok(Chunk::NeedMoreData(1)),
);
assert_matches!(
parser_after_header().parse(&[8, 1], false),
Ok(Chunk::NeedMoreData(1)),
);
assert_matches!(
parser_after_header().parse(&[8, 2], false),
Ok(Chunk::NeedMoreData(2)),
);
assert_matches!(
parser_after_header().parse(&[8, 1, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::StartSection { func: 1, .. },
}),
);
assert!(parser_after_header().parse(&[8, 2, 1, 1], false).is_err());
assert!(parser_after_header().parse(&[8, 0], false).is_err());
}
#[test]
fn end_works() {
assert_matches!(
parser_after_header().parse(&[], true),
Ok(Chunk::Parsed {
consumed: 0,
payload: Payload::End,
}),
);
}
#[test]
fn type_section() {
assert!(parser_after_header().parse(&[1], true).is_err());
assert!(parser_after_header().parse(&[1, 0], false).is_err());
// assert!(parser_after_header().parse(&[8, 2], true).is_err());
assert_matches!(
parser_after_header().parse(&[1], false),
Ok(Chunk::NeedMoreData(1)),
);
assert_matches!(
parser_after_header().parse(&[1, 1], false),
Ok(Chunk::NeedMoreData(1)),
);
assert_matches!(
parser_after_header().parse(&[1, 1, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::TypeSection(_),
}),
);
assert_matches!(
parser_after_header().parse(&[1, 1, 1, 2, 3, 4], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::TypeSection(_),
}),
);
}
#[test]
fn custom_section() {
assert!(parser_after_header().parse(&[0], true).is_err());
assert!(parser_after_header().parse(&[0, 0], false).is_err());
assert!(parser_after_header().parse(&[0, 1, 1], false).is_err());
assert_matches!(
parser_after_header().parse(&[0, 2, 1], false),
Ok(Chunk::NeedMoreData(1)),
);
assert_matches!(
parser_after_header().parse(&[0, 1, 0], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CustomSection {
name: "",
data_offset: 11,
data: b"",
},
}),
);
assert_matches!(
parser_after_header().parse(&[0, 2, 1, b'a'], false),
Ok(Chunk::Parsed {
consumed: 4,
payload: Payload::CustomSection {
name: "a",
data_offset: 12,
data: b"",
},
}),
);
assert_matches!(
parser_after_header().parse(&[0, 2, 0, b'a'], false),
Ok(Chunk::Parsed {
consumed: 4,
payload: Payload::CustomSection {
name: "",
data_offset: 11,
data: b"a",
},
}),
);
}
#[test]
fn function_section() {
assert!(parser_after_header().parse(&[10], true).is_err());
assert!(parser_after_header().parse(&[10, 0], true).is_err());
assert!(parser_after_header().parse(&[10, 1], true).is_err());
assert_matches!(
parser_after_header().parse(&[10], false),
Ok(Chunk::NeedMoreData(1))
);
assert_matches!(
parser_after_header().parse(&[10, 1], false),
Ok(Chunk::NeedMoreData(1))
);
let mut p = parser_after_header();
assert_matches!(
p.parse(&[10, 1, 0], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CodeSectionStart { count: 0, .. },
}),
);
assert_matches!(
p.parse(&[], true),
Ok(Chunk::Parsed {
consumed: 0,
payload: Payload::End,
}),
);
let mut p = parser_after_header();
assert_matches!(
p.parse(&[10, 2, 1, 0], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CodeSectionStart { count: 1, .. },
}),
);
assert_matches!(
p.parse(&[0], false),
Ok(Chunk::Parsed {
consumed: 1,
payload: Payload::CodeSectionEntry(_),
}),
);
assert_matches!(
p.parse(&[], true),
Ok(Chunk::Parsed {
consumed: 0,
payload: Payload::End,
}),
);
// 1 byte section with 1 function can't read the function body because
// the section is too small
let mut p = parser_after_header();
assert_matches!(
p.parse(&[10, 1, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CodeSectionStart { count: 1, .. },
}),
);
assert_eq!(
p.parse(&[0], false).unwrap_err().message(),
"Unexpected EOF"
);
// section with 2 functions but section is cut off
let mut p = parser_after_header();
assert_matches!(
p.parse(&[10, 2, 2], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CodeSectionStart { count: 2, .. },
}),
);
assert_matches!(
p.parse(&[0], false),
Ok(Chunk::Parsed {
consumed: 1,
payload: Payload::CodeSectionEntry(_),
}),
);
assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1)));
assert_eq!(
p.parse(&[0], false).unwrap_err().message(),
"Unexpected EOF",
);
// trailing data is bad
let mut p = parser_after_header();
assert_matches!(
p.parse(&[10, 3, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::CodeSectionStart { count: 1, .. },
}),
);
assert_matches!(
p.parse(&[0], false),
Ok(Chunk::Parsed {
consumed: 1,
payload: Payload::CodeSectionEntry(_),
}),
);
assert_eq!(
p.parse(&[0], false).unwrap_err().message(),
"trailing bytes at end of section",
);
}
#[test]
fn module_code_errors() {
// no bytes to say size of section
assert!(parser_after_header().parse(&[103], true).is_err());
// section must start with a u32
assert!(parser_after_header().parse(&[103, 0], true).is_err());
// EOF before we finish reading the section
assert!(parser_after_header().parse(&[103, 1], true).is_err());
}
#[test]
fn module_code_one() {
let mut p = parser_after_header();
assert_matches!(p.parse(&[103], false), Ok(Chunk::NeedMoreData(1)));
assert_matches!(p.parse(&[103, 9], false), Ok(Chunk::NeedMoreData(1)));
// Module code section, 10 bytes large, one module.
assert_matches!(
p.parse(&[103, 10, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::ModuleCodeSectionStart { count: 1, .. },
})
);
// Declare an empty module, which will be 8 bytes large for the header.
// Switch to the sub-parser on success.
let mut sub = match p.parse(&[8], false) {
Ok(Chunk::Parsed {
consumed: 1,
payload: Payload::ModuleCodeSectionEntry { parser, .. },
}) => parser,
other => panic!("bad parse {:?}", other),
};
// Parse the header of the submodule with the sub-parser.
assert_matches!(sub.parse(&[], false), Ok(Chunk::NeedMoreData(4)));
assert_matches!(sub.parse(b"\0asm", false), Ok(Chunk::NeedMoreData(4)));
assert_matches!(
sub.parse(b"\0asm\x01\0\0\0", false),
Ok(Chunk::Parsed {
consumed: 8,
payload: Payload::Version { num: 1, .. },
}),
);
// The sub-parser should be byte-limited so the next byte shouldn't get
// consumed, it's intended for the parent parser.
assert_matches!(
sub.parse(&[10], false),
Ok(Chunk::Parsed {
consumed: 0,
payload: Payload::End,
}),
);
// The parent parser should now be back to resuming, and we simulate it
// being done with bytes to ensure that it's safely at the end,
// completing the module code section.
assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1)));
assert_matches!(
p.parse(&[], true),
Ok(Chunk::Parsed {
consumed: 0,
payload: Payload::End,
}),
);
}
#[test]
fn nested_section_too_big() {
let mut p = parser_after_header();
// Module code section, 12 bytes large, one module. This leaves 11 bytes
// of payload for the module definition itself.
assert_matches!(
p.parse(&[103, 12, 1], false),
Ok(Chunk::Parsed {
consumed: 3,
payload: Payload::ModuleCodeSectionStart { count: 1, .. },
})
);
// Use one byte to say we're a 10 byte module, which fits exactly within
// our module code section.
let mut sub = match p.parse(&[10], false) {
Ok(Chunk::Parsed {
consumed: 1,
payload: Payload::ModuleCodeSectionEntry { parser, .. },
}) => parser,
other => panic!("bad parse {:?}", other),
};
// use 8 bytes to parse the header, leaving 2 remaining bytes in our
// module.
assert_matches!(
sub.parse(b"\0asm\x01\0\0\0", false),
Ok(Chunk::Parsed {
consumed: 8,
payload: Payload::Version { num: 1, .. },
}),
);
// We can't parse a section which declares its bigger than the outer
// module. This is section 1, one byte big, with one content byte. The
// content byte, however, lives outside of the parent's module code
// section.
assert_eq!(
sub.parse(&[1, 1, 0], false).unwrap_err().message(),
"section too large",
);
}
}
|