diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:29:01 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:29:01 +0000 |
commit | 35a96bde514a8897f6f0fcc41c5833bf63df2e2a (patch) | |
tree | 657d15a03cc46bd099fc2c6546a7a4ad43815d9f /src/2geom/bezier-curve.h | |
parent | Initial commit. (diff) | |
download | inkscape-35a96bde514a8897f6f0fcc41c5833bf63df2e2a.tar.xz inkscape-35a96bde514a8897f6f0fcc41c5833bf63df2e2a.zip |
Adding upstream version 1.0.2.upstream/1.0.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/bezier-curve.h')
-rw-r--r-- | src/2geom/bezier-curve.h | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/src/2geom/bezier-curve.h b/src/2geom/bezier-curve.h new file mode 100644 index 0000000..9416ba7 --- /dev/null +++ b/src/2geom/bezier-curve.h @@ -0,0 +1,352 @@ +/** + * \file + * \brief Bezier curve + *//* + * Authors: + * MenTaLguY <mental@rydia.net> + * Marco Cecchetti <mrcekets at gmail.com> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * + * Copyright 2007-2011 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#ifndef LIB2GEOM_SEEN_BEZIER_CURVE_H +#define LIB2GEOM_SEEN_BEZIER_CURVE_H + +#include <2geom/curve.h> +#include <2geom/sbasis-curve.h> // for non-native winding method +#include <2geom/bezier.h> +#include <2geom/transforms.h> + +namespace Geom +{ + +class BezierCurve : public Curve { +protected: + D2<Bezier> inner; + BezierCurve() {} + BezierCurve(Bezier const &x, Bezier const &y) : inner(x, y) {} + BezierCurve(std::vector<Point> const &pts); + +public: + explicit BezierCurve(D2<Bezier> const &b) : inner(b) {} + + /// @name Access and modify control points + /// @{ + /** @brief Get the order of the Bezier curve. + * A Bezier curve has order() + 1 control points. */ + unsigned order() const { return inner[X].order(); } + /** @brief Get the number of control points. */ + unsigned size() const { return inner[X].order() + 1; } + /** @brief Access control points of the curve. + * @param ix The (zero-based) index of the control point. Note that the caller is responsible for checking that this value is <= order(). + * @return The control point. No-reference return, use setPoint() to modify control points. */ + Point controlPoint(unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); } + Point operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); } + /** @brief Get the control points. + * @return Vector with order() + 1 control points. */ + std::vector<Point> controlPoints() const { return bezier_points(inner); } + D2<Bezier> const &fragment() const { return inner; } + + /** @brief Modify a control point. + * @param ix The zero-based index of the point to modify. Note that the caller is responsible for checking that this value is <= order(). + * @param v The new value of the point */ + void setPoint(unsigned ix, Point const &v) { + inner[X][ix] = v[X]; + inner[Y][ix] = v[Y]; + } + /** @brief Set new control points. + * @param ps Vector which must contain order() + 1 points. + * Note that the caller is responsible for checking the size of this vector. + * @throws LogicalError Thrown when the size of the vector does not match the order. */ + virtual void setPoints(std::vector<Point> const &ps) { + // must be virtual, because HLineSegment will need to redefine it + if (ps.size() != order() + 1) + THROW_LOGICALERROR("BezierCurve::setPoints: incorrect number of points in vector"); + for(unsigned i = 0; i <= order(); i++) { + setPoint(i, ps[i]); + } + } + /// @} + + /// @name Construct a Bezier curve with runtime-determined order. + /// @{ + /** @brief Construct a curve from a vector of control points. + * This will construct the appropriate specialization of BezierCurve (i.e. LineSegment, + * QuadraticBezier or Cubic Bezier) if the number of control points in the passed vector + * does not exceed 4. */ + static BezierCurve *create(std::vector<Point> const &pts); + /// @} + + // implementation of virtual methods goes here + virtual Point initialPoint() const { return inner.at0(); } + virtual Point finalPoint() const { return inner.at1(); } + virtual bool isDegenerate() const; + virtual bool isLineSegment() const { return size() == 2; } + virtual void setInitial(Point const &v) { setPoint(0, v); } + virtual void setFinal(Point const &v) { setPoint(order(), v); } + virtual Rect boundsFast() const { return *bounds_fast(inner); } + virtual Rect boundsExact() const { return *bounds_exact(inner); } + virtual OptRect boundsLocal(OptInterval const &i, unsigned deg) const { + if (!i) return OptRect(); + if(i->min() == 0 && i->max() == 1) return boundsFast(); + if(deg == 0) return bounds_local(inner, i); + // TODO: UUUUUUGGGLLY + if(deg == 1 && order() > 1) return OptRect(bounds_local(Geom::derivative(inner[X]), i), + bounds_local(Geom::derivative(inner[Y]), i)); + return OptRect(); + } + virtual Curve *duplicate() const { + return new BezierCurve(*this); + } + virtual Curve *portion(Coord f, Coord t) const { + return new BezierCurve(Geom::portion(inner, f, t)); + } + virtual Curve *reverse() const { + return new BezierCurve(Geom::reverse(inner)); + } + + using Curve::operator*=; + virtual void operator*=(Translate const &tr) { + for (unsigned i = 0; i < size(); ++i) { + inner[X][i] += tr[X]; + inner[Y][i] += tr[Y]; + } + } + virtual void operator*=(Scale const &s) { + for (unsigned i = 0; i < size(); ++i) { + inner[X][i] *= s[X]; + inner[Y][i] *= s[Y]; + } + } + virtual void operator*=(Affine const &m) { + for (unsigned i = 0; i < size(); ++i) { + setPoint(i, controlPoint(i) * m); + } + } + + virtual Curve *derivative() const { + return new BezierCurve(Geom::derivative(inner[X]), Geom::derivative(inner[Y])); + } + virtual int degreesOfFreedom() const { + return 2 * (order() + 1); + } + virtual std::vector<Coord> roots(Coord v, Dim2 d) const { + return (inner[d] - v).roots(); + } + virtual Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const; + virtual Coord length(Coord tolerance) const; + virtual std::vector<CurveIntersection> intersect(Curve const &other, Coord eps = EPSILON) const; + virtual Point pointAt(Coord t) const { return inner.pointAt(t); } + virtual std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const { + return inner.valueAndDerivatives(t, n); + } + virtual Coord valueAt(Coord t, Dim2 d) const { return inner[d].valueAt(t); } + virtual D2<SBasis> toSBasis() const {return inner.toSBasis(); } + virtual bool isNear(Curve const &c, Coord precision) const; + virtual bool operator==(Curve const &c) const; + virtual void feed(PathSink &sink, bool) const; +}; + +template <unsigned degree> +class BezierCurveN + : public BezierCurve +{ + template <unsigned required_degree> + static void assert_degree(BezierCurveN<required_degree> const *) {} + +public: + /// @name Construct Bezier curves + /// @{ + /** @brief Construct a Bezier curve of the specified order with all points zero. */ + BezierCurveN() { + inner = D2<Bezier>(Bezier(Bezier::Order(degree)), Bezier(Bezier::Order(degree))); + } + + /** @brief Construct from 2D Bezier polynomial. */ + explicit BezierCurveN(D2<Bezier > const &x) { + inner = x; + } + + /** @brief Construct from two 1D Bezier polynomials of the same order. */ + BezierCurveN(Bezier x, Bezier y) { + inner = D2<Bezier > (x,y); + } + + /** @brief Construct a Bezier curve from a vector of its control points. */ + BezierCurveN(std::vector<Point> const &points) { + unsigned ord = points.size() - 1; + if (ord != degree) THROW_LOGICALERROR("BezierCurve<degree> does not match number of points"); + for (unsigned d = 0; d < 2; ++d) { + inner[d] = Bezier(Bezier::Order(ord)); + for(unsigned i = 0; i <= ord; i++) + inner[d][i] = points[i][d]; + } + } + + /** @brief Construct a linear segment from its endpoints. */ + BezierCurveN(Point c0, Point c1) { + assert_degree<1>(this); + for(unsigned d = 0; d < 2; d++) + inner[d] = Bezier(c0[d], c1[d]); + } + + /** @brief Construct a quadratic Bezier curve from its control points. */ + BezierCurveN(Point c0, Point c1, Point c2) { + assert_degree<2>(this); + for(unsigned d = 0; d < 2; d++) + inner[d] = Bezier(c0[d], c1[d], c2[d]); + } + + /** @brief Construct a cubic Bezier curve from its control points. */ + BezierCurveN(Point c0, Point c1, Point c2, Point c3) { + assert_degree<3>(this); + for(unsigned d = 0; d < 2; d++) + inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]); + } + + // default copy + // default assign + + /// @} + + /** @brief Divide a Bezier curve into two curves + * @param t Time value + * @return Pair of Bezier curves \f$(\mathbf{D}, \mathbf{E})\f$ such that + * \f$\mathbf{D}[ [0,1] ] = \mathbf{C}[ [0,t] ]\f$ and + * \f$\mathbf{E}[ [0,1] ] = \mathbf{C}[ [t,1] ]\f$ */ + std::pair<BezierCurveN, BezierCurveN> subdivide(Coord t) const { + std::pair<Bezier, Bezier> sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t); + return std::make_pair( + BezierCurveN(sx.first, sy.first), + BezierCurveN(sx.second, sy.second)); + } + + virtual bool isDegenerate() const { + return BezierCurve::isDegenerate(); + } + + virtual bool isLineSegment() const { + return size() == 2; + } + + virtual Curve *duplicate() const { + return new BezierCurveN(*this); + } + virtual Curve *portion(Coord f, Coord t) const { + if (degree == 1) { + return new BezierCurveN<1>(pointAt(f), pointAt(t)); + } else { + return new BezierCurveN(Geom::portion(inner, f, t)); + } + } + virtual Curve *reverse() const { + if (degree == 1) { + return new BezierCurveN<1>(finalPoint(), initialPoint()); + } else { + return new BezierCurveN(Geom::reverse(inner)); + } + } + virtual Curve *derivative() const; + + virtual Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const { + return BezierCurve::nearestTime(p, from, to); + } + virtual std::vector<CurveIntersection> intersect(Curve const &other, Coord eps = EPSILON) const { + // call super. this is implemented only to allow specializations + return BezierCurve::intersect(other, eps); + } + virtual int winding(Point const &p) const { + return Curve::winding(p); + } + virtual void feed(PathSink &sink, bool moveto_initial) const { + // call super. this is implemented only to allow specializations + BezierCurve::feed(sink, moveto_initial); + } +}; + +// BezierCurveN<0> is meaningless; specialize it out +template<> class BezierCurveN<0> : public BezierCurveN<1> { private: BezierCurveN();}; + +/** @brief Line segment. + * Line segments are Bezier curves of order 1. They have only two control points, + * the starting point and the ending point. + * @ingroup Curves */ +typedef BezierCurveN<1> LineSegment; + +/** @brief Quadratic (order 2) Bezier curve. + * @ingroup Curves */ +typedef BezierCurveN<2> QuadraticBezier; + +/** @brief Cubic (order 3) Bezier curve. + * @ingroup Curves */ +typedef BezierCurveN<3> CubicBezier; + +template <unsigned degree> +inline +Curve *BezierCurveN<degree>::derivative() const { + return new BezierCurveN<degree-1>(Geom::derivative(inner[X]), Geom::derivative(inner[Y])); +} + +// optimized specializations +template <> inline bool BezierCurveN<1>::isDegenerate() const { + return inner[X][0] == inner[X][1] && inner[Y][0] == inner[Y][1]; +} +template <> inline bool BezierCurveN<1>::isLineSegment() const { return true; } +template <> Curve *BezierCurveN<1>::derivative() const; +template <> Coord BezierCurveN<1>::nearestTime(Point const &, Coord, Coord) const; +template <> std::vector<CurveIntersection> BezierCurveN<1>::intersect(Curve const &, Coord) const; +template <> int BezierCurveN<1>::winding(Point const &) const; +template <> void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const; +template <> void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const; +template <> void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const; + +inline Point middle_point(LineSegment const& _segment) { + return ( _segment.initialPoint() + _segment.finalPoint() ) / 2; +} + +inline Coord length(LineSegment const& seg) { + return distance(seg.initialPoint(), seg.finalPoint()); +} + +Coord bezier_length(std::vector<Point> const &points, Coord tolerance = 0.01); +Coord bezier_length(Point p0, Point p1, Point p2, Coord tolerance = 0.01); +Coord bezier_length(Point p0, Point p1, Point p2, Point p3, Coord tolerance = 0.01); + +} // end namespace Geom + +#endif // LIB2GEOM_SEEN_BEZIER_CURVE_H + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |