1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2005,2007,2008 Aaron Spike, aaron@ekips.org
# Copyright (C) 2008,2010 Alvin Penner, penner@vaxxine.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This file output script for Inkscape creates a AutoCAD R14 DXF file.
The spec can be found here: http://www.autodesk.com/techpubs/autocad/acadr14/dxf/index.htm.
File history:
- template dxf_outlines.dxf added Feb 2008 by Alvin Penner
- ROBO-Master output option added Aug 2008
- ROBO-Master multispline output added Sept 2008
- LWPOLYLINE output modification added Dec 2008
- toggle between LINE/LWPOLYLINE added Jan 2010
- support for transform elements added July 2010
- support for layers added July 2010
- support for rectangle added Dec 2010
"""
from __future__ import print_function
import inkex
from inkex import colors, bezier, Transform, Group, Layer, Use, PathElement, \
Rectangle, Line, Circle, Ellipse
def get_matrix(u, i, j):
if j == i + 2:
return (u[i]-u[i-1])*(u[i]-u[i-1])/(u[i+2]-u[i-1])/(u[i+1]-u[i-1])
elif j == i + 1:
return ((u[i]-u[i-1])*(u[i+2]-u[i])/(u[i+2]-u[i-1]) \
+ (u[i+1]-u[i])*(u[i]-u[i-2])/(u[i+1]-u[i-2]))/(u[i+1]-u[i-1])
elif j == i:
return (u[i+1]-u[i])*(u[i+1]-u[i])/(u[i+1]-u[i-2])/(u[i+1]-u[i-1])
else:
return 0
def get_fit(u, csp, col):
return (1-u)**3*csp[0][col] + 3*(1-u)**2*u*csp[1][col] \
+ 3*(1-u)*u**2*csp[2][col] + u**3*csp[3][col]
class DxfOutlines(inkex.OutputExtension):
def add_arguments(self, pars):
pars.add_argument("--tab")
pars.add_argument("-R", "--ROBO", type=inkex.Boolean, default=False)
pars.add_argument("-P", "--POLY", type=inkex.Boolean, default=False)
pars.add_argument("--units", default="72./96") # Points
pars.add_argument("--encoding", dest="char_encode", default="latin_1")
pars.add_argument("--layer_option", default="all")
pars.add_argument("--layer_name")
self.dxf = []
self.handle = 255 # handle for DXF ENTITY
self.layers = ['0']
self.layer = '0' # mandatory layer
self.layernames = []
self.csp_old = [[0.0, 0.0]] * 4 # previous spline
self.d = [0.0] # knot vector
self.poly = [[0.0, 0.0]] # LWPOLYLINE data
def save(self, stream):
stream.write(b''.join(self.dxf))
def dxf_add(self, str):
self.dxf.append(str.encode(self.options.char_encode))
def dxf_line(self, csp):
"""Draw a line in the DXF format"""
self.handle += 1
self.dxf_add(" 0\nLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbLine\n" % (self.handle, self.layer, self.color))
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n 11\n%f\n 21\n%f\n 31\n0.0\n" % (csp[0][0], csp[0][1], csp[1][0], csp[1][1]))
def LWPOLY_line(self, csp):
if (abs(csp[0][0] - self.poly[-1][0]) > .0001
or abs(csp[0][1] - self.poly[-1][1]) > .0001
or self.color_LWPOLY != self.color): # THIS LINE IS NEW
self.LWPOLY_output() # terminate current polyline
self.poly = [csp[0]] # initiallize new polyline
self.color_LWPOLY = self.color
self.layer_LWPOLY = self.layer
self.poly.append(csp[1])
def LWPOLY_output(self):
if len(self.poly) == 1:
return
self.handle += 1
closed = 1
if (abs(self.poly[0][0] - self.poly[-1][0]) > .0001
or abs(self.poly[0][1] - self.poly[-1][1]) > .0001):
closed = 0
self.dxf_add(" 0\nLWPOLYLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbPolyline\n 90\n%d\n 70\n%d\n" % (self.handle, self.layer_LWPOLY, self.color_LWPOLY, len(self.poly) - closed, closed))
for i in range(len(self.poly) - closed):
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (self.poly[i][0], self.poly[i][1]))
def dxf_spline(self, csp):
knots = 8
ctrls = 4
self.handle += 1
self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer, self.color))
self.dxf_add(" 70\n8\n 71\n3\n 72\n%d\n 73\n%d\n 74\n0\n" % (knots, ctrls))
for i in range(2):
for j in range(4):
self.dxf_add(" 40\n%d\n" % i)
for i in csp:
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (i[0], i[1]))
def ROBO_spline(self, csp):
"""this spline has zero curvature at the endpoints, as in ROBO-Master"""
if (abs(csp[0][0] - self.csp_old[3][0]) > .0001
or abs(csp[0][1] - self.csp_old[3][1]) > .0001
or abs((csp[1][1] - csp[0][1]) * (self.csp_old[3][0] - self.csp_old[2][0]) - (csp[1][0] - csp[0][0]) * (self.csp_old[3][1] - self.csp_old[2][1])) > .001):
self.ROBO_output() # terminate current spline
self.xfit = [csp[0][0]] # initiallize new spline
self.yfit = [csp[0][1]]
self.d = [0.0]
self.color_ROBO = self.color
self.layer_ROBO = self.layer
self.xfit += 3 * [0.0]
self.yfit += 3 * [0.0]
self.d += 3 * [0.0]
for i in range(1, 4):
j = len(self.d) + i - 4
self.xfit[j] = get_fit(i / 3.0, csp, 0)
self.yfit[j] = get_fit(i / 3.0, csp, 1)
self.d[j] = self.d[j - 1] + bezier.pointdistance((self.xfit[j - 1], self.yfit[j - 1]), (self.xfit[j], self.yfit[j]))
self.csp_old = csp
def ROBO_output(self):
try:
import numpy
from numpy.linalg import solve
except ImportError:
inkex.errormsg("Failed to import the numpy or numpy.linalg modules. These modules are required by the ROBO option. Please install them and try again.")
return
if len(self.d) == 1:
return
fits = len(self.d)
ctrls = fits + 2
knots = ctrls + 4
self.xfit += 2 * [0.0] # pad with 2 endpoint constraints
self.yfit += 2 * [0.0]
self.d += 6 * [0.0] # pad with 3 duplicates at each end
self.d[fits + 2] = self.d[fits + 1] = self.d[fits] = self.d[fits - 1]
solmatrix = numpy.zeros((ctrls, ctrls), dtype=float)
for i in range(fits):
solmatrix[i, i] = get_matrix(self.d, i, i)
solmatrix[i, i + 1] = get_matrix(self.d, i, i + 1)
solmatrix[i, i + 2] = get_matrix(self.d, i, i + 2)
solmatrix[fits, 0] = self.d[2] / self.d[fits - 1] # curvature at start = 0
solmatrix[fits, 1] = -(self.d[1] + self.d[2]) / self.d[fits - 1]
solmatrix[fits, 2] = self.d[1] / self.d[fits - 1]
solmatrix[fits + 1, fits - 1] = (self.d[fits - 1] - self.d[fits - 2]) / self.d[fits - 1] # curvature at end = 0
solmatrix[fits + 1, fits] = (self.d[fits - 3] + self.d[fits - 2] - 2 * self.d[fits - 1]) / self.d[fits - 1]
solmatrix[fits + 1, fits + 1] = (self.d[fits - 1] - self.d[fits - 3]) / self.d[fits - 1]
xctrl = solve(solmatrix, self.xfit)
yctrl = solve(solmatrix, self.yfit)
self.handle += 1
self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer_ROBO, self.color_ROBO))
self.dxf_add(" 70\n0\n 71\n3\n 72\n%d\n 73\n%d\n 74\n%d\n" % (knots, ctrls, fits))
for i in range(knots):
self.dxf_add(" 40\n%f\n" % self.d[i - 3])
for i in range(ctrls):
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (xctrl[i], yctrl[i]))
for i in range(fits):
self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (self.xfit[i], self.yfit[i]))
def process_shape(self, node, mat):
rgb = (0, 0, 0)
style = node.get('style')
if style:
style = dict(inkex.Style.parse_str(style))
if 'stroke' in style:
if style['stroke'] and style['stroke'] != 'none' and style['stroke'][0:3] != 'url':
rgb = inkex.Color(style['stroke']).to_rgb()
hsl = colors.rgb_to_hsl(rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0)
self.color = 7 # default is black
if hsl[2]:
self.color = 1 + (int(6 * hsl[0] + 0.5) % 6) # use 6 hues
if not isinstance(node, (PathElement, Rectangle, Line, Circle, Ellipse)):
return
# Transforming /after/ superpath is more reliable than before
# because of some issues with arcs in transformations
for sub in node.path.to_superpath().transform(Transform(mat) * node.transform):
for i in range(len(sub) - 1):
s = sub[i]
e = sub[i + 1]
if s[1] == s[2] and e[0] == e[1]:
if self.options.POLY:
self.LWPOLY_line([s[1], e[1]])
else:
self.dxf_line([s[1], e[1]])
elif self.options.ROBO:
self.ROBO_spline([s[1], s[2], e[0], e[1]])
else:
self.dxf_spline([s[1], s[2], e[0], e[1]])
def process_clone(self, node):
"""Process a clone node, looking for internal paths"""
trans = node.get('transform')
x = node.get('x')
y = node.get('y')
mat = Transform([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
if trans:
mat *= Transform(trans)
if x:
mat *= Transform([[1.0, 0.0, float(x)], [0.0, 1.0, 0.0]])
if y:
mat *= Transform([[1.0, 0.0, 0.0], [0.0, 1.0, float(y)]])
# push transform
if trans or x or y:
self.groupmat.append(Transform(self.groupmat[-1]) * mat)
# get referenced node
refid = node.get('xlink:href')
refnode = self.svg.getElementById(refid[1:])
if refnode is not None:
if isinstance(refnode, Group):
self.process_group(refnode)
elif isinstance(refnode, Use):
self.process_clone(refnode)
else:
self.process_shape(refnode, self.groupmat[-1])
# pop transform
if trans or x or y:
self.groupmat.pop()
def process_group(self, group):
"""Process group elements"""
if isinstance(group, Layer):
style = group.style
if style.get('display', '') == 'none' and self.options.layer_option and self.options.layer_option == 'visible':
return
layer = group.label
if self.options.layer_name and self.options.layer_option == 'name':
if not layer.lower() in self.options.layer_name:
return
layer = layer.replace(' ', '_')
if layer in self.layers:
self.layer = layer
trans = group.get('transform')
if trans:
self.groupmat.append(Transform(self.groupmat[-1]) * Transform(trans))
for node in group:
if isinstance(node, Group):
self.process_group(node)
elif isinstance(node, Use):
self.process_clone(node)
else:
self.process_shape(node, self.groupmat[-1])
if trans:
self.groupmat.pop()
def effect(self):
# Warn user if name match field is empty
if self.options.layer_option and self.options.layer_option == 'name' and not self.options.layer_name:
return inkex.errormsg("Error: Field 'Layer match name' must be filled when using 'By name match' option")
# Split user layer data into a list: "layerA,layerb,LAYERC" becomes ["layera", "layerb", "layerc"]
if self.options.layer_name:
self.options.layer_name = self.options.layer_name.lower().split(',')
# References: Minimum Requirements for Creating a DXF File of a 3D Model By Paul Bourke
# NURB Curves: A Guide for the Uninitiated By Philip J. Schneider
# The NURBS Book By Les Piegl and Wayne Tiller (Springer, 1995)
# self.dxf_add("999\nDXF created by Inkscape\n") # Some programs do not take comments in DXF files (KLayout 0.21.12 for example)
with open(self.get_resource('dxf14_header.txt'), 'r') as fhl:
self.dxf_add(fhl.read())
for node in self.svg.xpath('//svg:g'):
if isinstance(node, Layer):
layer = node.label
self.layernames.append(layer.lower())
if self.options.layer_name and self.options.layer_option and self.options.layer_option == 'name' and not layer.lower() in self.options.layer_name:
continue
layer = layer.replace(' ', '_')
if layer and layer not in self.layers:
self.layers.append(layer)
self.dxf_add(" 2\nLAYER\n 5\n2\n100\nAcDbSymbolTable\n 70\n%s\n" % len(self.layers))
for i in range(len(self.layers)):
self.dxf_add(" 0\nLAYER\n 5\n%x\n100\nAcDbSymbolTableRecord\n100\nAcDbLayerTableRecord\n 2\n%s\n 70\n0\n 6\nCONTINUOUS\n" % (i + 80, self.layers[i]))
with open(self.get_resource('dxf14_style.txt'), 'r') as fhl:
self.dxf_add(fhl.read())
scale = eval(self.options.units)
if not scale:
scale = 25.4 / 96 # if no scale is specified, assume inch as baseunit
scale /= self.svg.unittouu('1px')
h = self.svg.height
doc = self.document.getroot()
# process viewBox height attribute to correct page scaling
viewBox = doc.get('viewBox')
if viewBox:
viewBox2 = viewBox.split(',')
if len(viewBox2) < 4:
viewBox2 = viewBox.split(' ')
scale *= h / self.svg.unittouu(self.svg.add_unit(viewBox2[3]))
self.groupmat = [[[scale, 0.0, 0.0], [0.0, -scale, h * scale]]]
self.process_group(doc)
if self.options.ROBO:
self.ROBO_output()
if self.options.POLY:
self.LWPOLY_output()
with open(self.get_resource('dxf14_footer.txt'), 'r') as fhl:
self.dxf_add(fhl.read())
# Warn user if layer data seems wrong
if self.options.layer_name and self.options.layer_option and self.options.layer_option == 'name':
for layer in self.options.layer_name:
if layer not in self.layernames:
inkex.errormsg("Warning: Layer '%s' not found!" % layer)
if __name__ == '__main__':
DxfOutlines().run()
|