summaryrefslogtreecommitdiffstats
path: root/share/extensions/funcplot.py
blob: 4b2419165ee35a5e622213dbb3132f34c98499f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2007 Tavmjong Bah, tavmjong@free.fr
# Copyright (C) 2006 Georg Wiora, xorx@quarkbox.de
# Copyright (C) 2006 Johan Engelen, johan@shouraizou.nl
# Copyright (C) 2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
# Changes:
#  * This program is a modified version of wavy.py by Aaron Spike.
#  * 22-Dec-2006: Wiora : Added axis and isotropic scaling
#  * 21-Jun-2007: Tavmjong: Added polar coordinates
#
import random
import math
from math import cos, pi, sin

import inkex
from inkex import ClipPath, Rectangle

EVAL_GLOBALS = {}
EVAL_GLOBALS.update(random.__dict__)
EVAL_GLOBALS.update(math.__dict__)


def drawfunction(xstart, xend, ybottom, ytop, samples, width, height, left, bottom,
                 fx="sin(x)", fpx="cos(x)", fponum=True, times2pi=False, polar=False, isoscale=True, drawaxis=True, endpts=False):
    if times2pi:
        xstart = 2 * pi * xstart
        xend = 2 * pi * xend

    # coords and scales based on the source rect
    if xstart == xend:
        inkex.errormsg("x-interval cannot be zero. Please modify 'Start X value' or 'End X value'")
        return []
    scalex = width / (xend - xstart)
    xoff = left
    coordx = lambda x: (x - xstart) * scalex + xoff  # convert x-value to coordinate
    if polar:  # Set scale so that left side of rectangle is -1, right side is +1.
        # (We can't use xscale for both range and scale.)
        centerx = left + width / 2.0
        polar_scalex = width / 2.0
        coordx = lambda x: x * polar_scalex + centerx  # convert x-value to coordinate

    if ytop == ybottom:
        inkex.errormsg("y-interval cannot be zero. Please modify 'Y value of rectangle's top' or 'Y value of rectangle's bottom'")
        return []
    scaley = height / (ytop - ybottom)
    yoff = bottom
    coordy = lambda y: (ybottom - y) * scaley + yoff  # convert y-value to coordinate

    # Check for isotropic scaling and use smaller of the two scales, correct ranges
    if isoscale and not polar:
        if scaley < scalex:
            # compute zero location
            xzero = coordx(0)
            # set scale
            scalex = scaley
            # correct x-offset
            xstart = (left - xzero) / scalex
            xend = (left + width - xzero) / scalex
        else:
            # compute zero location
            yzero = coordy(0)
            # set scale
            scaley = scalex
            # correct x-offset
            ybottom = (yzero - bottom) / scaley
            ytop = (bottom + height - yzero) / scaley

    # functions specified by the user
    try:
        if fx != "":
            f = eval('lambda x: ' + fx, EVAL_GLOBALS, {})
        if fpx != "":
            fp = eval('lambda x: ' + fpx, EVAL_GLOBALS, {})
    # handle incomplete/invalid function gracefully
    except SyntaxError:
        return []

    # step is the distance between nodes on x
    step = (xend - xstart) / (samples - 1)
    third = step / 3.0
    ds = step * 0.001  # Step used in calculating derivatives

    a = []  # path array
    # add axis
    if drawaxis:
        # check for visibility of x-axis
        if ybottom <= 0 <= ytop:
            # xaxis
            a.append(['M', [left, coordy(0)]])
            a.append(['l', [width, 0]])
        # check for visibility of y-axis
        if xstart <= 0 <= xend:
            # xaxis
            a.append(['M', [coordx(0), bottom]])
            a.append(['l', [0, -height]])

    # initialize function and derivative for 0;
    # they are carried over from one iteration to the next, to avoid extra function calculations.
    x0 = xstart
    y0 = f(xstart)
    if polar:
        xp0 = y0 * cos(x0)
        yp0 = y0 * sin(x0)
        x0 = xp0
        y0 = yp0
    if fponum or polar:  # numerical derivative, using 0.001*step as the small differential
        x1 = xstart + ds  # Second point AFTER first point (Good for first point)
        y1 = f(x1)
        if polar:
            xp1 = y1 * cos(x1)
            yp1 = y1 * sin(x1)
            x1 = xp1
            y1 = yp1
        dx0 = (x1 - x0) / ds
        dy0 = (y1 - y0) / ds
    else:  # derivative given by the user
        dx0 = 1  # Only works for rectangular coordinates
        dy0 = fp(xstart)

    # Start curve
    if endpts:
        a.append(['M', [left, coordy(0)]])
        a.append(['L', [coordx(x0), coordy(y0)]])
    else:
        a.append(['M', [coordx(x0), coordy(y0)]])  # initial moveto

    for i in range(int(samples - 1)):
        x1 = (i + 1) * step + xstart
        x2 = x1 - ds  # Second point BEFORE first point (Good for last point)
        y1 = f(x1)
        y2 = f(x2)
        if polar:
            xp1 = y1 * cos(x1)
            yp1 = y1 * sin(x1)
            xp2 = y2 * cos(x2)
            yp2 = y2 * sin(x2)
            x1 = xp1
            y1 = yp1
            x2 = xp2
            y2 = yp2
        if fponum or polar:  # numerical derivative
            dx1 = (x1 - x2) / ds
            dy1 = (y1 - y2) / ds
        else:  # derivative given by the user
            dx1 = 1  # Only works for rectangular coordinates
            dy1 = fp(x1)
        # create curve
        a.append(['C',
                  [coordx(x0 + (dx0 * third)), coordy(y0 + (dy0 * third)),
                   coordx(x1 - (dx1 * third)), coordy(y1 - (dy1 * third)),
                   coordx(x1), coordy(y1)]
                  ])
        x0 = x1  # Next segment's start is this segments end
        y0 = y1
        dx0 = dx1  # Assume the function is smooth everywhere, so carry over the derivative too
        dy0 = dy1
    if endpts:
        a.append(['L', [left + width, coordy(0)]])
    return a


class FuncPlot(inkex.EffectExtension):
    def add_arguments(self, pars):
        pars.add_argument("--tab")
        pars.add_argument("--xstart", type=float, default=0.0, help="Start x-value")
        pars.add_argument("--xend", type=float, default=1.0, help="End x-value")
        pars.add_argument("--times2pi", type=inkex.Boolean, default=True, help="* x-range by 2*pi")
        pars.add_argument("--polar", type=inkex.Boolean, default=False, help="Use polar coords")
        pars.add_argument("--ybottom", type=float, default=-1.0, help="y-value of rect's bottom")
        pars.add_argument("--ytop", type=float, default=1.0, help="y-value of rectangle's top")
        pars.add_argument("--samples", type=int, default=8, help="Samples")
        pars.add_argument("--fofx", default="sin(x)", help="f(x) for plotting")
        pars.add_argument("--fponum", type=inkex.Boolean, default=True, help="Numerical 1st deriv")
        pars.add_argument("--fpofx", default="cos(x)", help="f'(x) for plotting")
        pars.add_argument("--clip", type=inkex.Boolean, default=False, help="Clip with source rect")
        pars.add_argument("--remove", type=inkex.Boolean, default=True, help="Remove source rect")
        pars.add_argument("--isoscale", type=inkex.Boolean, default=True, help="Isotropic scaling")
        pars.add_argument("--drawaxis", type=inkex.Boolean, default=True, help="Draw axis")
        pars.add_argument("--endpts", type=inkex.Boolean, default=False, help="Add end points")

    def effect(self):
        newpath = None
        for node in self.svg.selected.values():
            if isinstance(node, Rectangle):
                # create new path with basic dimensions of selected rectangle
                newpath = inkex.PathElement()
                x = float(node.get('x'))
                y = float(node.get('y'))
                w = float(node.get('width'))
                h = float(node.get('height'))

                # copy attributes of rect
                newpath.style = node.style
                newpath.transform = node.transform

                # top and bottom were exchanged
                newpath.path = \
                        drawfunction(self.options.xstart,
                                     self.options.xend,
                                     self.options.ybottom,
                                     self.options.ytop,
                                     self.options.samples,
                                     w, h, x, y + h,
                                     self.options.fofx,
                                     self.options.fpofx,
                                     self.options.fponum,
                                     self.options.times2pi,
                                     self.options.polar,
                                     self.options.isoscale,
                                     self.options.drawaxis,
                                     self.options.endpts)
                newpath.set('title', self.options.fofx)

                # add path into SVG structure
                node.getparent().append(newpath)
                # option whether to clip the path with rect or not.
                if self.options.clip:
                    clip = self.svg.defs.add(ClipPath())
                    clip.set_random_id()
                    clip.append(node.copy())
                    newpath.set('clip-path', 'url(#' + clip.get_id() + ')')
                # option whether to remove the rectangle or not.
                if self.options.remove:
                    node.getparent().remove(node)
        if newpath is None:
            inkex.errormsg("Please select a rectangle")


if __name__ == '__main__':
    FuncPlot().run()