summaryrefslogtreecommitdiffstats
path: root/tools/profiler/tests/gtest/LulTestInfrastructure.cpp
blob: 43154b06ada67455de22a66a0e9b929ca3e0d7c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>

// Derived from:
// test_assembler.cc: Implementation of google_breakpad::TestAssembler.
// See test_assembler.h for details.

// Derived from:
// cfi_assembler.cc: Implementation of google_breakpad::CFISection class.
// See cfi_assembler.h for details.

#include "LulTestInfrastructure.h"

namespace lul_test {
namespace test_assembler {

using std::back_insert_iterator;

Label::Label() : value_(new Binding()) {}
Label::Label(uint64_t value) : value_(new Binding(value)) {}
Label::Label(const Label& label) {
  value_ = label.value_;
  value_->Acquire();
}
Label::~Label() {
  if (value_->Release()) delete value_;
}

Label& Label::operator=(uint64_t value) {
  value_->Set(NULL, value);
  return *this;
}

Label& Label::operator=(const Label& label) {
  value_->Set(label.value_, 0);
  return *this;
}

Label Label::operator+(uint64_t addend) const {
  Label l;
  l.value_->Set(this->value_, addend);
  return l;
}

Label Label::operator-(uint64_t subtrahend) const {
  Label l;
  l.value_->Set(this->value_, -subtrahend);
  return l;
}

// When NDEBUG is #defined, assert doesn't evaluate its argument. This
// means you can't simply use assert to check the return value of a
// function with necessary side effects.
//
// ALWAYS_EVALUATE_AND_ASSERT(x) evaluates x regardless of whether
// NDEBUG is #defined; when NDEBUG is not #defined, it further asserts
// that x is true.
#ifdef NDEBUG
#  define ALWAYS_EVALUATE_AND_ASSERT(x) x
#else
#  define ALWAYS_EVALUATE_AND_ASSERT(x) assert(x)
#endif

uint64_t Label::operator-(const Label& label) const {
  uint64_t offset;
  ALWAYS_EVALUATE_AND_ASSERT(IsKnownOffsetFrom(label, &offset));
  return offset;
}

bool Label::IsKnownConstant(uint64_t* value_p) const {
  Binding* base;
  uint64_t addend;
  value_->Get(&base, &addend);
  if (base != NULL) return false;
  if (value_p) *value_p = addend;
  return true;
}

bool Label::IsKnownOffsetFrom(const Label& label, uint64_t* offset_p) const {
  Binding *label_base, *this_base;
  uint64_t label_addend, this_addend;
  label.value_->Get(&label_base, &label_addend);
  value_->Get(&this_base, &this_addend);
  // If this and label are related, Get will find their final
  // common ancestor, regardless of how indirect the relation is. This
  // comparison also handles the constant vs. constant case.
  if (this_base != label_base) return false;
  if (offset_p) *offset_p = this_addend - label_addend;
  return true;
}

Label::Binding::Binding() : base_(this), addend_(), reference_count_(1) {}

Label::Binding::Binding(uint64_t addend)
    : base_(NULL), addend_(addend), reference_count_(1) {}

Label::Binding::~Binding() {
  assert(reference_count_ == 0);
  if (base_ && base_ != this && base_->Release()) delete base_;
}

void Label::Binding::Set(Binding* binding, uint64_t addend) {
  if (!base_ && !binding) {
    // We're equating two constants. This could be okay.
    assert(addend_ == addend);
  } else if (!base_) {
    // We are a known constant, but BINDING may not be, so turn the
    // tables and try to set BINDING's value instead.
    binding->Set(NULL, addend_ - addend);
  } else {
    if (binding) {
      // Find binding's final value. Since the final value is always either
      // completely unconstrained or a constant, never a reference to
      // another variable (otherwise, it wouldn't be final), this
      // guarantees we won't create cycles here, even for code like this:
      //   l = m, m = n, n = l;
      uint64_t binding_addend;
      binding->Get(&binding, &binding_addend);
      addend += binding_addend;
    }

    // It seems likely that setting a binding to itself is a bug
    // (although I can imagine this might turn out to be helpful to
    // permit).
    assert(binding != this);

    if (base_ != this) {
      // Set the other bindings on our chain as well. Note that this
      // is sufficient even though binding relationships form trees:
      // All binding operations traverse their chains to the end, and
      // all bindings related to us share some tail of our chain, so
      // they will see the changes we make here.
      base_->Set(binding, addend - addend_);
      // We're not going to use base_ any more.
      if (base_->Release()) delete base_;
    }

    // Adopt BINDING as our base. Note that it should be correct to
    // acquire here, after the release above, even though the usual
    // reference-counting rules call for acquiring first, and then
    // releasing: the self-reference assertion above should have
    // complained if BINDING were 'this' or anywhere along our chain,
    // so we didn't release BINDING.
    if (binding) binding->Acquire();
    base_ = binding;
    addend_ = addend;
  }
}

void Label::Binding::Get(Binding** base, uint64_t* addend) {
  if (base_ && base_ != this) {
    // Recurse to find the end of our reference chain (the root of our
    // tree), and then rewrite every binding along the chain to refer
    // to it directly, adjusting addends appropriately. (This is why
    // this member function isn't this-const.)
    Binding* final_base;
    uint64_t final_addend;
    base_->Get(&final_base, &final_addend);
    if (final_base) final_base->Acquire();
    if (base_->Release()) delete base_;
    base_ = final_base;
    addend_ += final_addend;
  }
  *base = base_;
  *addend = addend_;
}

template <typename Inserter>
static inline void InsertEndian(test_assembler::Endianness endianness,
                                size_t size, uint64_t number, Inserter dest) {
  assert(size > 0);
  if (endianness == kLittleEndian) {
    for (size_t i = 0; i < size; i++) {
      *dest++ = (char)(number & 0xff);
      number >>= 8;
    }
  } else {
    assert(endianness == kBigEndian);
    // The loop condition is odd, but it's correct for size_t.
    for (size_t i = size - 1; i < size; i--)
      *dest++ = (char)((number >> (i * 8)) & 0xff);
  }
}

Section& Section::Append(Endianness endianness, size_t size, uint64_t number) {
  InsertEndian(endianness, size, number,
               back_insert_iterator<string>(contents_));
  return *this;
}

Section& Section::Append(Endianness endianness, size_t size,
                         const Label& label) {
  // If this label's value is known, there's no reason to waste an
  // entry in references_ on it.
  uint64_t value;
  if (label.IsKnownConstant(&value)) return Append(endianness, size, value);

  // This will get caught when the references are resolved, but it's
  // nicer to find out earlier.
  assert(endianness != kUnsetEndian);

  references_.push_back(Reference(contents_.size(), endianness, size, label));
  contents_.append(size, 0);
  return *this;
}

#define ENDIANNESS_L kLittleEndian
#define ENDIANNESS_B kBigEndian
#define ENDIANNESS(e) ENDIANNESS_##e

#define DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits)         \
  Section& Section::e##bits(uint##bits##_t v) {            \
    InsertEndian(ENDIANNESS(e), bits / 8, v,               \
                 back_insert_iterator<string>(contents_)); \
    return *this;                                          \
  }

#define DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits) \
  Section& Section::e##bits(const Label& v) {     \
    return Append(ENDIANNESS(e), bits / 8, v);    \
  }

// Define L16, B32, and friends.
#define DEFINE_SHORT_APPEND_ENDIAN(e, bits)  \
  DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
  DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits)

DEFINE_SHORT_APPEND_LABEL_ENDIAN(L, 8);
DEFINE_SHORT_APPEND_LABEL_ENDIAN(B, 8);
DEFINE_SHORT_APPEND_ENDIAN(L, 16);
DEFINE_SHORT_APPEND_ENDIAN(L, 32);
DEFINE_SHORT_APPEND_ENDIAN(L, 64);
DEFINE_SHORT_APPEND_ENDIAN(B, 16);
DEFINE_SHORT_APPEND_ENDIAN(B, 32);
DEFINE_SHORT_APPEND_ENDIAN(B, 64);

#define DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits)           \
  Section& Section::D##bits(uint##bits##_t v) {            \
    InsertEndian(endianness_, bits / 8, v,                 \
                 back_insert_iterator<string>(contents_)); \
    return *this;                                          \
  }
#define DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits) \
  Section& Section::D##bits(const Label& v) {   \
    return Append(endianness_, bits / 8, v);    \
  }
#define DEFINE_SHORT_APPEND_DEFAULT(bits)  \
  DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
  DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits)

DEFINE_SHORT_APPEND_LABEL_DEFAULT(8)
DEFINE_SHORT_APPEND_DEFAULT(16);
DEFINE_SHORT_APPEND_DEFAULT(32);
DEFINE_SHORT_APPEND_DEFAULT(64);

Section& Section::LEB128(long long value) {
  while (value < -0x40 || 0x3f < value) {
    contents_ += (value & 0x7f) | 0x80;
    if (value < 0)
      value = (value >> 7) | ~(((unsigned long long)-1) >> 7);
    else
      value = (value >> 7);
  }
  contents_ += value & 0x7f;
  return *this;
}

Section& Section::ULEB128(uint64_t value) {
  while (value > 0x7f) {
    contents_ += (value & 0x7f) | 0x80;
    value = (value >> 7);
  }
  contents_ += value;
  return *this;
}

Section& Section::Align(size_t alignment, uint8_t pad_byte) {
  // ALIGNMENT must be a power of two.
  assert(((alignment - 1) & alignment) == 0);
  size_t new_size = (contents_.size() + alignment - 1) & ~(alignment - 1);
  contents_.append(new_size - contents_.size(), pad_byte);
  assert((contents_.size() & (alignment - 1)) == 0);
  return *this;
}

bool Section::GetContents(string* contents) {
  // For each label reference, find the label's value, and patch it into
  // the section's contents.
  for (size_t i = 0; i < references_.size(); i++) {
    Reference& r = references_[i];
    uint64_t value;
    if (!r.label.IsKnownConstant(&value)) {
      fprintf(stderr, "Undefined label #%zu at offset 0x%zx\n", i, r.offset);
      return false;
    }
    assert(r.offset < contents_.size());
    assert(contents_.size() - r.offset >= r.size);
    InsertEndian(r.endianness, r.size, value, contents_.begin() + r.offset);
  }
  contents->clear();
  std::swap(contents_, *contents);
  references_.clear();
  return true;
}

}  // namespace test_assembler
}  // namespace lul_test

namespace lul_test {

CFISection& CFISection::CIEHeader(uint64_t code_alignment_factor,
                                  int data_alignment_factor,
                                  unsigned return_address_register,
                                  uint8_t version, const string& augmentation,
                                  bool dwarf64) {
  assert(!entry_length_);
  entry_length_ = new PendingLength();
  in_fde_ = false;

  if (dwarf64) {
    D32(kDwarf64InitialLengthMarker);
    D64(entry_length_->length);
    entry_length_->start = Here();
    D64(eh_frame_ ? kEHFrame64CIEIdentifier : kDwarf64CIEIdentifier);
  } else {
    D32(entry_length_->length);
    entry_length_->start = Here();
    D32(eh_frame_ ? kEHFrame32CIEIdentifier : kDwarf32CIEIdentifier);
  }
  D8(version);
  AppendCString(augmentation);
  ULEB128(code_alignment_factor);
  LEB128(data_alignment_factor);
  if (version == 1)
    D8(return_address_register);
  else
    ULEB128(return_address_register);
  return *this;
}

CFISection& CFISection::FDEHeader(Label cie_pointer, uint64_t initial_location,
                                  uint64_t address_range, bool dwarf64) {
  assert(!entry_length_);
  entry_length_ = new PendingLength();
  in_fde_ = true;
  fde_start_address_ = initial_location;

  if (dwarf64) {
    D32(0xffffffff);
    D64(entry_length_->length);
    entry_length_->start = Here();
    if (eh_frame_)
      D64(Here() - cie_pointer);
    else
      D64(cie_pointer);
  } else {
    D32(entry_length_->length);
    entry_length_->start = Here();
    if (eh_frame_)
      D32(Here() - cie_pointer);
    else
      D32(cie_pointer);
  }
  EncodedPointer(initial_location);
  // The FDE length in an .eh_frame section uses the same encoding as the
  // initial location, but ignores the base address (selected by the upper
  // nybble of the encoding), as it's a length, not an address that can be
  // made relative.
  EncodedPointer(address_range, DwarfPointerEncoding(pointer_encoding_ & 0x0f));
  return *this;
}

CFISection& CFISection::FinishEntry() {
  assert(entry_length_);
  Align(address_size_, lul::DW_CFA_nop);
  entry_length_->length = Here() - entry_length_->start;
  delete entry_length_;
  entry_length_ = NULL;
  in_fde_ = false;
  return *this;
}

CFISection& CFISection::EncodedPointer(uint64_t address,
                                       DwarfPointerEncoding encoding,
                                       const EncodedPointerBases& bases) {
  // Omitted data is extremely easy to emit.
  if (encoding == lul::DW_EH_PE_omit) return *this;

  // If (encoding & lul::DW_EH_PE_indirect) != 0, then we assume
  // that ADDRESS is the address at which the pointer is stored --- in
  // other words, that bit has no effect on how we write the pointer.
  encoding = DwarfPointerEncoding(encoding & ~lul::DW_EH_PE_indirect);

  // Find the base address to which this pointer is relative. The upper
  // nybble of the encoding specifies this.
  uint64_t base;
  switch (encoding & 0xf0) {
    case lul::DW_EH_PE_absptr:
      base = 0;
      break;
    case lul::DW_EH_PE_pcrel:
      base = bases.cfi + Size();
      break;
    case lul::DW_EH_PE_textrel:
      base = bases.text;
      break;
    case lul::DW_EH_PE_datarel:
      base = bases.data;
      break;
    case lul::DW_EH_PE_funcrel:
      base = fde_start_address_;
      break;
    case lul::DW_EH_PE_aligned:
      base = 0;
      break;
    default:
      abort();
  };

  // Make ADDRESS relative. Yes, this is appropriate even for "absptr"
  // values; see gcc/unwind-pe.h.
  address -= base;

  // Align the pointer, if required.
  if ((encoding & 0xf0) == lul::DW_EH_PE_aligned) Align(AddressSize());

  // Append ADDRESS to this section in the appropriate form. For the
  // fixed-width forms, we don't need to differentiate between signed and
  // unsigned encodings, because ADDRESS has already been extended to 64
  // bits before it was passed to us.
  switch (encoding & 0x0f) {
    case lul::DW_EH_PE_absptr:
      Address(address);
      break;

    case lul::DW_EH_PE_uleb128:
      ULEB128(address);
      break;

    case lul::DW_EH_PE_sleb128:
      LEB128(address);
      break;

    case lul::DW_EH_PE_udata2:
    case lul::DW_EH_PE_sdata2:
      D16(address);
      break;

    case lul::DW_EH_PE_udata4:
    case lul::DW_EH_PE_sdata4:
      D32(address);
      break;

    case lul::DW_EH_PE_udata8:
    case lul::DW_EH_PE_sdata8:
      D64(address);
      break;

    default:
      abort();
  }

  return *this;
};

}  // namespace lul_test