summaryrefslogtreecommitdiffstats
path: root/xpcom/ds/nsTArray.h
blob: 10c66980858a2045e5dd719b768bc3145c37588f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef nsTArray_h__
#define nsTArray_h__

#include <string.h>

#include <functional>
#include <initializer_list>
#include <iterator>
#include <new>
#include <ostream>
#include <type_traits>
#include <utility>

#include "mozilla/Alignment.h"
#include "mozilla/ArrayIterator.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FunctionTypeTraits.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/NotNull.h"
#include "mozilla/Span.h"
#include "mozilla/fallible.h"
#include "mozilla/mozalloc.h"
#include "nsAlgorithm.h"
#include "nsDebug.h"
#include "nsISupports.h"
#include "nsQuickSort.h"
#include "nsRegionFwd.h"
#include "nsTArrayForwardDeclare.h"

namespace JS {
template <class T>
class Heap;
} /* namespace JS */

class nsCycleCollectionTraversalCallback;
class nsRegion;

namespace mozilla::a11y {
class BatchData;
}

namespace mozilla {
namespace layers {
class Animation;
class FrameStats;
struct PropertyAnimationGroup;
struct TileClient;
}  // namespace layers
}  // namespace mozilla

namespace mozilla {
struct SerializedStructuredCloneBuffer;
class SourceBufferTask;
}  // namespace mozilla

namespace mozilla::dom::binding_detail {
template <typename, typename>
class RecordEntry;
}

namespace mozilla::dom::ipc {
class StructuredCloneData;
}  // namespace mozilla::dom::ipc

namespace mozilla::dom {
class ClonedMessageData;
class MessageData;
class MessagePortIdentifier;
struct MozPluginParameter;
template <typename T>
struct Nullable;
class OwningFileOrDirectory;
class OwningStringOrBooleanOrObject;
class OwningUTF8StringOrDouble;
class Pref;
class RefMessageData;
class ResponsiveImageCandidate;
class ServiceWorkerRegistrationData;
namespace indexedDB {
class SerializedStructuredCloneReadInfo;
class ObjectStoreCursorResponse;
class IndexCursorResponse;
}  // namespace indexedDB
}  // namespace mozilla::dom

namespace mozilla::ipc {
class AutoIPCStream;
class ContentSecurityPolicy;
template <class T>
class Endpoint;
}  // namespace mozilla::ipc

class JSStructuredCloneData;

template <class T>
class RefPtr;

//
// nsTArray<E> is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// By default, nsTArray assumes that instances of E can be relocated safely
// using memory utils (memcpy/memmove).
//
// The public classes defined in this header are
//
//   nsTArray<E>,
//   CopyableTArray<E>,
//   FallibleTArray<E>,
//   AutoTArray<E, N>,
//   CopyableAutoTArray<E, N>
//
// nsTArray, CopyableTArray, AutoTArray and CopyableAutoTArray are infallible by
// default. To opt-in to fallible behaviour, use the `mozilla::fallible`
// parameter and check the return value.
//
// CopyableTArray and CopyableAutoTArray< are copy-constructible and
// copy-assignable. Use these only when syntactically necessary to avoid implcit
// unintentional copies. nsTArray/AutoTArray can be conveniently copied using
// the Clone() member function. Consider using std::move where possible.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter E specifies the type of the elements and has the
// following requirements:
//
//   E MUST be safely memmove()'able.
//   E MUST define a copy-constructor.
//   E MAY define operator< for sorting.
//   E MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_RelocationStrategy below.)
//
// There is a public type elem_type defined as E within each array class, and we
// reference the type under this name below.
//
// For member functions taking a Comparator instance, Comparator must be either
// a functor with a tri-state comparison function with a signature compatible to
//
//   /** @return negative iff a < b, 0 iff a == b, positive iff a > b */
//   int (const elem_type& a, const elem_type& b);
//
// or a class defining member functions with signatures compatible to:
//
//   class Comparator {
//     public:
//       /** @return True if the elements are equals; false otherwise. */
//       bool Equals(const elem_type& a, const elem_type& b) const;
//
//       /** @return True if (a < b); false otherwise. */
//       bool LessThan(const elem_type& a, const elem_type& b) const;
//   };
//
// The Equals member function is used for searching, and the LessThan member
// function is used for searching and sorting.  Note that some member functions,
// e.g. Compare, are templates where a different type Item can be used for the
// element to compare to. In that case, the signatures must be compatible to
// allow those comparisons, but the details are not documented here.
//

//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function.  In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type.  Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult {
  // Note: allows implicit conversions from and to bool
  MOZ_IMPLICIT constexpr nsTArrayFallibleResult(bool aResult)
      : mResult(aResult) {}

  MOZ_IMPLICIT constexpr operator bool() { return mResult; }

 private:
  bool mResult;
};

struct nsTArrayInfallibleResult {};

//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//

struct nsTArrayFallibleAllocatorBase {
  typedef bool ResultType;
  typedef nsTArrayFallibleResult ResultTypeProxy;

  static constexpr ResultType Result(ResultTypeProxy aResult) {
    return aResult;
  }
  static constexpr bool Successful(ResultTypeProxy aResult) { return aResult; }
  static constexpr ResultTypeProxy SuccessResult() { return true; }
  static constexpr ResultTypeProxy FailureResult() { return false; }
  static constexpr ResultType ConvertBoolToResultType(bool aValue) {
    return aValue;
  }
};

struct nsTArrayInfallibleAllocatorBase {
  typedef void ResultType;
  typedef nsTArrayInfallibleResult ResultTypeProxy;

  static constexpr ResultType Result(ResultTypeProxy aResult) {}
  static constexpr bool Successful(ResultTypeProxy) { return true; }
  static constexpr ResultTypeProxy SuccessResult() { return ResultTypeProxy(); }

  [[noreturn]] static ResultTypeProxy FailureResult() {
    MOZ_CRASH("Infallible nsTArray should never fail");
  }

  template <typename T>
  static constexpr ResultType ConvertBoolToResultType(T aValue) {
    if (!aValue) {
      MOZ_CRASH("infallible nsTArray should never convert false to ResultType");
    }
  }

  template <typename T>
  static constexpr ResultType ConvertBoolToResultType(
      const mozilla::NotNull<T>& aValue) {}
};

struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase {
  static void* Malloc(size_t aSize) { return malloc(aSize); }
  static void* Realloc(void* aPtr, size_t aSize) {
    return realloc(aPtr, aSize);
  }

  static void Free(void* aPtr) { free(aPtr); }
  static void SizeTooBig(size_t) {}
};

struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase {
  static void* Malloc(size_t aSize) MOZ_NONNULL_RETURN {
    return moz_xmalloc(aSize);
  }
  static void* Realloc(void* aPtr, size_t aSize) MOZ_NONNULL_RETURN {
    return moz_xrealloc(aPtr, aSize);
  }

  static void Free(void* aPtr) { free(aPtr); }
  static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};

// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this).  This is done to minimize the size of the nsTArray
// object when it is empty.
struct nsTArrayHeader {
  uint32_t mLength;
  uint32_t mCapacity : 31;
  uint32_t mIsAutoArray : 1;
};

extern "C" {
extern const nsTArrayHeader sEmptyTArrayHeader;
}

namespace detail {
// nsTArray_CopyDisabler disables copy operations.
class nsTArray_CopyDisabler {
 public:
  nsTArray_CopyDisabler() = default;

  nsTArray_CopyDisabler(const nsTArray_CopyDisabler&) = delete;
  nsTArray_CopyDisabler& operator=(const nsTArray_CopyDisabler&) = delete;
};

}  // namespace detail

// This class provides a SafeElementAt method to nsTArray<E*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper : public ::detail::nsTArray_CopyDisabler {
  typedef E* elem_type;
  typedef size_t index_type;

  // No implementation is provided for these two methods, and that is on
  // purpose, since we don't support these functions on non-pointer type
  // instantiations.
  elem_type& SafeElementAt(index_type aIndex);
  const elem_type& SafeElementAt(index_type aIndex) const;
};

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
    : public ::detail::nsTArray_CopyDisabler {
  typedef E* elem_type;
  // typedef const E* const_elem_type;   XXX: see below
  typedef size_t index_type;

  elem_type SafeElementAt(index_type aIndex) {
    return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
  }

  // XXX: Probably should return const_elem_type, but callsites must be fixed.
  // Also, the use of const_elem_type for nsTArray<xpcGCCallback> in
  // xpcprivate.h causes build failures on Windows because xpcGCCallback is a
  // function pointer and MSVC doesn't like qualifying it with |const|.
  elem_type SafeElementAt(index_type aIndex) const {
    return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
  }
};

// E is a smart pointer type; the
// smart pointer can act as its element_type*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
    : public ::detail::nsTArray_CopyDisabler {
  typedef typename E::element_type* elem_type;
  typedef const typename E::element_type* const_elem_type;
  typedef size_t index_type;

  elem_type SafeElementAt(index_type aIndex) {
    auto* derived = static_cast<Derived*>(this);
    if (aIndex < derived->Length()) {
      return derived->Elements()[aIndex];
    }
    return nullptr;
  }

  // XXX: Probably should return const_elem_type, but callsites must be fixed.
  elem_type SafeElementAt(index_type aIndex) const {
    auto* derived = static_cast<const Derived*>(this);
    if (aIndex < derived->Length()) {
      return derived->Elements()[aIndex];
    }
    return nullptr;
  }
};

template <class T>
class nsCOMPtr;

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived>
    : public nsTArray_SafeElementAtSmartPtrHelper<nsCOMPtr<E>, Derived> {};

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<RefPtr<E>, Derived>
    : public nsTArray_SafeElementAtSmartPtrHelper<RefPtr<E>, Derived> {};

namespace mozilla {
template <class T>
class OwningNonNull;
}  // namespace mozilla

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<mozilla::OwningNonNull<E>, Derived>
    : public nsTArray_SafeElementAtSmartPtrHelper<mozilla::OwningNonNull<E>,
                                                  Derived> {};

// Servo bindings.
extern "C" void Gecko_EnsureTArrayCapacity(void* aArray, size_t aCapacity,
                                           size_t aElementSize);
extern "C" void Gecko_ClearPODTArray(void* aArray, size_t aElementSize,
                                     size_t aElementAlign);

MOZ_NORETURN MOZ_COLD void InvalidArrayIndex_CRASH(size_t aIndex,
                                                   size_t aLength);

//
// This class serves as a base class for nsTArray.  It shouldn't be used
// directly.  It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template <class Alloc, class RelocationStrategy>
class nsTArray_base {
  // Allow swapping elements with |nsTArray_base|s created using a
  // different allocator.  This is kosher because all allocators use
  // the same free().
  template <class XAlloc, class XRelocationStrategy>
  friend class nsTArray_base;

  // Needed for AppendElements from an array with a different allocator, which
  // calls ShiftData.
  template <class E, class XAlloc>
  friend class nsTArray_Impl;

  friend void Gecko_EnsureTArrayCapacity(void* aArray, size_t aCapacity,
                                         size_t aElemSize);
  friend void Gecko_ClearPODTArray(void* aTArray, size_t aElementSize,
                                   size_t aElementAlign);

 protected:
  typedef nsTArrayHeader Header;

 public:
  typedef size_t size_type;
  typedef size_t index_type;

  // @return The number of elements in the array.
  size_type Length() const { return mHdr->mLength; }

  // @return True if the array is empty or false otherwise.
  bool IsEmpty() const { return Length() == 0; }

  // @return The number of elements that can fit in the array without forcing
  // the array to be re-allocated.  The length of an array is always less
  // than or equal to its capacity.
  size_type Capacity() const { return mHdr->mCapacity; }

#ifdef DEBUG
  void* DebugGetHeader() const { return mHdr; }
#endif

 protected:
  nsTArray_base();

  ~nsTArray_base();

  nsTArray_base(const nsTArray_base&);
  nsTArray_base& operator=(const nsTArray_base&);

  // Resize the storage if necessary to achieve the requested capacity.
  // @param aCapacity The requested number of array elements.
  // @param aElemSize The size of an array element.
  // @return False if insufficient memory is available; true otherwise.
  template <typename ActualAlloc>
  typename ActualAlloc::ResultTypeProxy EnsureCapacity(size_type aCapacity,
                                                       size_type aElemSize);

  // Extend the storage to accommodate aCount extra elements.
  // @param aLength The current size of the array.
  // @param aCount The number of elements to add.
  // @param aElemSize The size of an array element.
  // @return False if insufficient memory is available or the new length
  //   would overflow; true otherwise.
  template <typename ActualAlloc>
  typename ActualAlloc::ResultTypeProxy ExtendCapacity(size_type aLength,
                                                       size_type aCount,
                                                       size_type aElemSize);

  // Tries to resize the storage to the minimum required amount. If this fails,
  // the array is left as-is.
  // @param aElemSize  The size of an array element.
  // @param aElemAlign The alignment in bytes of an array element.
  void ShrinkCapacity(size_type aElemSize, size_t aElemAlign);

  // Resizes the storage to 0. This may only be called when Length() is already
  // 0.
  // @param aElemSize  The size of an array element.
  // @param aElemAlign The alignment in bytes of an array element.
  void ShrinkCapacityToZero(size_type aElemSize, size_t aElemAlign);

  // This method may be called to resize a "gap" in the array by shifting
  // elements around.  It updates mLength appropriately.  If the resulting
  // array has zero elements, then the array's memory is free'd.
  // @param aStart     The starting index of the gap.
  // @param aOldLen    The current length of the gap.
  // @param aNewLen    The desired length of the gap.
  // @param aElemSize  The size of an array element.
  // @param aElemAlign The alignment in bytes of an array element.
  template <typename ActualAlloc>
  void ShiftData(index_type aStart, size_type aOldLen, size_type aNewLen,
                 size_type aElemSize, size_t aElemAlign);

  // This method may be called to swap elements from the end of the array to
  // fill a "gap" in the array. If the resulting array has zero elements, then
  // the array's memory is free'd.
  // @param aStart     The starting index of the gap.
  // @param aCount     The length of the gap.
  // @param aElemSize  The size of an array element.
  // @param aElemAlign The alignment in bytes of an array element.
  template <typename ActualAlloc>
  void SwapFromEnd(index_type aStart, size_type aCount, size_type aElemSize,
                   size_t aElemAlign);

  // This method increments the length member of the array's header.
  // Note that mHdr may actually be sEmptyTArrayHeader in the case where a
  // zero-length array is inserted into our array. But then aNum should
  // always be 0.
  void IncrementLength(size_t aNum) {
    if (HasEmptyHeader()) {
      if (MOZ_UNLIKELY(aNum != 0)) {
        // Writing a non-zero length to the empty header would be extremely bad.
        MOZ_CRASH();
      }
    } else {
      mHdr->mLength += aNum;
    }
  }

  // This method inserts blank slots into the array.
  // @param aIndex the place to insert the new elements. This must be no
  //               greater than the current length of the array.
  // @param aCount the number of slots to insert
  // @param aElementSize the size of an array element.
  // @param aElemAlign the alignment in bytes of an array element.
  template <typename ActualAlloc>
  typename ActualAlloc::ResultTypeProxy InsertSlotsAt(index_type aIndex,
                                                      size_type aCount,
                                                      size_type aElementSize,
                                                      size_t aElemAlign);

  template <typename ActualAlloc, class Allocator>
  typename ActualAlloc::ResultTypeProxy SwapArrayElements(
      nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
      size_t aElemAlign);

  template <class Allocator>
  void MoveConstructNonAutoArray(
      nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
      size_t aElemAlign);

  template <class Allocator>
  void MoveInit(nsTArray_base<Allocator, RelocationStrategy>& aOther,
                size_type aElemSize, size_t aElemAlign);

  // This is an RAII class used in SwapArrayElements.
  class IsAutoArrayRestorer {
   public:
    IsAutoArrayRestorer(nsTArray_base<Alloc, RelocationStrategy>& aArray,
                        size_t aElemAlign);
    ~IsAutoArrayRestorer();

   private:
    nsTArray_base<Alloc, RelocationStrategy>& mArray;
    size_t mElemAlign;
    bool mIsAuto;
  };

  // Helper function for SwapArrayElements. Ensures that if the array
  // is an AutoTArray that it doesn't use the built-in buffer.
  template <typename ActualAlloc>
  bool EnsureNotUsingAutoArrayBuffer(size_type aElemSize);

  // Returns true if this nsTArray is an AutoTArray with a built-in buffer.
  bool IsAutoArray() const { return mHdr->mIsAutoArray; }

  // Returns a Header for the built-in buffer of this AutoTArray.
  Header* GetAutoArrayBuffer(size_t aElemAlign) {
    MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(aElemAlign);
  }
  const Header* GetAutoArrayBuffer(size_t aElemAlign) const {
    MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(aElemAlign);
  }

  // Returns a Header for the built-in buffer of this AutoTArray, but doesn't
  // assert that we are an AutoTArray.
  Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) {
    return const_cast<Header*>(
        static_cast<const nsTArray_base<Alloc, RelocationStrategy>*>(this)
            ->GetAutoArrayBufferUnsafe(aElemAlign));
  }
  const Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) const;

  // Returns true if this is an AutoTArray and it currently uses the
  // built-in buffer to store its elements.
  bool UsesAutoArrayBuffer() const;

  // The array's elements (prefixed with a Header).  This pointer is never
  // null.  If the array is empty, then this will point to sEmptyTArrayHeader.
  Header* mHdr;

  Header* Hdr() const MOZ_NONNULL_RETURN { return mHdr; }
  Header** PtrToHdr() MOZ_NONNULL_RETURN { return &mHdr; }
  static Header* EmptyHdr() MOZ_NONNULL_RETURN {
    return const_cast<Header*>(&sEmptyTArrayHeader);
  }

  [[nodiscard]] bool HasEmptyHeader() const { return mHdr == EmptyHdr(); }
};

namespace detail {

// Used for argument checking in nsTArrayElementTraits::Emplace.
template <typename... T>
struct ChooseFirst;

template <>
struct ChooseFirst<> {
  // Choose a default type that is guaranteed to not match E* for any
  // nsTArray<E>.
  typedef void Type;
};

template <typename A, typename... Args>
struct ChooseFirst<A, Args...> {
  typedef A Type;
};

}  // namespace detail

//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template <class E>
class nsTArrayElementTraits {
 public:
  // Invoke the default constructor in place.
  static inline void Construct(E* aE) {
    // Do NOT call "E()"! That triggers C++ "default initialization"
    // which zeroes out POD ("plain old data") types such as regular
    // ints.  We don't want that because it can be a performance issue
    // and people don't expect it; nsTArray should work like a regular
    // C/C++ array in this respect.
    new (static_cast<void*>(aE)) E;
  }
  // Invoke the copy-constructor in place.
  template <class A>
  static inline void Construct(E* aE, A&& aArg) {
    using E_NoCV = std::remove_cv_t<E>;
    using A_NoCV = std::remove_cv_t<A>;
    static_assert(!std::is_same_v<E_NoCV*, A_NoCV>,
                  "For safety, we disallow constructing nsTArray<E> elements "
                  "from E* pointers. See bug 960591.");
    new (static_cast<void*>(aE)) E(std::forward<A>(aArg));
  }
  // Construct in place.
  template <class... Args>
  static inline void Emplace(E* aE, Args&&... aArgs) {
    using E_NoCV = std::remove_cv_t<E>;
    using A_NoCV =
        std::remove_cv_t<typename ::detail::ChooseFirst<Args...>::Type>;
    static_assert(!std::is_same_v<E_NoCV*, A_NoCV>,
                  "For safety, we disallow constructing nsTArray<E> elements "
                  "from E* pointers. See bug 960591.");
    new (static_cast<void*>(aE)) E(std::forward<Args>(aArgs)...);
  }
  // Invoke the destructor in place.
  static inline void Destruct(E* aE) { aE->~E(); }
};

// The default comparator used by nsTArray
template <class A, class B>
class nsDefaultComparator {
 public:
  bool Equals(const A& aA, const B& aB) const { return aA == aB; }
  bool LessThan(const A& aA, const B& aB) const { return aA < aB; }
};

template <bool IsTriviallyCopyConstructible, bool IsSameType>
struct AssignRangeAlgorithm {
  template <class Item, class ElemType, class IndexType, class SizeType>
  static void implementation(ElemType* aElements, IndexType aStart,
                             SizeType aCount, const Item* aValues) {
    ElemType* iter = aElements + aStart;
    ElemType* end = iter + aCount;
    for (; iter != end; ++iter, ++aValues) {
      nsTArrayElementTraits<ElemType>::Construct(iter, *aValues);
    }
  }
};

template <>
struct AssignRangeAlgorithm<true, true> {
  template <class Item, class ElemType, class IndexType, class SizeType>
  static void implementation(ElemType* aElements, IndexType aStart,
                             SizeType aCount, const Item* aValues) {
    if (aValues) {
      memcpy(aElements + aStart, aValues, aCount * sizeof(ElemType));
    }
  }
};

//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic.  The nsTArray_RelocationStrategy template class
// can be specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//

//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_RelocateUsingMemutils {
  const static bool allowRealloc = true;

  static void RelocateNonOverlappingRegionWithHeader(void* aDest,
                                                     const void* aSrc,
                                                     size_t aCount,
                                                     size_t aElemSize) {
    memcpy(aDest, aSrc, sizeof(nsTArrayHeader) + aCount * aElemSize);
  }

  static void RelocateOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
                                        size_t aElemSize) {
    memmove(aDest, aSrc, aCount * aElemSize);
  }

  static void RelocateNonOverlappingRegion(void* aDest, void* aSrc,
                                           size_t aCount, size_t aElemSize) {
    memcpy(aDest, aSrc, aCount * aElemSize);
  }
};

//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template <class ElemType>
struct nsTArray_RelocateUsingMoveConstructor {
  typedef nsTArrayElementTraits<ElemType> traits;

  const static bool allowRealloc = false;

  static void RelocateNonOverlappingRegionWithHeader(void* aDest, void* aSrc,
                                                     size_t aCount,
                                                     size_t aElemSize) {
    nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(aDest);
    nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(aSrc);
    *destHeader = *srcHeader;
    RelocateNonOverlappingRegion(
        static_cast<uint8_t*>(aDest) + sizeof(nsTArrayHeader),
        static_cast<uint8_t*>(aSrc) + sizeof(nsTArrayHeader), aCount,
        aElemSize);
  }

  // These functions are defined by analogy with memmove and memcpy.
  // What they actually do is slightly different: RelocateOverlappingRegion
  // checks to see which direction the movement needs to take place,
  // whether from back-to-front of the range to be moved or from
  // front-to-back.  RelocateNonOverlappingRegion assumes that moving
  // front-to-back is always valid.  So they're really more like
  // std::move{_backward,} in that respect.  We keep these names because
  // we think they read slightly better, and RelocateNonOverlappingRegion is
  // only ever called on overlapping regions from RelocateOverlappingRegion.
  static void RelocateOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
                                        size_t aElemSize) {
    ElemType* destElem = static_cast<ElemType*>(aDest);
    ElemType* srcElem = static_cast<ElemType*>(aSrc);
    ElemType* destElemEnd = destElem + aCount;
    ElemType* srcElemEnd = srcElem + aCount;
    if (destElem == srcElem) {
      return;  // In practice, we don't do this.
    }

    // Figure out whether to copy back-to-front or front-to-back.
    if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
      while (destElemEnd != destElem) {
        --destElemEnd;
        --srcElemEnd;
        traits::Construct(destElemEnd, std::move(*srcElemEnd));
        traits::Destruct(srcElemEnd);
      }
    } else {
      RelocateNonOverlappingRegion(aDest, aSrc, aCount, aElemSize);
    }
  }

  static void RelocateNonOverlappingRegion(void* aDest, void* aSrc,
                                           size_t aCount, size_t aElemSize) {
    ElemType* destElem = static_cast<ElemType*>(aDest);
    ElemType* srcElem = static_cast<ElemType*>(aSrc);
    ElemType* destElemEnd = destElem + aCount;
#ifdef DEBUG
    ElemType* srcElemEnd = srcElem + aCount;
    MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
    while (destElem != destElemEnd) {
      traits::Construct(destElem, std::move(*srcElem));
      traits::Destruct(srcElem);
      ++destElem;
      ++srcElem;
    }
  }
};

//
// The default behaviour is to use memcpy/memmove for everything.
//
template <class E>
struct MOZ_NEEDS_MEMMOVABLE_TYPE nsTArray_RelocationStrategy {
  using Type = nsTArray_RelocateUsingMemutils;
};

//
// Some classes require constructors/destructors to be called, so they are
// specialized here.
//
#define MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(E)     \
  template <>                                              \
  struct nsTArray_RelocationStrategy<E> {                  \
    using Type = nsTArray_RelocateUsingMoveConstructor<E>; \
  };

#define MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(T) \
  template <typename S>                                             \
  struct nsTArray_RelocationStrategy<T<S>> {                        \
    using Type = nsTArray_RelocateUsingMoveConstructor<T<S>>;       \
  };

// TODO mozilla::ipc::AutoIPCStream is not even movable, so memmovable use with
// nsTArray (in StructuredCloneData) seems at least quirky

MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(JS::Heap)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(std::function)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(mozilla::ipc::Endpoint)

MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(nsRegion)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(nsIntRegion)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::layers::TileClient)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
    mozilla::SerializedStructuredCloneBuffer)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
    mozilla::dom::ipc::StructuredCloneData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::ClonedMessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
    mozilla::dom::indexedDB::ObjectStoreCursorResponse)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
    mozilla::dom::indexedDB::IndexCursorResponse)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
    mozilla::dom::indexedDB::SerializedStructuredCloneReadInfo);
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(JSStructuredCloneData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::MessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::RefMessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::SourceBufferTask)

//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template <class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};

//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template <class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
    : public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived> {
  operator const nsTArray<E>&() {
    static_assert(sizeof(E) == sizeof(JS::Heap<E>),
                  "JS::Heap<E> must be binary compatible with E.");
    Derived* self = static_cast<Derived*>(this);
    return *reinterpret_cast<nsTArray<E>*>(self);
  }

  operator const FallibleTArray<E>&() {
    Derived* self = static_cast<Derived*>(this);
    return *reinterpret_cast<FallibleTArray<E>*>(self);
  }
};

namespace detail {

// These helpers allow us to differentiate between tri-state comparator
// functions and classes with LessThan() and Equal() methods. If an object, when
// called as a function with two instances of our element type, returns an int,
// we treat it as a tri-state comparator.
//
// T is the type of the comparator object we want to check. U is the array
// element type that we'll be comparing.
//
// V is never passed, and is only used to allow us to specialize on the return
// value of the comparator function.
template <typename T, typename U, typename V = int>
struct IsCompareMethod : std::false_type {};

template <typename T, typename U>
struct IsCompareMethod<
    T, U, decltype(std::declval<T>()(std::declval<U>(), std::declval<U>()))>
    : std::true_type {};

// These two wrappers allow us to use either a tri-state comparator, or an
// object with Equals() and LessThan() methods interchangeably. They provide a
// tri-state Compare() method, and Equals() method, and a LessThan() method.
//
// Depending on the type of the underlying comparator, they either pass these
// through directly, or synthesize them from the methods available on the
// comparator.
//
// Callers should always use the most-specific of these methods that match their
// purpose.

// Comparator wrapper for a tri-state comparator function
template <typename T, typename U, bool IsCompare = IsCompareMethod<T, U>::value>
struct CompareWrapper {
#ifdef _MSC_VER
#  pragma warning(push)
#  pragma warning(disable : 4180) /* Silence "qualifier applied to function \
                                     type has no meaning" warning */
#endif
  MOZ_IMPLICIT CompareWrapper(const T& aComparator)
      : mComparator(aComparator) {}

  template <typename A, typename B>
  int Compare(A& aLeft, B& aRight) const {
    return mComparator(aLeft, aRight);
  }

  template <typename A, typename B>
  bool Equals(A& aLeft, B& aRight) const {
    return Compare(aLeft, aRight) == 0;
  }

  template <typename A, typename B>
  bool LessThan(A& aLeft, B& aRight) const {
    return Compare(aLeft, aRight) < 0;
  }

  const T& mComparator;
#ifdef _MSC_VER
#  pragma warning(pop)
#endif
};

// Comparator wrapper for a class with Equals() and LessThan() methods.
template <typename T, typename U>
struct CompareWrapper<T, U, false> {
  MOZ_IMPLICIT CompareWrapper(const T& aComparator)
      : mComparator(aComparator) {}

  template <typename A, typename B>
  int Compare(A& aLeft, B& aRight) const {
    if (Equals(aLeft, aRight)) {
      return 0;
    }
    return LessThan(aLeft, aRight) ? -1 : 1;
  }

  template <typename A, typename B>
  bool Equals(A& aLeft, B& aRight) const {
    return mComparator.Equals(aLeft, aRight);
  }

  template <typename A, typename B>
  bool LessThan(A& aLeft, B& aRight) const {
    return mComparator.LessThan(aLeft, aRight);
  }

  const T& mComparator;
};

}  // namespace detail

//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// AutoTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template <class E, class Alloc>
class nsTArray_Impl
    : public nsTArray_base<Alloc,
                           typename nsTArray_RelocationStrategy<E>::Type>,
      public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc>> {
 private:
  friend class nsTArray<E>;

  typedef nsTArrayFallibleAllocator FallibleAlloc;
  typedef nsTArrayInfallibleAllocator InfallibleAlloc;

 public:
  typedef typename nsTArray_RelocationStrategy<E>::Type relocation_type;
  typedef nsTArray_base<Alloc, relocation_type> base_type;
  typedef typename base_type::size_type size_type;
  typedef typename base_type::index_type index_type;
  typedef E elem_type;
  typedef nsTArray_Impl<E, Alloc> self_type;
  typedef nsTArrayElementTraits<E> elem_traits;
  typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
  typedef mozilla::ArrayIterator<elem_type&, self_type> iterator;
  typedef mozilla::ArrayIterator<const elem_type&, self_type> const_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

  using base_type::EmptyHdr;
  using safeelementat_helper_type::SafeElementAt;

  // A special value that is used to indicate an invalid or unknown index
  // into the array.
  static const index_type NoIndex = index_type(-1);

  using base_type::Length;

  //
  // Finalization method
  //

  ~nsTArray_Impl() {
    if (!base_type::IsEmpty()) {
      ClearAndRetainStorage();
    }
    // mHdr cleanup will be handled by base destructor
  }

  //
  // Initialization methods
  //

  nsTArray_Impl() = default;

  // Initialize this array and pre-allocate some number of elements.
  explicit nsTArray_Impl(size_type aCapacity) { SetCapacity(aCapacity); }

  // Initialize this array with an r-value.
  // Allow different types of allocators, since the allocator doesn't matter.
  template <typename Allocator>
  explicit nsTArray_Impl(nsTArray_Impl<E, Allocator>&& aOther) noexcept {
    // We cannot be a (Copyable)AutoTArray because that overrides this ctor.
    MOZ_ASSERT(!this->IsAutoArray());

    // This does not use SwapArrayElements because that's unnecessarily complex.
    this->MoveConstructNonAutoArray(aOther, sizeof(elem_type),
                                    MOZ_ALIGNOF(elem_type));
  }

  // The array's copy-constructor performs a 'deep' copy of the given array.
  // @param aOther The array object to copy.
  //
  // It's very important that we declare this method as taking |const
  // self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
  // an arbitrary OtherAlloc.
  //
  // If we don't declare a constructor taking |const self_type&|, C++ generates
  // a copy-constructor for this class which merely copies the object's
  // members, which is obviously wrong.
  //
  // You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
  // nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&.  So the
  // effect on the API is the same as if we'd declared this method as taking
  // |const nsTArray_Impl<E, OtherAlloc>&|.
  nsTArray_Impl(const nsTArray_Impl&) = default;

  // Allow converting to a const array with a different kind of allocator,
  // Since the allocator doesn't matter for const arrays
  template <typename Allocator>
  [[nodiscard]] operator const nsTArray_Impl<E, Allocator>&() const& {
    return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
  }
  // And we have to do this for our subclasses too
  [[nodiscard]] operator const nsTArray<E>&() const& {
    return *reinterpret_cast<const nsTArray<E>*>(this);
  }
  [[nodiscard]] operator const FallibleTArray<E>&() const& {
    return *reinterpret_cast<const FallibleTArray<E>*>(this);
  }

  // The array's assignment operator performs a 'deep' copy of the given
  // array.  It is optimized to reuse existing storage if possible.
  // @param aOther The array object to copy.
  nsTArray_Impl& operator=(const nsTArray_Impl&) = default;

  // The array's move assignment operator steals the underlying data from
  // the other array.
  // @param other  The array object to move from.
  self_type& operator=(self_type&& aOther) {
    if (this != &aOther) {
      Clear();
      this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    }
    return *this;
  }

  // Return true if this array has the same length and the same
  // elements as |aOther|.
  template <typename Allocator>
  [[nodiscard]] bool operator==(
      const nsTArray_Impl<E, Allocator>& aOther) const {
    size_type len = Length();
    if (len != aOther.Length()) {
      return false;
    }

    // XXX std::equal would be as fast or faster here
    for (index_type i = 0; i < len; ++i) {
      if (!(operator[](i) == aOther[i])) {
        return false;
      }
    }

    return true;
  }

  // Return true if this array does not have the same length and the same
  // elements as |aOther|.
  [[nodiscard]] bool operator!=(const self_type& aOther) const {
    return !operator==(aOther);
  }

  // If Alloc == FallibleAlloc, ReplaceElementsAt might fail, without a way to
  // signal this to the caller, so we disallow copying via operator=. Callers
  // should use ReplaceElementsAt with a fallible argument instead, and check
  // the result.
  template <typename Allocator,
            typename = std::enable_if_t<std::is_same_v<Alloc, InfallibleAlloc>,
                                        Allocator>>
  self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
    AssignInternal<InfallibleAlloc>(aOther.Elements(), aOther.Length());
    return *this;
  }

  template <typename Allocator>
  self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
    Clear();
    this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    return *this;
  }

  // @return The amount of memory used by this nsTArray_Impl, excluding
  // sizeof(*this). If you want to measure anything hanging off the array, you
  // must iterate over the elements and measure them individually; hence the
  // "Shallow" prefix.
  [[nodiscard]] size_t ShallowSizeOfExcludingThis(
      mozilla::MallocSizeOf aMallocSizeOf) const {
    if (this->UsesAutoArrayBuffer() || this->HasEmptyHeader()) {
      return 0;
    }
    return aMallocSizeOf(this->Hdr());
  }

  // @return The amount of memory used by this nsTArray_Impl, including
  // sizeof(*this). If you want to measure anything hanging off the array, you
  // must iterate over the elements and measure them individually; hence the
  // "Shallow" prefix.
  [[nodiscard]] size_t ShallowSizeOfIncludingThis(
      mozilla::MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  //
  // Accessor methods
  //

  // This method provides direct access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  [[nodiscard]] elem_type* Elements() MOZ_NONNULL_RETURN {
    return reinterpret_cast<elem_type*>(Hdr() + 1);
  }

  // This method provides direct, readonly access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  [[nodiscard]] const elem_type* Elements() const MOZ_NONNULL_RETURN {
    return reinterpret_cast<const elem_type*>(Hdr() + 1);
  }

  // This method provides direct access to an element of the array. The given
  // index must be within the array bounds.
  // @param aIndex The index of an element in the array.
  // @return A reference to the i'th element of the array.
  [[nodiscard]] elem_type& ElementAt(index_type aIndex) {
    if (MOZ_UNLIKELY(aIndex >= Length())) {
      InvalidArrayIndex_CRASH(aIndex, Length());
    }
    return Elements()[aIndex];
  }

  // This method provides direct, readonly access to an element of the array
  // The given index must be within the array bounds.
  // @param aIndex The index of an element in the array.
  // @return A const reference to the i'th element of the array.
  [[nodiscard]] const elem_type& ElementAt(index_type aIndex) const {
    if (MOZ_UNLIKELY(aIndex >= Length())) {
      InvalidArrayIndex_CRASH(aIndex, Length());
    }
    return Elements()[aIndex];
  }

  // This method provides direct access to an element of the array in a bounds
  // safe manner. If the requested index is out of bounds the provided default
  // value is returned.
  // @param aIndex The index of an element in the array.
  // @param aDef   The value to return if the index is out of bounds.
  [[nodiscard]] elem_type& SafeElementAt(index_type aIndex, elem_type& aDef) {
    return aIndex < Length() ? Elements()[aIndex] : aDef;
  }

  // This method provides direct access to an element of the array in a bounds
  // safe manner. If the requested index is out of bounds the provided default
  // value is returned.
  // @param aIndex The index of an element in the array.
  // @param aDef   The value to return if the index is out of bounds.
  [[nodiscard]] const elem_type& SafeElementAt(index_type aIndex,
                                               const elem_type& aDef) const {
    return aIndex < Length() ? Elements()[aIndex] : aDef;
  }

  // Shorthand for ElementAt(aIndex)
  [[nodiscard]] elem_type& operator[](index_type aIndex) {
    return ElementAt(aIndex);
  }

  // Shorthand for ElementAt(aIndex)
  [[nodiscard]] const elem_type& operator[](index_type aIndex) const {
    return ElementAt(aIndex);
  }

  // Shorthand for ElementAt(length - 1)
  [[nodiscard]] elem_type& LastElement() { return ElementAt(Length() - 1); }

  // Shorthand for ElementAt(length - 1)
  [[nodiscard]] const elem_type& LastElement() const {
    return ElementAt(Length() - 1);
  }

  // Shorthand for SafeElementAt(length - 1, def)
  [[nodiscard]] elem_type& SafeLastElement(elem_type& aDef) {
    return SafeElementAt(Length() - 1, aDef);
  }

  // Shorthand for SafeElementAt(length - 1, def)
  [[nodiscard]] const elem_type& SafeLastElement(const elem_type& aDef) const {
    return SafeElementAt(Length() - 1, aDef);
  }

  // Methods for range-based for loops.
  [[nodiscard]] iterator begin() { return iterator(*this, 0); }
  [[nodiscard]] const_iterator begin() const {
    return const_iterator(*this, 0);
  }
  [[nodiscard]] const_iterator cbegin() const { return begin(); }
  [[nodiscard]] iterator end() { return iterator(*this, Length()); }
  [[nodiscard]] const_iterator end() const {
    return const_iterator(*this, Length());
  }
  [[nodiscard]] const_iterator cend() const { return end(); }

  // Methods for reverse iterating.
  [[nodiscard]] reverse_iterator rbegin() { return reverse_iterator(end()); }
  [[nodiscard]] const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  [[nodiscard]] const_reverse_iterator crbegin() const { return rbegin(); }
  [[nodiscard]] reverse_iterator rend() { return reverse_iterator(begin()); }
  [[nodiscard]] const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }
  [[nodiscard]] const_reverse_iterator crend() const { return rend(); }

  // Span integration

  [[nodiscard]] operator mozilla::Span<elem_type>() {
    return mozilla::Span<elem_type>(Elements(), Length());
  }

  [[nodiscard]] operator mozilla::Span<const elem_type>() const {
    return mozilla::Span<const elem_type>(Elements(), Length());
  }

  //
  // Search methods
  //

  // This method searches for the first element in this array that is equal
  // to the given element.
  // @param aItem  The item to search for.
  // @param aComp  The Comparator used to determine element equality.
  // @return       true if the element was found.
  template <class Item, class Comparator>
  [[nodiscard]] bool Contains(const Item& aItem,
                              const Comparator& aComp) const {
    return ApplyIf(
        aItem, 0, aComp, []() { return true; }, []() { return false; });
  }

  // Like Contains(), but assumes a sorted array.
  template <class Item, class Comparator>
  [[nodiscard]] bool ContainsSorted(const Item& aItem,
                                    const Comparator& aComp) const {
    return BinaryIndexOf(aItem, aComp) != NoIndex;
  }

  // This method searches for the first element in this array that is equal
  // to the given element.  This method assumes that 'operator==' is defined
  // for elem_type.
  // @param aItem  The item to search for.
  // @return       true if the element was found.
  template <class Item>
  [[nodiscard]] bool Contains(const Item& aItem) const {
    return Contains(aItem, nsDefaultComparator<elem_type, Item>());
  }

  // Like Contains(), but assumes a sorted array.
  template <class Item>
  [[nodiscard]] bool ContainsSorted(const Item& aItem) const {
    return BinaryIndexOf(aItem) != NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.
  // @param aItem  The item to search for.
  // @param aStart The index to start from.
  // @param aComp  The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item, class Comparator>
  [[nodiscard]] index_type IndexOf(const Item& aItem, index_type aStart,
                                   const Comparator& aComp) const {
    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    const elem_type* iter = Elements() + aStart;
    const elem_type* iend = Elements() + Length();
    for (; iter != iend; ++iter) {
      if (comp.Equals(*iter, aItem)) {
        return index_type(iter - Elements());
      }
    }
    return NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param aItem  The item to search for.
  // @param aStart The index to start from.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item>
  [[nodiscard]] index_type IndexOf(const Item& aItem,
                                   index_type aStart = 0) const {
    return IndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.
  // @param aItem  The item to search for.
  // @param aStart The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @param aComp  The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item, class Comparator>
  [[nodiscard]] index_type LastIndexOf(const Item& aItem, index_type aStart,
                                       const Comparator& aComp) const {
    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    size_type endOffset = aStart >= Length() ? Length() : aStart + 1;
    const elem_type* iend = Elements() - 1;
    const elem_type* iter = iend + endOffset;
    for (; iter != iend; --iter) {
      if (comp.Equals(*iter, aItem)) {
        return index_type(iter - Elements());
      }
    }
    return NoIndex;
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param aItem  The item to search for.
  // @param aStart The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item>
  [[nodiscard]] index_type LastIndexOf(const Item& aItem,
                                       index_type aStart = NoIndex) const {
    return LastIndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // If there is more than one equivalent element, there is no guarantee
  // on which one will be returned.
  // @param aItem  The item to search for.
  // @param aComp  The Comparator used.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item, class Comparator>
  [[nodiscard]] index_type BinaryIndexOf(const Item& aItem,
                                         const Comparator& aComp) const {
    using mozilla::BinarySearchIf;
    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    size_t index;
    bool found = BinarySearchIf(
        Elements(), 0, Length(),
        // Note: We pass the Compare() args here in reverse order and negate the
        // results for compatibility reasons. Some existing callers use Equals()
        // functions with first arguments which match aElement but not aItem, or
        // second arguments that match aItem but not aElement. To accommodate
        // those callers, we preserve the argument order of the older version of
        // this API. These callers, however, should be fixed, and this special
        // case removed.
        [&](const elem_type& aElement) {
          return -comp.Compare(aElement, aItem);
        },
        &index);
    return found ? index : NoIndex;
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // This method assumes that 'operator==' and 'operator<' are defined.
  // @param aItem  The item to search for.
  // @return       The index of the found element or NoIndex if not found.
  template <class Item>
  [[nodiscard]] index_type BinaryIndexOf(const Item& aItem) const {
    return BinaryIndexOf(aItem, nsDefaultComparator<elem_type, Item>());
  }

  //
  // Mutation methods
  //
 private:
  template <typename ActualAlloc, class Item>
  typename ActualAlloc::ResultType AssignInternal(const Item* aArray,
                                                  size_type aArrayLen);

 public:
  template <class Allocator, typename ActualAlloc = Alloc>
  [[nodiscard]] typename ActualAlloc::ResultType Assign(
      const nsTArray_Impl<E, Allocator>& aOther) {
    return AssignInternal<ActualAlloc>(aOther.Elements(), aOther.Length());
  }

  template <class Allocator>
  [[nodiscard]] bool Assign(const nsTArray_Impl<E, Allocator>& aOther,
                            const mozilla::fallible_t&) {
    return Assign<Allocator, FallibleAlloc>(aOther);
  }

  template <class Allocator>
  void Assign(nsTArray_Impl<E, Allocator>&& aOther) {
    Clear();
    this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  // This method call the destructor on each element of the array, empties it,
  // but does not shrink the array's capacity.
  // See also SetLengthAndRetainStorage.
  // Make sure to call Compact() if needed to avoid keeping a huge array
  // around.
  void ClearAndRetainStorage() {
    if (this->HasEmptyHeader()) {
      return;
    }

    DestructRange(0, Length());
    base_type::mHdr->mLength = 0;
  }

  // This method modifies the length of the array, but unlike SetLength
  // it doesn't deallocate/reallocate the current internal storage.
  // The new length MUST be shorter than or equal to the current capacity.
  // If the new length is larger than the existing length of the array,
  // then new elements will be constructed using elem_type's default
  // constructor.  If shorter, elements will be destructed and removed.
  // See also ClearAndRetainStorage.
  // @param aNewLen  The desired length of this array.
  void SetLengthAndRetainStorage(size_type aNewLen) {
    MOZ_ASSERT(aNewLen <= base_type::Capacity());
    size_type oldLen = Length();
    if (aNewLen > oldLen) {
      /// XXX(Bug 1631367) SetLengthAndRetainStorage should be disabled for
      /// FallibleTArray.
      InsertElementsAtInternal<InfallibleAlloc>(oldLen, aNewLen - oldLen);
      return;
    }
    if (aNewLen < oldLen) {
      DestructRange(aNewLen, oldLen - aNewLen);
      base_type::mHdr->mLength = aNewLen;
    }
  }

  // This method replaces a range of elements in this array.
  // @param aStart    The starting index of the elements to replace.
  // @param aCount    The number of elements to replace.  This may be zero to
  //                  insert elements without removing any existing elements.
  // @param aArray    The values to copy into this array.  Must be non-null,
  //                  and these elements must not already exist in the array
  //                  being modified.
  // @param aArrayLen The number of values to copy into this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
 private:
  template <typename ActualAlloc, class Item>
  elem_type* ReplaceElementsAtInternal(index_type aStart, size_type aCount,
                                       const Item* aArray, size_type aArrayLen);

 public:
  template <class Item>
  [[nodiscard]] elem_type* ReplaceElementsAt(index_type aStart,
                                             size_type aCount,
                                             const Item* aArray,
                                             size_type aArrayLen,
                                             const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aArray,
                                                    aArrayLen);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template <class Item>
  [[nodiscard]] elem_type* ReplaceElementsAt(index_type aStart,
                                             size_type aCount,
                                             const nsTArray<Item>& aArray,
                                             const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aArray);
  }

  template <class Item>
  [[nodiscard]] elem_type* ReplaceElementsAt(index_type aStart,
                                             size_type aCount,
                                             mozilla::Span<Item> aSpan,
                                             const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aSpan);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template <class Item>
  [[nodiscard]] elem_type* ReplaceElementsAt(index_type aStart,
                                             size_type aCount,
                                             const Item& aItem,
                                             const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aItem);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template <class Item>
  mozilla::NotNull<elem_type*> ReplaceElementAt(index_type aIndex,
                                                Item&& aItem) {
    elem_type* const elem = &ElementAt(aIndex);
    elem_traits::Destruct(elem);
    elem_traits::Construct(elem, std::forward<Item>(aItem));
    return mozilla::WrapNotNullUnchecked(elem);
  }

  // InsertElementsAt is ReplaceElementsAt with 0 elements to replace.
  // XXX Provide a proper documentation of InsertElementsAt.
  template <class Item>
  [[nodiscard]] elem_type* InsertElementsAt(index_type aIndex,
                                            const Item* aArray,
                                            size_type aArrayLen,
                                            const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aIndex, 0, aArray,
                                                    aArrayLen);
  }

  template <class Item, class Allocator>
  [[nodiscard]] elem_type* InsertElementsAt(
      index_type aIndex, const nsTArray_Impl<Item, Allocator>& aArray,
      const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(
        aIndex, 0, aArray.Elements(), aArray.Length());
  }

  template <class Item>
  [[nodiscard]] elem_type* InsertElementsAt(index_type aIndex,
                                            mozilla::Span<Item> aSpan,
                                            const mozilla::fallible_t&) {
    return ReplaceElementsAtInternal<FallibleAlloc>(aIndex, 0, aSpan.Elements(),
                                                    aSpan.Length());
  }

 private:
  template <typename ActualAlloc>
  elem_type* InsertElementAtInternal(index_type aIndex);

  // Insert a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly inserted element, or null on OOM.
 public:
  [[nodiscard]] elem_type* InsertElementAt(index_type aIndex,
                                           const mozilla::fallible_t&) {
    return InsertElementAtInternal<FallibleAlloc>(aIndex);
  }

 private:
  template <typename ActualAlloc, class Item>
  elem_type* InsertElementAtInternal(index_type aIndex, Item&& aItem);

  // Insert a new element, move constructing if possible.
 public:
  template <class Item>
  [[nodiscard]] elem_type* InsertElementAt(index_type aIndex, Item&& aItem,
                                           const mozilla::fallible_t&) {
    return InsertElementAtInternal<FallibleAlloc>(aIndex,
                                                  std::forward<Item>(aItem));
  }

  // Reconstruct the element at the given index, and return a pointer to the
  // reconstructed element.  This will destroy the existing element and
  // default-construct a new one, giving you a state much like what single-arg
  // InsertElementAt(), or no-arg AppendElement() does, but without changing the
  // length of the array.
  //
  // array[idx] = elem_type()
  //
  // would accomplish the same thing as long as elem_type has the appropriate
  // moving operator=, but some types don't for various reasons.
  mozilla::NotNull<elem_type*> ReconstructElementAt(index_type aIndex) {
    elem_type* elem = &ElementAt(aIndex);
    elem_traits::Destruct(elem);
    elem_traits::Construct(elem);
    return mozilla::WrapNotNullUnchecked(elem);
  }

  // This method searches for the smallest index of an element that is strictly
  // greater than |aItem|. If |aItem| is inserted at this index, the array will
  // remain sorted and |aItem| would come after all elements that are equal to
  // it. If |aItem| is greater than or equal to all elements in the array, the
  // array length is returned.
  //
  // Note that consumers who want to know whether there are existing items equal
  // to |aItem| in the array can just check that the return value here is > 0
  // and indexing into the previous slot gives something equal to |aItem|.
  //
  //
  // @param aItem  The item to search for.
  // @param aComp  The Comparator used.
  // @return        The index of greatest element <= to |aItem|
  // @precondition The array is sorted
  template <class Item, class Comparator>
  [[nodiscard]] index_type IndexOfFirstElementGt(
      const Item& aItem, const Comparator& aComp) const {
    using mozilla::BinarySearchIf;
    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    size_t index;
    BinarySearchIf(
        Elements(), 0, Length(),
        [&](const elem_type& aElement) {
          return comp.Compare(aElement, aItem) <= 0 ? 1 : -1;
        },
        &index);
    return index;
  }

  // A variation on the IndexOfFirstElementGt method defined above.
  template <class Item>
  [[nodiscard]] index_type IndexOfFirstElementGt(const Item& aItem) const {
    return IndexOfFirstElementGt(aItem, nsDefaultComparator<elem_type, Item>());
  }

 private:
  template <typename ActualAlloc, class Item, class Comparator>
  elem_type* InsertElementSortedInternal(Item&& aItem,
                                         const Comparator& aComp) {
    index_type index = IndexOfFirstElementGt<Item, Comparator>(aItem, aComp);
    return InsertElementAtInternal<ActualAlloc>(index,
                                                std::forward<Item>(aItem));
  }

  // Inserts |aItem| at such an index to guarantee that if the array
  // was previously sorted, it will remain sorted after this
  // insertion.
 public:
  template <class Item, class Comparator>
  [[nodiscard]] elem_type* InsertElementSorted(Item&& aItem,
                                               const Comparator& aComp,
                                               const mozilla::fallible_t&) {
    return InsertElementSortedInternal<FallibleAlloc>(std::forward<Item>(aItem),
                                                      aComp);
  }

  // A variation on the InsertElementSorted method defined above.
 public:
  template <class Item>
  [[nodiscard]] elem_type* InsertElementSorted(Item&& aItem,
                                               const mozilla::fallible_t&) {
    return InsertElementSortedInternal<FallibleAlloc>(
        std::forward<Item>(aItem), nsDefaultComparator<elem_type, Item>{});
  }

 private:
  template <typename ActualAlloc, class Item>
  elem_type* AppendElementsInternal(const Item* aArray, size_type aArrayLen);

  // This method appends elements to the end of this array.
  // @param aArray    The elements to append to this array.
  // @param aArrayLen The number of elements to append to this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
 public:
  template <class Item>
  [[nodiscard]] elem_type* AppendElements(const Item* aArray,
                                          size_type aArrayLen,
                                          const mozilla::fallible_t&) {
    return AppendElementsInternal<FallibleAlloc>(aArray, aArrayLen);
  }

  template <class Item>
  [[nodiscard]] elem_type* AppendElements(mozilla::Span<Item> aSpan,
                                          const mozilla::fallible_t&) {
    return AppendElementsInternal<FallibleAlloc>(aSpan.Elements(),
                                                 aSpan.Length());
  }

  // A variation on the AppendElements method defined above.
  template <class Item, class Allocator>
  [[nodiscard]] elem_type* AppendElements(
      const nsTArray_Impl<Item, Allocator>& aArray,
      const mozilla::fallible_t&) {
    return AppendElementsInternal<FallibleAlloc>(aArray.Elements(),
                                                 aArray.Length());
  }

 private:
  template <typename ActualAlloc, class Item, class Allocator>
  elem_type* AppendElementsInternal(nsTArray_Impl<Item, Allocator>&& aArray);

  // Move all elements from another array to the end of this array.
  // @return A pointer to the newly appended elements, or null on OOM.
 public:
  template <class Item, class Allocator>
  [[nodiscard]] elem_type* AppendElements(
      nsTArray_Impl<Item, Allocator>&& aArray, const mozilla::fallible_t&) {
    return AppendElementsInternal<FallibleAlloc>(std::move(aArray));
  }

  // Append a new element, constructed in place from the provided arguments.
 protected:
  template <typename ActualAlloc, class... Args>
  elem_type* EmplaceBackInternal(Args&&... aItem);

 public:
  template <class... Args>
  [[nodiscard]] elem_type* EmplaceBack(const mozilla::fallible_t&,
                                       Args&&... aArgs) {
    return EmplaceBackInternal<FallibleAlloc, Args...>(
        std::forward<Args>(aArgs)...);
  }

 private:
  template <typename ActualAlloc, class Item>
  elem_type* AppendElementInternal(Item&& aItem);

  // Append a new element, move constructing if possible.
 public:
  template <class Item>
  [[nodiscard]] elem_type* AppendElement(Item&& aItem,
                                         const mozilla::fallible_t&) {
    return AppendElementInternal<FallibleAlloc>(std::forward<Item>(aItem));
  }

 private:
  template <typename ActualAlloc>
  elem_type* AppendElementsInternal(size_type aCount) {
    if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
            Length(), aCount, sizeof(elem_type)))) {
      return nullptr;
    }
    elem_type* elems = Elements() + Length();
    size_type i;
    for (i = 0; i < aCount; ++i) {
      elem_traits::Construct(elems + i);
    }
    this->IncrementLength(aCount);
    return elems;
  }

  // Append new elements without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended elements, or null on OOM.
 public:
  [[nodiscard]] elem_type* AppendElements(size_type aCount,
                                          const mozilla::fallible_t&) {
    return AppendElementsInternal<FallibleAlloc>(aCount);
  }

 private:
  // Append a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended element, or null on OOM.
 public:
  [[nodiscard]] elem_type* AppendElement(const mozilla::fallible_t&) {
    return AppendElements(1, mozilla::fallible);
  }

  // This method removes a single element from this array, like
  // std::vector::erase.
  // @param pos to the element to remove
  const_iterator RemoveElementAt(const_iterator pos) {
    MOZ_ASSERT(pos.GetArray() == this);

    RemoveElementAt(pos.GetIndex());
    return pos;
  }

  // This method removes a range of elements from this array, like
  // std::vector::erase.
  // @param first iterator to the first of elements to remove
  // @param last iterator to the last of elements to remove
  const_iterator RemoveElementsRange(const_iterator first,
                                     const_iterator last) {
    MOZ_ASSERT(first.GetArray() == this);
    MOZ_ASSERT(last.GetArray() == this);
    MOZ_ASSERT(last.GetIndex() >= first.GetIndex());

    RemoveElementsAt(first.GetIndex(), last.GetIndex() - first.GetIndex());
    return first;
  }

  // This method removes a range of elements from this array.
  // @param aStart The starting index of the elements to remove.
  // @param aCount The number of elements to remove.
  void RemoveElementsAt(index_type aStart, size_type aCount);

 private:
  // Remove a range of elements from this array, but do not check that
  // the range is in bounds.
  // @param aStart The starting index of the elements to remove.
  // @param aCount The number of elements to remove.
  void RemoveElementsAtUnsafe(index_type aStart, size_type aCount);

 public:
  // A variation on the RemoveElementsAt method defined above.
  void RemoveElementAt(index_type aIndex) { RemoveElementsAt(aIndex, 1); }

  // A variation on RemoveElementAt that removes the last element.
  void RemoveLastElement() { RemoveLastElements(1); }

  // A variation on RemoveElementsAt that removes the last 'aCount' elements.
  void RemoveLastElements(const size_type aCount) {
    // This assertion is redundant, but produces a better error message than the
    // release assertion within TruncateLength.
    MOZ_ASSERT(aCount <= Length());
    TruncateLength(Length() - aCount);
  }

  // Removes the last element of the array and returns a copy of it.
  [[nodiscard]] elem_type PopLastElement() {
    // This function intentionally does not call ElementsAt and calls
    // TruncateLengthUnsafe directly to avoid multiple release checks for
    // non-emptiness.
    // This debug assertion is redundant, but produces a better error message
    // than the release assertion below.
    MOZ_ASSERT(!base_type::IsEmpty());
    const size_type oldLen = Length();
    if (MOZ_UNLIKELY(0 == oldLen)) {
      InvalidArrayIndex_CRASH(1, 0);
    }
    elem_type elem = std::move(Elements()[oldLen - 1]);
    TruncateLengthUnsafe(oldLen - 1);
    return elem;
  }

  // This method performs index-based removals from an array without preserving
  // the order of the array. This is useful if you are using the array as a
  // set-like data structure.
  //
  // These removals are efficient, as they move as few elements as possible. At
  // most N elements, where N is the number of removed elements, will have to
  // be relocated.
  //
  // ## Examples
  //
  // When removing an element from the end of the array, it can be removed in
  // place, by destroying it and decrementing the length.
  //
  // [ 1, 2, 3 ] => [ 1, 2 ]
  //         ^
  //
  // When removing any other single element, it is removed by swapping it with
  // the last element, and then decrementing the length as before.
  //
  // [ 1, 2, 3, 4, 5, 6 ]  => [ 1, 6, 3, 4, 5 ]
  //      ^
  //
  // This method also supports efficiently removing a range of elements. If they
  // are at the end, then they can all be removed like in the one element case.
  //
  // [ 1, 2, 3, 4, 5, 6 ] => [ 1, 2 ]
  //         ^--------^
  //
  // If more elements are removed than exist after the removed section, the
  // remaining elements will be shifted down like in a normal removal.
  //
  // [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 2, 7, 8 ]
  //         ^--------^
  //
  // And if fewer elements are removed than exist after the removed section,
  // elements will be moved from the end of the array to fill the vacated space.
  //
  // [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 7, 8, 4, 5, 6 ]
  //      ^--^
  //
  // @param aStart The starting index of the elements to remove. @param aCount
  // The number of elements to remove.
  void UnorderedRemoveElementsAt(index_type aStart, size_type aCount);

  // A variation on the UnorderedRemoveElementsAt method defined above to remove
  // a single element. This operation is sometimes called `SwapRemove`.
  //
  // This method is O(1), but does not preserve the order of the elements.
  void UnorderedRemoveElementAt(index_type aIndex) {
    UnorderedRemoveElementsAt(aIndex, 1);
  }

  void Clear() {
    ClearAndRetainStorage();
    base_type::ShrinkCapacityToZero(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  // This method removes elements based on the return value of the
  // callback function aPredicate. If the function returns true for
  // an element, the element is removed. aPredicate will be called
  // for each element in order. It is not safe to access the array
  // inside aPredicate.
  template <typename Predicate>
  void RemoveElementsBy(Predicate aPredicate);

  // This helper function combines IndexOf with RemoveElementAt to "search
  // and destroy" the first element that is equal to the given element.
  // @param aItem The item to search for.
  // @param aComp The Comparator used to determine element equality.
  // @return true if the element was found
  template <class Item, class Comparator>
  bool RemoveElement(const Item& aItem, const Comparator& aComp) {
    index_type i = IndexOf(aItem, 0, aComp);
    if (i == NoIndex) {
      return false;
    }

    RemoveElementsAtUnsafe(i, 1);
    return true;
  }

  // A variation on the RemoveElement method defined above that assumes
  // that 'operator==' is defined for elem_type.
  template <class Item>
  bool RemoveElement(const Item& aItem) {
    return RemoveElement(aItem, nsDefaultComparator<elem_type, Item>());
  }

  // This helper function combines IndexOfFirstElementGt with
  // RemoveElementAt to "search and destroy" the last element that
  // is equal to the given element.
  // @param aItem The item to search for.
  // @param aComp The Comparator used to determine element equality.
  // @return true if the element was found
  template <class Item, class Comparator>
  bool RemoveElementSorted(const Item& aItem, const Comparator& aComp) {
    index_type index = IndexOfFirstElementGt(aItem, aComp);
    if (index > 0 && aComp.Equals(ElementAt(index - 1), aItem)) {
      RemoveElementsAtUnsafe(index - 1, 1);
      return true;
    }
    return false;
  }

  // A variation on the RemoveElementSorted method defined above.
  template <class Item>
  bool RemoveElementSorted(const Item& aItem) {
    return RemoveElementSorted(aItem, nsDefaultComparator<elem_type, Item>());
  }

  // This method causes the elements contained in this array and the given
  // array to be swapped.
  template <class Allocator>
  void SwapElements(nsTArray_Impl<E, Allocator>& aOther) {
    // The only case this might fail were if someone called this with a
    // AutoTArray upcast to nsTArray_Impl, under the conditions mentioned in the
    // overload for AutoTArray below.
    this->template SwapArrayElements<InfallibleAlloc>(aOther, sizeof(elem_type),
                                                      MOZ_ALIGNOF(elem_type));
  }

  template <size_t N>
  void SwapElements(AutoTArray<E, N>& aOther) {
    // Allocation might fail if Alloc==FallibleAlloc and
    // Allocator==InfallibleAlloc and aOther uses auto storage. Allow this for
    // small inline sizes, and crash in the rare case of a small OOM error.
    static_assert(!std::is_same_v<Alloc, FallibleAlloc> ||
                  sizeof(E) * N <= 1024);
    this->template SwapArrayElements<InfallibleAlloc>(aOther, sizeof(elem_type),
                                                      MOZ_ALIGNOF(elem_type));
  }

  template <class Allocator>
  [[nodiscard]] auto SwapElements(nsTArray_Impl<E, Allocator>& aOther,
                                  const mozilla::fallible_t&) {
    // Allocation might fail if Alloc==FallibleAlloc and
    // Allocator==InfallibleAlloc and aOther uses auto storage.
    return FallibleAlloc::Result(
        this->template SwapArrayElements<FallibleAlloc>(
            aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type)));
  }

 private:
  // Used by ApplyIf functions to invoke a callable that takes either:
  // - Nothing: F(void)
  // - Index only: F(size_t)
  // - Reference to element only: F(maybe-const elem_type&)
  // - Both index and reference: F(size_t, maybe-const elem_type&)
  // `elem_type` must be const when called from const method.
  template <typename T, typename Param0, typename Param1>
  struct InvokeWithIndexAndOrReferenceHelper {
    static constexpr bool valid = false;
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, void, void> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t, T&) {
      return f();
    }
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, size_t, void> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t i, T&) {
      return f(i);
    }
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, T&, void> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t, T& e) {
      return f(e);
    }
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, const T&, void> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t, T& e) {
      return f(e);
    }
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, size_t, T&> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t i, T& e) {
      return f(i, e);
    }
  };
  template <typename T>
  struct InvokeWithIndexAndOrReferenceHelper<T, size_t, const T&> {
    static constexpr bool valid = true;
    template <typename F>
    static auto Invoke(F&& f, size_t i, T& e) {
      return f(i, e);
    }
  };
  template <typename T, typename F>
  static auto InvokeWithIndexAndOrReference(F&& f, size_t i, T& e) {
    using Invoker = InvokeWithIndexAndOrReferenceHelper<
        T, typename mozilla::FunctionTypeTraits<F>::template ParameterType<0>,
        typename mozilla::FunctionTypeTraits<F>::template ParameterType<1>>;
    static_assert(Invoker::valid,
                  "ApplyIf's Function parameters must match either: (void), "
                  "(size_t), (maybe-const elem_type&), or "
                  "(size_t, maybe-const elem_type&)");
    return Invoker::Invoke(std::forward<F>(f), i, e);
  }

 public:
  // 'Apply' family of methods.
  //
  // The advantages of using Apply methods with lambdas include:
  // - Safety of accessing elements from within the call, when the array cannot
  //   have been modified between the iteration and the subsequent access.
  // - Avoiding moot conversions: pointer->index during a search, followed by
  //   index->pointer after the search when accessing the element.
  // - Embedding your code into the algorithm, giving the compiler more chances
  //   to optimize.

  // Search for the first element comparing equal to aItem with the given
  // comparator (`==` by default).
  // If such an element exists, return the result of evaluating either:
  // - `aFunction()`
  // - `aFunction(index_type)`
  // - `aFunction(maybe-const? elem_type&)`
  // - `aFunction(index_type, maybe-const? elem_type&)`
  // (`aFunction` must have one of the above signatures with these exact types,
  //  including references; implicit conversions or generic types not allowed.
  //  If `this` array is const, the referenced `elem_type` must be const too;
  //  otherwise it may be either const or non-const.)
  // But if the element is not found, return the result of evaluating
  // `aFunctionElse()`.
  template <class Item, class Comparator, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, index_type aStart, const Comparator& aComp,
               Function&& aFunction, FunctionElse&& aFunctionElse) const {
    static_assert(
        std::is_same_v<
            typename mozilla::FunctionTypeTraits<Function>::ReturnType,
            typename mozilla::FunctionTypeTraits<FunctionElse>::ReturnType>,
        "ApplyIf's `Function` and `FunctionElse` must return the same type.");

    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    const elem_type* const elements = Elements();
    const elem_type* const iend = elements + Length();
    for (const elem_type* iter = elements + aStart; iter != iend; ++iter) {
      if (comp.Equals(*iter, aItem)) {
        return InvokeWithIndexAndOrReference<const elem_type>(
            std::forward<Function>(aFunction), iter - elements, *iter);
      }
    }
    return aFunctionElse();
  }
  template <class Item, class Comparator, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, index_type aStart, const Comparator& aComp,
               Function&& aFunction, FunctionElse&& aFunctionElse) {
    static_assert(
        std::is_same_v<
            typename mozilla::FunctionTypeTraits<Function>::ReturnType,
            typename mozilla::FunctionTypeTraits<FunctionElse>::ReturnType>,
        "ApplyIf's `Function` and `FunctionElse` must return the same type.");

    ::detail::CompareWrapper<Comparator, Item> comp(aComp);

    elem_type* const elements = Elements();
    elem_type* const iend = elements + Length();
    for (elem_type* iter = elements + aStart; iter != iend; ++iter) {
      if (comp.Equals(*iter, aItem)) {
        return InvokeWithIndexAndOrReference<elem_type>(
            std::forward<Function>(aFunction), iter - elements, *iter);
      }
    }
    return aFunctionElse();
  }
  template <class Item, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, index_type aStart, Function&& aFunction,
               FunctionElse&& aFunctionElse) const {
    return ApplyIf(aItem, aStart, nsDefaultComparator<elem_type, Item>(),
                   std::forward<Function>(aFunction),
                   std::forward<FunctionElse>(aFunctionElse));
  }
  template <class Item, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, index_type aStart, Function&& aFunction,
               FunctionElse&& aFunctionElse) {
    return ApplyIf(aItem, aStart, nsDefaultComparator<elem_type, Item>(),
                   std::forward<Function>(aFunction),
                   std::forward<FunctionElse>(aFunctionElse));
  }
  template <class Item, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, Function&& aFunction,
               FunctionElse&& aFunctionElse) const {
    return ApplyIf(aItem, 0, std::forward<Function>(aFunction),
                   std::forward<FunctionElse>(aFunctionElse));
  }
  template <class Item, class Function, class FunctionElse>
  auto ApplyIf(const Item& aItem, Function&& aFunction,
               FunctionElse&& aFunctionElse) {
    return ApplyIf(aItem, 0, std::forward<Function>(aFunction),
                   std::forward<FunctionElse>(aFunctionElse));
  }

  //
  // Allocation
  //

  // This method may increase the capacity of this array object to the
  // specified amount.  This method may be called in advance of several
  // AppendElement operations to minimize heap re-allocations.  This method
  // will not reduce the number of elements in this array.
  // @param aCapacity The desired capacity of this array.
  // @return True if the operation succeeded; false if we ran out of memory
 protected:
  template <typename ActualAlloc = Alloc>
  typename ActualAlloc::ResultType SetCapacity(size_type aCapacity) {
    return ActualAlloc::Result(this->template EnsureCapacity<ActualAlloc>(
        aCapacity, sizeof(elem_type)));
  }

 public:
  [[nodiscard]] bool SetCapacity(size_type aCapacity,
                                 const mozilla::fallible_t&) {
    return SetCapacity<FallibleAlloc>(aCapacity);
  }

  // This method modifies the length of the array.  If the new length is
  // larger than the existing length of the array, then new elements will be
  // constructed using elem_type's default constructor.  Otherwise, this call
  // removes elements from the array (see also RemoveElementsAt).
  // @param aNewLen The desired length of this array.
  // @return True if the operation succeeded; false otherwise.
  // See also TruncateLength for a more efficient variant if the new length is
  // guaranteed to be smaller than the old.
 protected:
  template <typename ActualAlloc = Alloc>
  typename ActualAlloc::ResultType SetLength(size_type aNewLen) {
    const size_type oldLen = Length();
    if (aNewLen > oldLen) {
      return ActualAlloc::ConvertBoolToResultType(
          InsertElementsAtInternal<ActualAlloc>(oldLen, aNewLen - oldLen) !=
          nullptr);
    }

    TruncateLengthUnsafe(aNewLen);
    return ActualAlloc::ConvertBoolToResultType(true);
  }

 public:
  [[nodiscard]] bool SetLength(size_type aNewLen, const mozilla::fallible_t&) {
    return SetLength<FallibleAlloc>(aNewLen);
  }

  // This method modifies the length of the array, but may only be
  // called when the new length is shorter than the old.  It can
  // therefore be called when elem_type has no default constructor,
  // unlike SetLength.  It removes elements from the array (see also
  // RemoveElementsAt).
  // @param aNewLen The desired length of this array.
  void TruncateLength(size_type aNewLen) {
    // This assertion is redundant, but produces a better error message than the
    // release assertion below.
    MOZ_ASSERT(aNewLen <= Length(), "caller should use SetLength instead");

    if (MOZ_UNLIKELY(aNewLen > Length())) {
      InvalidArrayIndex_CRASH(aNewLen, Length());
    }

    TruncateLengthUnsafe(aNewLen);
  }

 private:
  void TruncateLengthUnsafe(size_type aNewLen) {
    const size_type oldLen = Length();
    if (oldLen) {
      DestructRange(aNewLen, oldLen - aNewLen);
      base_type::mHdr->mLength = aNewLen;
    }
  }

  // This method ensures that the array has length at least the given
  // length.  If the current length is shorter than the given length,
  // then new elements will be constructed using elem_type's default
  // constructor.
  // @param aMinLen The desired minimum length of this array.
  // @return True if the operation succeeded; false otherwise.
 protected:
  template <typename ActualAlloc = Alloc>
  typename ActualAlloc::ResultType EnsureLengthAtLeast(size_type aMinLen) {
    size_type oldLen = Length();
    if (aMinLen > oldLen) {
      return ActualAlloc::ConvertBoolToResultType(
          !!InsertElementsAtInternal<ActualAlloc>(oldLen, aMinLen - oldLen));
    }
    return ActualAlloc::ConvertBoolToResultType(true);
  }

 public:
  [[nodiscard]] bool EnsureLengthAtLeast(size_type aMinLen,
                                         const mozilla::fallible_t&) {
    return EnsureLengthAtLeast<FallibleAlloc>(aMinLen);
  }

  // This method inserts elements into the array, constructing
  // them using elem_type's default constructor.
  // @param aIndex the place to insert the new elements. This must be no
  //               greater than the current length of the array.
  // @param aCount the number of elements to insert
 private:
  template <typename ActualAlloc>
  elem_type* InsertElementsAtInternal(index_type aIndex, size_type aCount) {
    if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
            aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type)))) {
      return nullptr;
    }

    // Initialize the extra array elements
    elem_type* iter = Elements() + aIndex;
    elem_type* iend = iter + aCount;
    for (; iter != iend; ++iter) {
      elem_traits::Construct(iter);
    }

    return Elements() + aIndex;
  }

 public:
  [[nodiscard]] elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
                                            const mozilla::fallible_t&) {
    return InsertElementsAtInternal<FallibleAlloc>(aIndex, aCount);
  }

  // This method inserts elements into the array, constructing them
  // elem_type's copy constructor (or whatever one-arg constructor
  // happens to match the Item type).
  // @param aIndex the place to insert the new elements. This must be no
  //               greater than the current length of the array.
  // @param aCount the number of elements to insert.
  // @param aItem the value to use when constructing the new elements.
 private:
  template <typename ActualAlloc, class Item>
  elem_type* InsertElementsAtInternal(index_type aIndex, size_type aCount,
                                      const Item& aItem);

 public:
  template <class Item>
  [[nodiscard]] elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
                                            const Item& aItem,
                                            const mozilla::fallible_t&) {
    return InsertElementsAt<Item, FallibleAlloc>(aIndex, aCount, aItem);
  }

  // This method may be called to minimize the memory used by this array.
  void Compact() { ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type)); }

  //
  // Sorting
  //

  // This function is meant to be used with the NS_QuickSort function.  It
  // maps the callback API expected by NS_QuickSort to the Comparator API
  // used by nsTArray_Impl.  See nsTArray_Impl::Sort.
  template <class Comparator>
  static int Compare(const void* aE1, const void* aE2, void* aData) {
    const Comparator* c = reinterpret_cast<const Comparator*>(aData);
    const elem_type* a = static_cast<const elem_type*>(aE1);
    const elem_type* b = static_cast<const elem_type*>(aE2);
    return c->Compare(*a, *b);
  }

  // This method sorts the elements of the array.  It uses the LessThan
  // method defined on the given Comparator object to collate elements.
  // @param aComp The Comparator used to collate elements.
  template <class Comparator>
  void Sort(const Comparator& aComp) {
    ::detail::CompareWrapper<Comparator, elem_type> comp(aComp);

    NS_QuickSort(Elements(), Length(), sizeof(elem_type),
                 Compare<decltype(comp)>, &comp);
  }

  // A variation on the Sort method defined above that assumes that
  // 'operator<' is defined for elem_type.
  void Sort() { Sort(nsDefaultComparator<elem_type, elem_type>()); }

  // This method sorts the elements of the array in a stable way (i.e. not
  // changing the relative order of elements considered equal by the
  // Comparator).  It uses the LessThan
  // method defined on the given Comparator object to collate elements.
  // @param aComp The Comparator used to collate elements.
  template <class Comparator>
  void StableSort(const Comparator& aComp) {
    const ::detail::CompareWrapper<Comparator, elem_type> comp(aComp);

    std::stable_sort(Elements(), Elements() + Length(),
                     [&comp](const auto& lhs, const auto& rhs) {
                       return comp.LessThan(lhs, rhs);
                     });
  }

  // This method reverses the array in place.
  void Reverse() {
    elem_type* elements = Elements();
    const size_type len = Length();
    for (index_type i = 0, iend = len / 2; i < iend; ++i) {
      std::swap(elements[i], elements[len - i - 1]);
    }
  }

 protected:
  using base_type::Hdr;
  using base_type::ShrinkCapacity;

  // This method invokes elem_type's destructor on a range of elements.
  // @param aStart The index of the first element to destroy.
  // @param aCount The number of elements to destroy.
  void DestructRange(index_type aStart, size_type aCount) {
    elem_type* iter = Elements() + aStart;
    elem_type* iend = iter + aCount;
    for (; iter != iend; ++iter) {
      elem_traits::Destruct(iter);
    }
  }

  // This method invokes elem_type's copy-constructor on a range of elements.
  // @param aStart  The index of the first element to construct.
  // @param aCount  The number of elements to construct.
  // @param aValues The array of elements to copy.
  template <class Item>
  void AssignRange(index_type aStart, size_type aCount, const Item* aValues) {
    AssignRangeAlgorithm<
        std::is_trivially_copy_constructible_v<Item>,
        std::is_same_v<Item, elem_type>>::implementation(Elements(), aStart,
                                                         aCount, aValues);
  }
};

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AssignInternal(const Item* aArray,
                                             size_type aArrayLen) ->
    typename ActualAlloc::ResultType {
  static_assert(std::is_same_v<ActualAlloc, InfallibleAlloc> ||
                std::is_same_v<ActualAlloc, FallibleAlloc>);

  if constexpr (std::is_same_v<ActualAlloc, InfallibleAlloc>) {
    ClearAndRetainStorage();
  }
  // Adjust memory allocation up-front to catch errors in the fallible case.
  // We might relocate the elements to be destroyed unnecessarily. This could be
  // optimized, but would make things more complicated.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          aArrayLen, sizeof(elem_type)))) {
    return ActualAlloc::ConvertBoolToResultType(false);
  }

  MOZ_ASSERT_IF(this->HasEmptyHeader(), aArrayLen == 0);
  if (!this->HasEmptyHeader()) {
    if constexpr (std::is_same_v<ActualAlloc, FallibleAlloc>) {
      ClearAndRetainStorage();
    }
    AssignRange(0, aArrayLen, aArray);
    base_type::mHdr->mLength = aArrayLen;
  }

  return ActualAlloc::ConvertBoolToResultType(true);
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::ReplaceElementsAtInternal(index_type aStart,
                                                        size_type aCount,
                                                        const Item* aArray,
                                                        size_type aArrayLen)
    -> elem_type* {
  if (MOZ_UNLIKELY(aStart > Length())) {
    InvalidArrayIndex_CRASH(aStart, Length());
  }

  // Adjust memory allocation up-front to catch errors.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          Length() + aArrayLen - aCount, sizeof(elem_type)))) {
    return nullptr;
  }
  DestructRange(aStart, aCount);
  this->template ShiftData<ActualAlloc>(
      aStart, aCount, aArrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  AssignRange(aStart, aArrayLen, aArray);
  return Elements() + aStart;
}

template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::RemoveElementsAt(index_type aStart,
                                               size_type aCount) {
  MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");

  mozilla::CheckedInt<index_type> rangeEnd = aStart;
  rangeEnd += aCount;

  if (MOZ_UNLIKELY(!rangeEnd.isValid() || rangeEnd.value() > Length())) {
    InvalidArrayIndex_CRASH(aStart, Length());
  }

  RemoveElementsAtUnsafe(aStart, aCount);
}

template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::RemoveElementsAtUnsafe(index_type aStart,
                                                     size_type aCount) {
  DestructRange(aStart, aCount);
  this->template ShiftData<InfallibleAlloc>(
      aStart, aCount, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}

template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::UnorderedRemoveElementsAt(index_type aStart,
                                                        size_type aCount) {
  MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");

  mozilla::CheckedInt<index_type> rangeEnd = aStart;
  rangeEnd += aCount;

  if (MOZ_UNLIKELY(!rangeEnd.isValid() || rangeEnd.value() > Length())) {
    InvalidArrayIndex_CRASH(aStart, Length());
  }

  // Destroy the elements which are being removed, and then swap elements in to
  // replace them from the end. See the docs on the declaration of this
  // function.
  DestructRange(aStart, aCount);
  this->template SwapFromEnd<InfallibleAlloc>(aStart, aCount, sizeof(elem_type),
                                              MOZ_ALIGNOF(elem_type));
}

template <typename E, class Alloc>
template <typename Predicate>
void nsTArray_Impl<E, Alloc>::RemoveElementsBy(Predicate aPredicate) {
  if (this->HasEmptyHeader()) {
    return;
  }

  index_type j = 0;
  const index_type len = Length();
  elem_type* const elements = Elements();
  for (index_type i = 0; i < len; ++i) {
    const bool result = aPredicate(elements[i]);

    // Check that the array has not been modified by the predicate.
    MOZ_DIAGNOSTIC_ASSERT(len == base_type::mHdr->mLength &&
                          elements == Elements());

    if (result) {
      elem_traits::Destruct(elements + i);
    } else {
      if (j < i) {
        relocation_type::RelocateNonOverlappingRegion(
            elements + j, elements + i, 1, sizeof(elem_type));
      }
      ++j;
    }
  }

  base_type::mHdr->mLength = j;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::InsertElementsAtInternal(index_type aIndex,
                                                       size_type aCount,
                                                       const Item& aItem)
    -> elem_type* {
  if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
          aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type)))) {
    return nullptr;
  }

  // Initialize the extra array elements
  elem_type* iter = Elements() + aIndex;
  elem_type* iend = iter + aCount;
  for (; iter != iend; ++iter) {
    elem_traits::Construct(iter, aItem);
  }

  return Elements() + aIndex;
}

template <typename E, class Alloc>
template <typename ActualAlloc>
auto nsTArray_Impl<E, Alloc>::InsertElementAtInternal(index_type aIndex)
    -> elem_type* {
  if (MOZ_UNLIKELY(aIndex > Length())) {
    InvalidArrayIndex_CRASH(aIndex, Length());
  }

  // Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          Length() + 1, sizeof(elem_type)))) {
    return nullptr;
  }
  this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
                                        MOZ_ALIGNOF(elem_type));
  elem_type* elem = Elements() + aIndex;
  elem_traits::Construct(elem);
  return elem;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::InsertElementAtInternal(index_type aIndex,
                                                      Item&& aItem)
    -> elem_type* {
  if (MOZ_UNLIKELY(aIndex > Length())) {
    InvalidArrayIndex_CRASH(aIndex, Length());
  }

  // Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          Length() + 1, sizeof(elem_type)))) {
    return nullptr;
  }
  this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
                                        MOZ_ALIGNOF(elem_type));
  elem_type* elem = Elements() + aIndex;
  elem_traits::Construct(elem, std::forward<Item>(aItem));
  return elem;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AppendElementsInternal(const Item* aArray,
                                                     size_type aArrayLen)
    -> elem_type* {
  if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
          Length(), aArrayLen, sizeof(elem_type)))) {
    return nullptr;
  }
  index_type len = Length();
  AssignRange(len, aArrayLen, aArray);
  this->IncrementLength(aArrayLen);
  return Elements() + len;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item, class Allocator>
auto nsTArray_Impl<E, Alloc>::AppendElementsInternal(
    nsTArray_Impl<Item, Allocator>&& aArray) -> elem_type* {
  if constexpr (std::is_same_v<Alloc, Allocator>) {
    MOZ_ASSERT(&aArray != this, "argument must be different aArray");
  }
  if (Length() == 0) {
    // XXX This might still be optimized. If aArray uses auto-storage but we
    // won't, we might better retain our storage if it's sufficiently large.
    this->ShrinkCapacityToZero(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    this->MoveInit(aArray, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    return Elements();
  }

  index_type len = Length();
  index_type otherLen = aArray.Length();
  if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
          len, otherLen, sizeof(elem_type)))) {
    return nullptr;
  }
  relocation_type::RelocateNonOverlappingRegion(
      Elements() + len, aArray.Elements(), otherLen, sizeof(elem_type));
  this->IncrementLength(otherLen);
  aArray.template ShiftData<ActualAlloc>(0, otherLen, 0, sizeof(elem_type),
                                         MOZ_ALIGNOF(elem_type));
  return Elements() + len;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AppendElementInternal(Item&& aItem)
    -> elem_type* {
  // Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          Length() + 1, sizeof(elem_type)))) {
    return nullptr;
  }
  elem_type* elem = Elements() + Length();
  elem_traits::Construct(elem, std::forward<Item>(aItem));
  this->mHdr->mLength += 1;
  return elem;
}

template <typename E, class Alloc>
template <typename ActualAlloc, class... Args>
auto nsTArray_Impl<E, Alloc>::EmplaceBackInternal(Args&&... aArgs)
    -> elem_type* {
  // Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
  if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
          Length() + 1, sizeof(elem_type)))) {
    return nullptr;
  }
  elem_type* elem = Elements() + Length();
  elem_traits::Emplace(elem, std::forward<Args>(aArgs)...);
  this->mHdr->mLength += 1;
  return elem;
}

template <typename E, typename Alloc>
inline void ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField) {
  aField.Clear();
}

namespace detail {
// This is defined in the cpp file to avoid including
// nsCycleCollectionNoteChild.h in this header file.
void SetCycleCollectionArrayFlag(uint32_t& aFlags);
}  // namespace detail

template <typename E, typename Alloc>
inline void ImplCycleCollectionTraverse(
    nsCycleCollectionTraversalCallback& aCallback,
    nsTArray_Impl<E, Alloc>& aField, const char* aName, uint32_t aFlags = 0) {
  ::detail::SetCycleCollectionArrayFlag(aFlags);
  size_t length = aField.Length();
  for (size_t i = 0; i < length; ++i) {
    ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
  }
}

//
// nsTArray is an infallible vector class.  See the comment at the top of this
// file for more details.
//
template <class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator> {
 public:
  using InfallibleAlloc = nsTArrayInfallibleAllocator;
  using base_type = nsTArray_Impl<E, InfallibleAlloc>;
  using self_type = nsTArray<E>;
  using typename base_type::elem_type;
  using typename base_type::index_type;
  using typename base_type::size_type;

  nsTArray() {}
  explicit nsTArray(size_type aCapacity) : base_type(aCapacity) {}
  MOZ_IMPLICIT nsTArray(std::initializer_list<E> aIL) {
    AppendElements(aIL.begin(), aIL.size());
  }

  template <class Item>
  nsTArray(const Item* aArray, size_type aArrayLen) {
    AppendElements(aArray, aArrayLen);
  }

  template <class Item>
  explicit nsTArray(mozilla::Span<Item> aSpan) {
    AppendElements(aSpan);
  }

  template <class Allocator>
  explicit nsTArray(const nsTArray_Impl<E, Allocator>& aOther)
      : base_type(aOther) {}
  template <class Allocator>
  MOZ_IMPLICIT nsTArray(nsTArray_Impl<E, Allocator>&& aOther)
      : base_type(std::move(aOther)) {}

  template <class Allocator>
  self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
    base_type::operator=(aOther);
    return *this;
  }
  template <class Allocator>
  self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
    // This is quite complex, since we don't know if we are an AutoTArray. While
    // AutoTArray overrides this operator=, this might be called on a nsTArray&
    // bound to an AutoTArray.
    base_type::operator=(std::move(aOther));
    return *this;
  }

  using base_type::AppendElement;
  using base_type::AppendElements;
  using base_type::EmplaceBack;
  using base_type::EnsureLengthAtLeast;
  using base_type::InsertElementAt;
  using base_type::InsertElementsAt;
  using base_type::InsertElementSorted;
  using base_type::ReplaceElementsAt;
  using base_type::SetCapacity;
  using base_type::SetLength;

  template <class Item>
  mozilla::NotNull<elem_type*> AppendElements(const Item* aArray,
                                              size_type aArrayLen) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(aArray,
                                                               aArrayLen));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> AppendElements(mozilla::Span<Item> aSpan) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(aSpan.Elements(),
                                                               aSpan.Length()));
  }

  template <class Item, class Allocator>
  mozilla::NotNull<elem_type*> AppendElements(
      const nsTArray_Impl<Item, Allocator>& aArray) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(
            aArray.Elements(), aArray.Length()));
  }

  template <class Item, class Allocator>
  mozilla::NotNull<elem_type*> AppendElements(
      nsTArray_Impl<Item, Allocator>&& aArray) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(
            std::move(aArray)));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> AppendElement(Item&& aItem) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementInternal<InfallibleAlloc>(
            std::forward<Item>(aItem)));
  }

  mozilla::NotNull<elem_type*> AppendElements(size_type aCount) {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(aCount));
  }

  mozilla::NotNull<elem_type*> AppendElement() {
    return mozilla::WrapNotNullUnchecked(
        this->template AppendElementsInternal<InfallibleAlloc>(1));
  }

  self_type Clone() const {
    self_type result;
    result.Assign(*this);
    return result;
  }

  mozilla::NotNull<elem_type*> InsertElementsAt(index_type aIndex,
                                                size_type aCount) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementsAtInternal<InfallibleAlloc>(aIndex,
                                                                 aCount));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> InsertElementsAt(index_type aIndex,
                                                size_type aCount,
                                                const Item& aItem) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementsAtInternal<InfallibleAlloc>(aIndex, aCount,
                                                                 aItem));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> InsertElementsAt(index_type aIndex,
                                                const Item* aArray,
                                                size_type aArrayLen) {
    return mozilla::WrapNotNullUnchecked(
        this->template ReplaceElementsAtInternal<InfallibleAlloc>(
            aIndex, 0, aArray, aArrayLen));
  }

  template <class Item, class Allocator>
  mozilla::NotNull<elem_type*> InsertElementsAt(
      index_type aIndex, const nsTArray_Impl<Item, Allocator>& aArray) {
    return mozilla::WrapNotNullUnchecked(
        this->template ReplaceElementsAtInternal<InfallibleAlloc>(
            aIndex, 0, aArray.Elements(), aArray.Length()));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> InsertElementsAt(index_type aIndex,
                                                mozilla::Span<Item> aSpan) {
    return mozilla::WrapNotNullUnchecked(
        this->template ReplaceElementsAtInternal<InfallibleAlloc>(
            aIndex, 0, aSpan.Elements(), aSpan.Length()));
  }

  mozilla::NotNull<elem_type*> InsertElementAt(index_type aIndex) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementAtInternal<InfallibleAlloc>(aIndex));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> InsertElementAt(index_type aIndex,
                                               Item&& aItem) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementAtInternal<InfallibleAlloc>(
            aIndex, std::forward<Item>(aItem)));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> ReplaceElementsAt(index_type aStart,
                                                 size_type aCount,
                                                 const Item* aArray,
                                                 size_type aArrayLen) {
    return mozilla::WrapNotNullUnchecked(
        this->template ReplaceElementsAtInternal<InfallibleAlloc>(
            aStart, aCount, aArray, aArrayLen));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> ReplaceElementsAt(index_type aStart,
                                                 size_type aCount,
                                                 const nsTArray<Item>& aArray) {
    return ReplaceElementsAt(aStart, aCount, aArray.Elements(),
                             aArray.Length());
  }

  template <class Item>
  mozilla::NotNull<elem_type*> ReplaceElementsAt(index_type aStart,
                                                 size_type aCount,
                                                 mozilla::Span<Item> aSpan) {
    return ReplaceElementsAt(aStart, aCount, aSpan.Elements(), aSpan.Length());
  }

  template <class Item>
  mozilla::NotNull<elem_type*> ReplaceElementsAt(index_type aStart,
                                                 size_type aCount,
                                                 const Item& aItem) {
    return ReplaceElementsAt(aStart, aCount, &aItem, 1);
  }

  template <class Item, class Comparator>
  mozilla::NotNull<elem_type*> InsertElementSorted(Item&& aItem,
                                                   const Comparator& aComp) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementSortedInternal<InfallibleAlloc>(
            std::forward<Item>(aItem), aComp));
  }

  template <class Item>
  mozilla::NotNull<elem_type*> InsertElementSorted(Item&& aItem) {
    return mozilla::WrapNotNullUnchecked(
        this->template InsertElementSortedInternal<InfallibleAlloc>(
            std::forward<Item>(aItem), nsDefaultComparator<elem_type, Item>{}));
  }

  template <class... Args>
  mozilla::NotNull<elem_type*> EmplaceBack(Args&&... aArgs) {
    return mozilla::WrapNotNullUnchecked(
        this->template EmplaceBackInternal<InfallibleAlloc, Args...>(
            std::forward<Args>(aArgs)...));
  }
};

template <class E>
class CopyableTArray : public nsTArray<E> {
 public:
  using nsTArray<E>::nsTArray;

  CopyableTArray(const CopyableTArray& aOther) : nsTArray<E>() {
    this->Assign(aOther);
  }
  CopyableTArray& operator=(const CopyableTArray& aOther) {
    if (this != &aOther) {
      this->Assign(aOther);
    }
    return *this;
  }
  template <typename Allocator>
  MOZ_IMPLICIT CopyableTArray(const nsTArray_Impl<E, Allocator>& aOther) {
    this->Assign(aOther);
  }
  template <typename Allocator>
  CopyableTArray& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
    if constexpr (std::is_same_v<Allocator, nsTArrayInfallibleAllocator>) {
      if (this == &aOther) {
        return *this;
      }
    }
    this->Assign(aOther);
    return *this;
  }
  template <typename Allocator>
  MOZ_IMPLICIT CopyableTArray(nsTArray_Impl<E, Allocator>&& aOther)
      : nsTArray<E>{std::move(aOther)} {}
  template <typename Allocator>
  CopyableTArray& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
    static_cast<nsTArray<E>&>(*this) = std::move(aOther);
    return *this;
  }

  CopyableTArray(CopyableTArray&&) = default;
  CopyableTArray& operator=(CopyableTArray&&) = default;
};

//
// FallibleTArray is a fallible vector class.
//
template <class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator> {
 public:
  typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
  typedef FallibleTArray<E> self_type;
  typedef typename base_type::size_type size_type;

  FallibleTArray() = default;
  explicit FallibleTArray(size_type aCapacity) : base_type(aCapacity) {}

  template <class Allocator>
  explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& aOther)
      : base_type(aOther) {}
  template <class Allocator>
  explicit FallibleTArray(nsTArray_Impl<E, Allocator>&& aOther)
      : base_type(std::move(aOther)) {}

  template <class Allocator>
  self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
    base_type::operator=(aOther);
    return *this;
  }
  template <class Allocator>
  self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
    base_type::operator=(std::move(aOther));
    return *this;
  }
};

//
// AutoTArray<E, N> is like nsTArray<E>, but with N elements of inline storage.
// Storing more than N elements is fine, but it will cause a heap allocation.
//
template <class E, size_t N>
class MOZ_NON_MEMMOVABLE AutoTArray : public nsTArray<E> {
  static_assert(N != 0, "AutoTArray<E, 0> should be specialized");

 public:
  typedef AutoTArray<E, N> self_type;
  typedef nsTArray<E> base_type;
  typedef typename base_type::Header Header;
  typedef typename base_type::elem_type elem_type;

  AutoTArray() : mAlign() { Init(); }

  AutoTArray(self_type&& aOther) : nsTArray<E>() {
    Init();
    this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  explicit AutoTArray(base_type&& aOther) : mAlign() {
    Init();
    this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  template <typename Allocator>
  explicit AutoTArray(nsTArray_Impl<elem_type, Allocator>&& aOther) {
    Init();
    this->MoveInit(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  MOZ_IMPLICIT AutoTArray(std::initializer_list<E> aIL) : mAlign() {
    Init();
    this->AppendElements(aIL.begin(), aIL.size());
  }

  self_type& operator=(self_type&& aOther) {
    base_type::operator=(std::move(aOther));
    return *this;
  }

  template <typename Allocator>
  self_type& operator=(nsTArray_Impl<elem_type, Allocator>&& aOther) {
    base_type::operator=(std::move(aOther));
    return *this;
  }

  // Intentionally hides nsTArray_Impl::Clone to make clones usually be
  // AutoTArray as well.
  self_type Clone() const {
    self_type result;
    result.Assign(*this);
    return result;
  }

 private:
  // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
  // to mAutoBuf.
  template <class Allocator, class RelocationStrategy>
  friend class nsTArray_base;

  void Init() {
    static_assert(MOZ_ALIGNOF(elem_type) <= 8,
                  "can't handle alignments greater than 8, "
                  "see nsTArray_base::UsesAutoArrayBuffer()");
    // Temporary work around for VS2012 RC compiler crash
    Header** phdr = base_type::PtrToHdr();
    *phdr = reinterpret_cast<Header*>(&mAutoBuf);
    (*phdr)->mLength = 0;
    (*phdr)->mCapacity = N;
    (*phdr)->mIsAutoArray = 1;

    MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
                   reinterpret_cast<Header*>(&mAutoBuf),
               "GetAutoArrayBuffer needs to be fixed");
  }

  // Declare mAutoBuf aligned to the maximum of the header's alignment and
  // elem_type's alignment.  We need to use a union rather than
  // MOZ_ALIGNED_DECL because GCC is picky about what goes into
  // __attribute__((aligned(foo))).
  union {
    char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
    // Do the max operation inline to ensure that it is a compile-time constant.
    mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type))
                             ? MOZ_ALIGNOF(Header)
                             : MOZ_ALIGNOF(elem_type)>
        mAlign;
  };
};

//
// Specialization of AutoTArray<E, N> for the case where N == 0.
// AutoTArray<E, 0> behaves exactly like nsTArray<E>, but without this
// specialization, it stores a useless inline header.
//
// We do have many AutoTArray<E, 0> objects in memory: about 2,000 per tab as
// of May 2014. These are typically not explicitly AutoTArray<E, 0> but rather
// AutoTArray<E, N> for some value N depending on template parameters, in
// generic code.
//
// For that reason, we optimize this case with the below partial specialization,
// which ensures that AutoTArray<E, 0> is just like nsTArray<E>, without any
// inline header overhead.
//
template <class E>
class AutoTArray<E, 0> : public nsTArray<E> {
  using nsTArray<E>::nsTArray;
};

template <class E, size_t N>
struct nsTArray_RelocationStrategy<AutoTArray<E, N>> {
  using Type = nsTArray_RelocateUsingMoveConstructor<AutoTArray<E, N>>;
};

template <class E, size_t N>
class CopyableAutoTArray : public AutoTArray<E, N> {
 public:
  typedef CopyableAutoTArray<E, N> self_type;
  using AutoTArray<E, N>::AutoTArray;

  CopyableAutoTArray(const CopyableAutoTArray& aOther) : AutoTArray<E, N>() {
    this->Assign(aOther);
  }
  CopyableAutoTArray& operator=(const CopyableAutoTArray& aOther) {
    if (this != &aOther) {
      this->Assign(aOther);
    }
    return *this;
  }
  template <typename Allocator>
  MOZ_IMPLICIT CopyableAutoTArray(const nsTArray_Impl<E, Allocator>& aOther) {
    this->Assign(aOther);
  }
  template <typename Allocator>
  CopyableAutoTArray& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
    if constexpr (std::is_same_v<Allocator, nsTArrayInfallibleAllocator>) {
      if (this == &aOther) {
        return *this;
      }
    }
    this->Assign(aOther);
    return *this;
  }
  template <typename Allocator>
  MOZ_IMPLICIT CopyableAutoTArray(nsTArray_Impl<E, Allocator>&& aOther)
      : AutoTArray<E, N>{std::move(aOther)} {}
  template <typename Allocator>
  CopyableAutoTArray& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
    static_cast<AutoTArray<E, N>&>(*this) = std::move(aOther);
    return *this;
  }

  // CopyableTArray exists for cases where an explicit Clone is not possible.
  // These uses should not be mixed, so we delete Clone() here.
  self_type Clone() const = delete;

  CopyableAutoTArray(CopyableAutoTArray&&) = default;
  CopyableAutoTArray& operator=(CopyableAutoTArray&&) = default;
};

// Span integration
namespace mozilla {
template <typename E, typename ArrayT>
class nsTArrayBackInserter
    : public std::iterator<std::output_iterator_tag, void, void, void, void> {
  ArrayT* mArray;

 public:
  explicit nsTArrayBackInserter(ArrayT& aArray) : mArray{&aArray} {}

  nsTArrayBackInserter& operator=(const E& aValue) {
    mArray->AppendElement(aValue);
    return *this;
  }

  nsTArrayBackInserter& operator=(E&& aValue) {
    mArray->AppendElement(std::move(aValue));
    return *this;
  }

  nsTArrayBackInserter& operator*() { return *this; }

  nsTArrayBackInserter& operator++() { return *this; }
  nsTArrayBackInserter& operator++(int) { return *this; }
};

template <typename E>
auto MakeBackInserter(nsTArray<E>& aArray) {
  return nsTArrayBackInserter<E, nsTArray<E>>{aArray};
}

template <typename E, class Alloc>
Span(nsTArray_Impl<E, Alloc>&) -> Span<E>;

template <typename E, class Alloc>
Span(const nsTArray_Impl<E, Alloc>&) -> Span<const E>;

// Provides a view on a nsTArray through which the existing array elements can
// be accessed in a non-const way, but the array itself cannot be modified, so
// that references to elements are guaranteed to be stable.
template <typename E>
class nsTArrayView {
 public:
  using element_type = E;
  using pointer = element_type*;
  using reference = element_type&;
  using index_type = typename Span<element_type>::index_type;
  using size_type = typename Span<element_type>::index_type;

  explicit nsTArrayView(nsTArray<element_type> aArray)
      : mArray(std::move(aArray)), mSpan(mArray) {}

  element_type& operator[](index_type aIndex) { return mSpan[aIndex]; }

  const element_type& operator[](index_type aIndex) const {
    return mSpan[aIndex];
  }

  size_type Length() const { return mSpan.Length(); }

  auto begin() { return mSpan.begin(); }
  auto end() { return mSpan.end(); }
  auto begin() const { return mSpan.begin(); }
  auto end() const { return mSpan.end(); }
  auto cbegin() const { return mSpan.cbegin(); }
  auto cend() const { return mSpan.cend(); }

  Span<element_type> AsSpan() { return mSpan; }
  Span<const element_type> AsSpan() const { return mSpan; }

 private:
  nsTArray<element_type> mArray;
  const Span<element_type> mSpan;
};

}  // namespace mozilla

// MOZ_DBG support

template <class E, class Alloc>
std::ostream& operator<<(std::ostream& aOut,
                         const nsTArray_Impl<E, Alloc>& aTArray) {
  return aOut << mozilla::Span(aTArray);
}

// Assert that AutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. AutoTArray<uint32_t, 1> wouldn't work.  Since AutoTArray
// contains a pointer, its size must be a multiple of alignof(void*).  (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.)  The compiler pads the end of the structure to
// enforce this rule.
//
// If we used AutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.

static_assert(sizeof(AutoTArray<uint32_t, 2>) ==
                  sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
              "AutoTArray shouldn't contain any extra padding, "
              "see the comment");

// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"

#endif  // nsTArray_h__