1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2013 Free Software Foundation, Inc.
*
* GRUB is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GRUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
*/
#include <grub/test.h>
#include <grub/dl.h>
#include <grub/misc.h>
GRUB_MOD_LICENSE ("GPLv3+");
static grub_uint64_t vectors[][2] = {
{ 0xffffffffffffffffULL, 1},
{ 1, 0xffffffffffffffffULL},
{ 0xffffffffffffffffULL, 0xffffffffffffffffULL},
{ 1, 1 },
{ 2, 1 }
};
static void
test32 (grub_uint32_t a, grub_uint32_t b)
{
grub_uint64_t q, r;
if (b == 0)
return;
q = grub_divmod64 (a, b, &r);
grub_test_assert (r < b, "remainder is larger than dividend: 0x%llx %% 0x%llx = 0x%llx",
(long long) a, (long long) b, (long long) r);
grub_test_assert (q * b + r == a, "division doesn't satisfy base property: 0x%llx * 0x%llx + 0x%llx != 0x%llx", (long long) q, (long long) b, (long long) r,
(long long) a);
/* Overflow check. */
grub_test_assert ((q >> 32) == 0,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
grub_test_assert ((r >> 32) == 0,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
/* q * b + r is at most:
0xffffffff * 0xffffffff + 0xffffffff = 0xffffffff00000000
so no overflow
*/
grub_test_assert (q == (a / b),
"C compiler division failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
grub_test_assert (r == (a % b),
"C compiler modulo failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
}
static void
test64 (grub_uint64_t a, grub_uint64_t b)
{
grub_uint64_t q, r;
grub_uint64_t x1, x2;
q = grub_divmod64 (a, b, &r);
grub_test_assert (r < b, "remainder is larger than dividend: 0x%llx %% 0x%llx = 0x%llx",
(long long) a, (long long) b, (long long) r);
grub_test_assert (q * b + r == a, "division doesn't satisfy base property: 0x%llx * 0x%llx + 0x%llx != 0x%llx", (long long) q, (long long) b, (long long) r,
(long long) a);
/* Overflow checks. */
grub_test_assert ((q >> 32) * (b >> 32) == 0,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x1 = (q >> 32) * (b & 0xffffffff);
grub_test_assert (x1 < (1LL << 32),
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x1 <<= 32;
x2 = (b >> 32) * (q & 0xffffffff);
grub_test_assert (x2 < (1LL << 32),
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x2 <<= 32;
grub_test_assert (x1 <= ~x2,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x1 += x2;
x2 = (q & 0xffffffff) * (b & 0xffffffff);
grub_test_assert (x1 <= ~x2,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x1 += x2;
grub_test_assert (x1 <= ~r,
"division overflow in 0x%llx, 0x%llx", (long long) a, (long long) b);
x1 += r;
grub_test_assert (a == x1,
"division overflow test failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
#if GRUB_TARGET_SIZEOF_VOID_P == 8
grub_test_assert (q == (a / b),
"C compiler division failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
grub_test_assert (r == (a % b),
"C compiler modulo failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
#endif
}
static grub_int64_t
abs64(grub_int64_t a)
{
return a > 0 ? a : -a;
}
static void
test32s (grub_int32_t a, grub_int32_t b)
{
grub_int64_t q, r;
if (b == 0)
return;
q = grub_divmod64s (a, b, &r);
grub_test_assert (a > 0 ? r >= 0 : r <= 0, "remainder sign mismatch: %lld %% %lld = %lld",
(long long) a, (long long) b, (long long) r);
grub_test_assert (((a > 0) == (b > 0)) ? q >= 0 : q <= 0, "quotient sign mismatch: %lld / %lld = %lld",
(long long) a, (long long) b, (long long) q);
grub_test_assert (abs64(r) < abs64(b), "remainder is larger than dividend: %lld %% %lld = %lld",
(long long) a, (long long) b, (long long) r);
grub_test_assert (q * b + r == a, "division doesn't satisfy base property: %lld * %lld + %lld != %lld", (long long) q, (long long) b, (long long) r,
(long long) a);
if (0) { grub_test_assert (q == (a / b),
"C compiler division failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
grub_test_assert (r == (a % b),
"C compiler modulo failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
}
}
static void
test64s (grub_int64_t a, grub_int64_t b)
{
grub_int64_t q, r;
q = grub_divmod64s (a, b, &r);
grub_test_assert (a > 0 ? r >= 0 : r <= 0, "remainder sign mismatch: %lld %% %lld = %lld",
(long long) a, (long long) b, (long long) r);
grub_test_assert (((a > 0) == (b > 0)) ? q >= 0 : q <= 0, "quotient sign mismatch: %lld / %lld = %lld",
(long long) a, (long long) b, (long long) q);
grub_test_assert (abs64(r) < abs64(b), "remainder is larger than dividend: %lld %% %lld = %lld",
(long long) a, (long long) b, (long long) r);
grub_test_assert (q * b + r == a, "division doesn't satisfy base property: 0x%llx * 0x%llx + 0x%llx != 0x%llx", (long long) q, (long long) b, (long long) r,
(long long) a);
#if GRUB_TARGET_SIZEOF_VOID_P == 8
grub_test_assert (q == (a / b),
"C compiler division failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
grub_test_assert (r == (a % b),
"C compiler modulo failure in 0x%llx, 0x%llx", (long long) a, (long long) b);
#endif
}
static void
test_all(grub_uint64_t a, grub_uint64_t b)
{
test64 (a, b);
test32 (a, b);
test64s (a, b);
test32s (a, b);
test64s (a, -b);
test32s (a, -b);
test64s (-a, b);
test32s (-a, b);
test64s (-a, -b);
test32s (-a, -b);
}
static void
div_test (void)
{
grub_uint64_t a = 404, b = 7;
grub_size_t i;
for (i = 0; i < ARRAY_SIZE (vectors); i++)
{
test_all (vectors[i][0], vectors[i][1]);
}
for (i = 0; i < 40000; i++)
{
a = 17 * a + 13 * b;
b = 23 * a + 29 * b;
if (b == 0)
b = 1;
if (a == 0)
a = 1;
test_all (a, b);
}
}
/* Register example_test method as a functional test. */
GRUB_FUNCTIONAL_TEST (div_test, div_test);
|