summaryrefslogtreecommitdiffstats
path: root/tools/profiler/core/EHABIStackWalk.cpp
blob: ee3e824e236e6a3fd300fcb2e0de78b49fbd9ab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * This is an implementation of stack unwinding according to a subset
 * of the ARM Exception Handling ABI, as described in:
 *   http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
 *
 * This handles only the ARM-defined "personality routines" (chapter
 * 9), and don't track the value of FP registers, because profiling
 * needs only chain of PC/SP values.
 *
 * Because the exception handling info may not be accurate for all
 * possible places where an async signal could occur (e.g., in a
 * prologue or epilogue), this bounds-checks all stack accesses.
 *
 * This file uses "struct" for structures in the exception tables and
 * "class" otherwise.  We should avoid violating the C++11
 * standard-layout rules in the former.
 */

#include "EHABIStackWalk.h"

#include "shared-libraries.h"
#include "platform.h"

#include "mozilla/Atomics.h"
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/EndianUtils.h"

#include <algorithm>
#include <elf.h>
#include <stdint.h>
#include <vector>
#include <string>

#ifndef PT_ARM_EXIDX
#  define PT_ARM_EXIDX 0x70000001
#endif

namespace mozilla {

struct PRel31 {
  uint32_t mBits;
  bool topBit() const { return mBits & 0x80000000; }
  uint32_t value() const { return mBits & 0x7fffffff; }
  int32_t offset() const { return (static_cast<int32_t>(mBits) << 1) >> 1; }
  const void* compute() const {
    return reinterpret_cast<const char*>(this) + offset();
  }

 private:
  PRel31(const PRel31& copied) = delete;
  PRel31() = delete;
};

struct EHEntry {
  PRel31 startPC;
  PRel31 exidx;

 private:
  EHEntry(const EHEntry& copied) = delete;
  EHEntry() = delete;
};

class EHState {
  // Note that any core register can be used as a "frame pointer" to
  // influence the unwinding process, so this must track all of them.
  uint32_t mRegs[16];

 public:
  bool unwind(const EHEntry* aEntry, const void* stackBase);
  uint32_t& operator[](int i) { return mRegs[i]; }
  const uint32_t& operator[](int i) const { return mRegs[i]; }
  explicit EHState(const mcontext_t&);
};

enum { R_SP = 13, R_LR = 14, R_PC = 15 };

class EHTable {
  uint32_t mStartPC;
  uint32_t mEndPC;
  uint32_t mBaseAddress;
  const EHEntry* mEntriesBegin;
  const EHEntry* mEntriesEnd;
  std::string mName;

 public:
  EHTable(const void* aELF, size_t aSize, const std::string& aName);
  const EHEntry* lookup(uint32_t aPC) const;
  bool isValid() const { return mEntriesEnd != mEntriesBegin; }
  const std::string& name() const { return mName; }
  uint32_t startPC() const { return mStartPC; }
  uint32_t endPC() const { return mEndPC; }
  uint32_t baseAddress() const { return mBaseAddress; }
};

class EHAddrSpace {
  std::vector<uint32_t> mStarts;
  std::vector<EHTable> mTables;
  static mozilla::Atomic<const EHAddrSpace*> sCurrent;

 public:
  explicit EHAddrSpace(const std::vector<EHTable>& aTables);
  const EHTable* lookup(uint32_t aPC) const;
  static void Update();
  static const EHAddrSpace* Get();
};

void EHABIStackWalkInit() { EHAddrSpace::Update(); }

size_t EHABIStackWalk(const mcontext_t& aContext, void* stackBase, void** aSPs,
                      void** aPCs, const size_t aNumFrames) {
  const EHAddrSpace* space = EHAddrSpace::Get();
  EHState state(aContext);
  size_t count = 0;

  while (count < aNumFrames) {
    uint32_t pc = state[R_PC], sp = state[R_SP];
    aPCs[count] = reinterpret_cast<void*>(pc);
    aSPs[count] = reinterpret_cast<void*>(sp);
    count++;

    if (!space) break;
    // TODO: cache these lookups.  Binary-searching libxul is
    // expensive (possibly more expensive than doing the actual
    // unwind), and even a small cache should help.
    const EHTable* table = space->lookup(pc);
    if (!table) break;
    const EHEntry* entry = table->lookup(pc);
    if (!entry) break;
    if (!state.unwind(entry, stackBase)) break;
  }

  return count;
}

class EHInterp {
 public:
  // Note that stackLimit is exclusive and stackBase is inclusive
  // (i.e, stackLimit < SP <= stackBase), following the convention
  // set by the AAPCS spec.
  EHInterp(EHState& aState, const EHEntry* aEntry, uint32_t aStackLimit,
           uint32_t aStackBase)
      : mState(aState),
        mStackLimit(aStackLimit),
        mStackBase(aStackBase),
        mNextWord(0),
        mWordsLeft(0),
        mFailed(false) {
    const PRel31& exidx = aEntry->exidx;
    uint32_t firstWord;

    if (exidx.mBits == 1) {  // EXIDX_CANTUNWIND
      mFailed = true;
      return;
    }
    if (exidx.topBit()) {
      firstWord = exidx.mBits;
    } else {
      mNextWord = reinterpret_cast<const uint32_t*>(exidx.compute());
      firstWord = *mNextWord++;
    }

    switch (firstWord >> 24) {
      case 0x80:  // short
        mWord = firstWord << 8;
        mBytesLeft = 3;
        break;
      case 0x81:
      case 0x82:  // long; catch descriptor size ignored
        mWord = firstWord << 16;
        mBytesLeft = 2;
        mWordsLeft = (firstWord >> 16) & 0xff;
        break;
      default:
        // unknown personality
        mFailed = true;
    }
  }

  bool unwind();

 private:
  // TODO: GCC has been observed not CSEing repeated reads of
  // mState[R_SP] with writes to mFailed between them, suggesting that
  // it hasn't determined that they can't alias and is thus missing
  // optimization opportunities.  So, we may want to flatten EHState
  // into this class; this may also make the code simpler.
  EHState& mState;
  uint32_t mStackLimit;
  uint32_t mStackBase;
  const uint32_t* mNextWord;
  uint32_t mWord;
  uint8_t mWordsLeft;
  uint8_t mBytesLeft;
  bool mFailed;

  enum {
    I_ADDSP = 0x00,  // 0sxxxxxx (subtract if s)
    M_ADDSP = 0x80,
    I_POPMASK = 0x80,  // 1000iiii iiiiiiii (if any i set)
    M_POPMASK = 0xf0,
    I_MOVSP = 0x90,  // 1001nnnn
    M_MOVSP = 0xf0,
    I_POPN = 0xa0,  // 1010lnnn
    M_POPN = 0xf0,
    I_FINISH = 0xb0,    // 10110000
    I_POPLO = 0xb1,     // 10110001 0000iiii (if any i set)
    I_ADDSPBIG = 0xb2,  // 10110010 uleb128
    I_POPFDX = 0xb3,    // 10110011 sssscccc
    I_POPFDX8 = 0xb8,   // 10111nnn
    M_POPFDX8 = 0xf8,
    // "Intel Wireless MMX" extensions omitted.
    I_POPFDD = 0xc8,  // 1100100h sssscccc
    M_POPFDD = 0xfe,
    I_POPFDD8 = 0xd0,  // 11010nnn
    M_POPFDD8 = 0xf8
  };

  uint8_t next() {
    if (mBytesLeft == 0) {
      if (mWordsLeft == 0) {
        return I_FINISH;
      }
      mWordsLeft--;
      mWord = *mNextWord++;
      mBytesLeft = 4;
    }
    mBytesLeft--;
    mWord = (mWord << 8) | (mWord >> 24);  // rotate
    return mWord;
  }

  uint32_t& vSP() { return mState[R_SP]; }
  uint32_t* ptrSP() { return reinterpret_cast<uint32_t*>(vSP()); }

  void checkStackBase() {
    if (vSP() > mStackBase) mFailed = true;
  }
  void checkStackLimit() {
    if (vSP() <= mStackLimit) mFailed = true;
  }
  void checkStackAlign() {
    if ((vSP() & 3) != 0) mFailed = true;
  }
  void checkStack() {
    checkStackBase();
    checkStackLimit();
    checkStackAlign();
  }

  void popRange(uint8_t first, uint8_t last, uint16_t mask) {
    bool hasSP = false;
    uint32_t tmpSP;
    if (mask == 0) mFailed = true;
    for (uint8_t r = first; r <= last; ++r) {
      if (mask & 1) {
        if (r == R_SP) {
          hasSP = true;
          tmpSP = *ptrSP();
        } else
          mState[r] = *ptrSP();
        vSP() += 4;
        checkStackBase();
        if (mFailed) return;
      }
      mask >>= 1;
    }
    if (hasSP) {
      vSP() = tmpSP;
      checkStack();
    }
  }
};

bool EHState::unwind(const EHEntry* aEntry, const void* stackBasePtr) {
  // The unwinding program cannot set SP to less than the initial value.
  uint32_t stackLimit = mRegs[R_SP] - 4;
  uint32_t stackBase = reinterpret_cast<uint32_t>(stackBasePtr);
  EHInterp interp(*this, aEntry, stackLimit, stackBase);
  return interp.unwind();
}

bool EHInterp::unwind() {
  mState[R_PC] = 0;
  checkStack();
  while (!mFailed) {
    uint8_t insn = next();
#if DEBUG_EHABI_UNWIND
    LOG("unwind insn = %02x", (unsigned)insn);
#endif
    // Try to put the common cases first.

    // 00xxxxxx: vsp = vsp + (xxxxxx << 2) + 4
    // 01xxxxxx: vsp = vsp - (xxxxxx << 2) - 4
    if ((insn & M_ADDSP) == I_ADDSP) {
      uint32_t offset = ((insn & 0x3f) << 2) + 4;
      if (insn & 0x40) {
        vSP() -= offset;
        checkStackLimit();
      } else {
        vSP() += offset;
        checkStackBase();
      }
      continue;
    }

    // 10100nnn: Pop r4-r[4+nnn]
    // 10101nnn: Pop r4-r[4+nnn], r14
    if ((insn & M_POPN) == I_POPN) {
      uint8_t n = (insn & 0x07) + 1;
      bool lr = insn & 0x08;
      uint32_t* ptr = ptrSP();
      vSP() += (n + (lr ? 1 : 0)) * 4;
      checkStackBase();
      for (uint8_t r = 4; r < 4 + n; ++r) mState[r] = *ptr++;
      if (lr) mState[R_LR] = *ptr++;
      continue;
    }

    // 1011000: Finish
    if (insn == I_FINISH) {
      if (mState[R_PC] == 0) {
        mState[R_PC] = mState[R_LR];
        // Non-standard change (bug 916106): Prevent the caller from
        // re-using LR.  Since the caller is by definition not a leaf
        // routine, it will have to restore LR from somewhere to
        // return to its own caller, so we can safely zero it here.
        // This makes a difference only if an error in unwinding
        // (e.g., caused by starting from within a prologue/epilogue)
        // causes us to load a pointer to a leaf routine as LR; if we
        // don't do something, we'll go into an infinite loop of
        // "returning" to that same function.
        mState[R_LR] = 0;
      }
      return true;
    }

    // 1001nnnn: Set vsp = r[nnnn]
    if ((insn & M_MOVSP) == I_MOVSP) {
      vSP() = mState[insn & 0x0f];
      checkStack();
      continue;
    }

    // 11001000 sssscccc: Pop VFP regs D[16+ssss]-D[16+ssss+cccc] (as FLDMFDD)
    // 11001001 sssscccc: Pop VFP regs D[ssss]-D[ssss+cccc] (as FLDMFDD)
    if ((insn & M_POPFDD) == I_POPFDD) {
      uint8_t n = (next() & 0x0f) + 1;
      // Note: if the 16+ssss+cccc > 31, the encoding is reserved.
      // As the space is currently unused, we don't try to check.
      vSP() += 8 * n;
      checkStackBase();
      continue;
    }

    // 11010nnn: Pop VFP regs D[8]-D[8+nnn] (as FLDMFDD)
    if ((insn & M_POPFDD8) == I_POPFDD8) {
      uint8_t n = (insn & 0x07) + 1;
      vSP() += 8 * n;
      checkStackBase();
      continue;
    }

    // 10110010 uleb128: vsp = vsp + 0x204 + (uleb128 << 2)
    if (insn == I_ADDSPBIG) {
      uint32_t acc = 0;
      uint8_t shift = 0;
      uint8_t byte;
      do {
        if (shift >= 32) return false;
        byte = next();
        acc |= (byte & 0x7f) << shift;
        shift += 7;
      } while (byte & 0x80);
      uint32_t offset = 0x204 + (acc << 2);
      // The calculations above could have overflowed.
      // But the one we care about is this:
      if (vSP() + offset < vSP()) mFailed = true;
      vSP() += offset;
      // ...so that this is the only other check needed:
      checkStackBase();
      continue;
    }

    // 1000iiii iiiiiiii (i not all 0): Pop under masks {r15-r12}, {r11-r4}
    if ((insn & M_POPMASK) == I_POPMASK) {
      popRange(4, 15, ((insn & 0x0f) << 8) | next());
      continue;
    }

    // 1011001 0000iiii (i not all 0): Pop under mask {r3-r0}
    if (insn == I_POPLO) {
      popRange(0, 3, next() & 0x0f);
      continue;
    }

    // 10110011 sssscccc: Pop VFP regs D[ssss]-D[ssss+cccc] (as FLDMFDX)
    if (insn == I_POPFDX) {
      uint8_t n = (next() & 0x0f) + 1;
      vSP() += 8 * n + 4;
      checkStackBase();
      continue;
    }

    // 10111nnn: Pop VFP regs D[8]-D[8+nnn] (as FLDMFDX)
    if ((insn & M_POPFDX8) == I_POPFDX8) {
      uint8_t n = (insn & 0x07) + 1;
      vSP() += 8 * n + 4;
      checkStackBase();
      continue;
    }

    // unhandled instruction
#ifdef DEBUG_EHABI_UNWIND
    LOG("Unhandled EHABI instruction 0x%02x", insn);
#endif
    mFailed = true;
  }
  return false;
}

bool operator<(const EHTable& lhs, const EHTable& rhs) {
  return lhs.startPC() < rhs.startPC();
}

// Async signal unsafe.
EHAddrSpace::EHAddrSpace(const std::vector<EHTable>& aTables)
    : mTables(aTables) {
  std::sort(mTables.begin(), mTables.end());
  DebugOnly<uint32_t> lastEnd = 0;
  for (std::vector<EHTable>::iterator i = mTables.begin(); i != mTables.end();
       ++i) {
    MOZ_ASSERT(i->startPC() >= lastEnd);
    mStarts.push_back(i->startPC());
    lastEnd = i->endPC();
  }
}

const EHTable* EHAddrSpace::lookup(uint32_t aPC) const {
  ptrdiff_t i = (std::upper_bound(mStarts.begin(), mStarts.end(), aPC) -
                 mStarts.begin()) -
                1;

  if (i < 0 || aPC >= mTables[i].endPC()) return 0;
  return &mTables[i];
}

const EHEntry* EHTable::lookup(uint32_t aPC) const {
  MOZ_ASSERT(aPC >= mStartPC);
  if (aPC >= mEndPC) return nullptr;

  const EHEntry* begin = mEntriesBegin;
  const EHEntry* end = mEntriesEnd;
  MOZ_ASSERT(begin < end);
  if (aPC < reinterpret_cast<uint32_t>(begin->startPC.compute()))
    return nullptr;

  while (end - begin > 1) {
#ifdef EHABI_UNWIND_MORE_ASSERTS
    if ((end - 1)->startPC.compute() < begin->startPC.compute()) {
      MOZ_CRASH("unsorted exidx");
    }
#endif
    const EHEntry* mid = begin + (end - begin) / 2;
    if (aPC < reinterpret_cast<uint32_t>(mid->startPC.compute()))
      end = mid;
    else
      begin = mid;
  }
  return begin;
}

#if MOZ_LITTLE_ENDIAN()
static const unsigned char hostEndian = ELFDATA2LSB;
#elif MOZ_BIG_ENDIAN()
static const unsigned char hostEndian = ELFDATA2MSB;
#else
#  error "No endian?"
#endif

// Async signal unsafe: std::vector::reserve, std::string copy ctor.
EHTable::EHTable(const void* aELF, size_t aSize, const std::string& aName)
    : mStartPC(~0),  // largest uint32_t
      mEndPC(0),
      mEntriesBegin(nullptr),
      mEntriesEnd(nullptr),
      mName(aName) {
  const uint32_t fileHeaderAddr = reinterpret_cast<uint32_t>(aELF);

  if (aSize < sizeof(Elf32_Ehdr)) return;

  const Elf32_Ehdr& file = *(reinterpret_cast<Elf32_Ehdr*>(fileHeaderAddr));
  if (memcmp(&file.e_ident[EI_MAG0], ELFMAG, SELFMAG) != 0 ||
      file.e_ident[EI_CLASS] != ELFCLASS32 ||
      file.e_ident[EI_DATA] != hostEndian ||
      file.e_ident[EI_VERSION] != EV_CURRENT || file.e_machine != EM_ARM ||
      file.e_version != EV_CURRENT)
    // e_flags?
    return;

  MOZ_ASSERT(file.e_phoff + file.e_phnum * file.e_phentsize <= aSize);
  const Elf32_Phdr *exidxHdr = 0, *zeroHdr = 0;
  for (unsigned i = 0; i < file.e_phnum; ++i) {
    const Elf32_Phdr& phdr = *(reinterpret_cast<Elf32_Phdr*>(
        fileHeaderAddr + file.e_phoff + i * file.e_phentsize));
    if (phdr.p_type == PT_ARM_EXIDX) {
      exidxHdr = &phdr;
    } else if (phdr.p_type == PT_LOAD) {
      if (phdr.p_offset == 0) {
        zeroHdr = &phdr;
      }
      if (phdr.p_flags & PF_X) {
        mStartPC = std::min(mStartPC, phdr.p_vaddr);
        mEndPC = std::max(mEndPC, phdr.p_vaddr + phdr.p_memsz);
      }
    }
  }
  if (!exidxHdr) return;
  if (!zeroHdr) return;
  mBaseAddress = fileHeaderAddr - zeroHdr->p_vaddr;
  mStartPC += mBaseAddress;
  mEndPC += mBaseAddress;
  mEntriesBegin =
      reinterpret_cast<const EHEntry*>(mBaseAddress + exidxHdr->p_vaddr);
  mEntriesEnd = reinterpret_cast<const EHEntry*>(
      mBaseAddress + exidxHdr->p_vaddr + exidxHdr->p_memsz);
}

mozilla::Atomic<const EHAddrSpace*> EHAddrSpace::sCurrent(nullptr);

// Async signal safe; can fail if Update() hasn't returned yet.
const EHAddrSpace* EHAddrSpace::Get() { return sCurrent; }

// Collect unwinding information from loaded objects.  Calls after the
// first have no effect.  Async signal unsafe.
void EHAddrSpace::Update() {
  const EHAddrSpace* space = sCurrent;
  if (space) return;

  SharedLibraryInfo info = SharedLibraryInfo::GetInfoForSelf();
  std::vector<EHTable> tables;

  for (size_t i = 0; i < info.GetSize(); ++i) {
    const SharedLibrary& lib = info.GetEntry(i);
    // FIXME: This isn't correct if the start address isn't p_offset 0, because
    // the start address will not point at the file header. But this is worked
    // around by magic number checks in the EHTable constructor.
    EHTable tab(reinterpret_cast<const void*>(lib.GetStart()),
                lib.GetEnd() - lib.GetStart(), lib.GetNativeDebugPath());
    if (tab.isValid()) tables.push_back(tab);
  }
  space = new EHAddrSpace(tables);

  if (!sCurrent.compareExchange(nullptr, space)) {
    delete space;
    space = sCurrent;
  }
}

EHState::EHState(const mcontext_t& context) {
#ifdef linux
  mRegs[0] = context.arm_r0;
  mRegs[1] = context.arm_r1;
  mRegs[2] = context.arm_r2;
  mRegs[3] = context.arm_r3;
  mRegs[4] = context.arm_r4;
  mRegs[5] = context.arm_r5;
  mRegs[6] = context.arm_r6;
  mRegs[7] = context.arm_r7;
  mRegs[8] = context.arm_r8;
  mRegs[9] = context.arm_r9;
  mRegs[10] = context.arm_r10;
  mRegs[11] = context.arm_fp;
  mRegs[12] = context.arm_ip;
  mRegs[13] = context.arm_sp;
  mRegs[14] = context.arm_lr;
  mRegs[15] = context.arm_pc;
#else
#  error "Unhandled OS for ARM EHABI unwinding"
#endif
}

}  // namespace mozilla