summaryrefslogtreecommitdiffstats
path: root/share/extensions/gcodetools.py
blob: 90a41a78eab443088ba800bc608d43f7bed1a6aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2005 Aaron Spike, aaron@ekips.org (super paths et al)
#               2007 hugomatic... (gcode.py)
#               2009 Nick Drobchenko, nick@cnc-club.ru (main developer)
#               2011 Chris Lusby Taylor, clusbytaylor@enterprise.net (engraving functions)
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
"""
Comments starting "#LT" or "#CLT" are by Chris Lusby Taylor who rewrote the engraving function in 2011.
History of CLT changes to engraving and other functions it uses:
9 May 2011 Changed test of tool diameter to square it
10 May Note that there are many unused functions, including:
      bound_to_bound_distance, csp_curvature_radius_at_t,
        csp_special_points, csplength, rebuild_csp, csp_slope,
        csp_simple_bound_to_point_distance, csp_bound_to_point_distance,
        bez_at_t, bez_to_point_distance, bez_normalized_slope, matrix_mul, transpose
       Fixed csp_point_inside_bound() to work if x outside bounds
20 May Now encoding the bisectors of angles.
23 May Using r/cos(a) instead of normalised normals for bisectors of angles.
23 May Note that Z values generated for engraving are in pixels, not mm.
       Removed the biarc curves - straight lines are better.
24 May Changed Bezier slope calculation to be less sensitive to tiny differences in points.
       Added use of self.options.engraving_newton_iterations to control accuracy
25 May Big restructure and new recursive function.
       Changed the way I treat corners - I now find if the centre of a proposed circle is
                within the area bounded by the line being tested and the two angle bisectors at
            its ends. See get_radius_to_line().
29 May Eliminating redundant points. If A,B,C colinear, drop B
30 May Eliminating redundant lines in divided Beziers. Changed subdivision of lines
  7Jun Try to show engraving in 3D
 8 Jun Displaying in stereo 3D.
       Fixed a bug in bisect - it could go wrong due to rounding errors if
            1+x1.x2+y1.y2<0 which should never happen. BTW, I spotted a non-normalised normal
            returned by csp_normalized_normal. Need to check for that.
 9 Jun Corrected spelling of 'definition' but still match previous 'defention' and       'defenition' if found in file
     Changed get_tool to find 1.6.04 tools or new tools with corrected spelling
10 Jun Put 3D into a separate layer called 3D, created unless it already exists
       Changed csp_normalized_slope to reject lines shorter than 1e-9.
10 Jun Changed all dimensions seen by user to be mm/inch, not pixels. This includes
      tool diameter, maximum engraving distance, tool shape and all Z values.
12 Jun ver 208 Now scales correctly if orientation points moved or stretched.
12 Jun ver 209. Now detect if engraving toolshape not a function of radius
                Graphics now indicate Gcode toolpath, limited by min(tool diameter/2,max-dist)
24 Jan 2017 Removed hard-coded scale values from orientation point calculation
TODO Change line division to be recursive, depending on what line is touched. See line_divide
"""

__version__ = '1.7'

import cmath
import copy
import math
import os
import re
import sys
import time
from functools import partial

import numpy

import inkex
from inkex.bezier import bezierlength, bezierparameterize, beziertatlength
from inkex import Transform, PathElement, TextElement, Tspan, Group, Layer, Marker, CubicSuperPath, Style

if sys.version_info[0] > 2:
    xrange = range
    unicode = str

def ireplace(self, old, new, count=0):
    pattern = re.compile(re.escape(old), re.I)
    return re.sub(pattern, new, self, count)


################################################################################
#
# Styles and additional parameters
#
################################################################################

TAU = math.pi * 2
STRAIGHT_TOLERANCE = 0.0001
STRAIGHT_DISTANCE_TOLERANCE = 0.0001
ENGRAVING_TOLERANCE = 0.0001
LOFT_LENGTHS_TOLERANCE = 0.0000001

EMC_TOLERANCE_EQUAL = 0.00001

options = {}
defaults = {
    'header': """%
(Header)
(Generated by gcodetools from Inkscape.)
(Using default header. To add your own header create file "header" in the output dir.)
M3
(Header end.)
""",
    'footer': """
(Footer)
M5
G00 X0.0000 Y0.0000
M2
(Using default footer. To add your own footer create file "footer" in the output dir.)
(end)
%"""
}

INTERSECTION_RECURSION_DEPTH = 10
INTERSECTION_TOLERANCE = 0.00001

def marker_style(stroke, marker='DrawCurveMarker', width=1):
    """Set a marker style with some basic defaults"""
    return Style(stroke=stroke, fill='none', stroke_width=width,
                 marker_end='url(#{})'.format(marker))

MARKER_STYLE = {
    "in_out_path_style": marker_style('#0072a7', 'InOutPathMarker'),
    "loft_style": {
        'main curve': marker_style('#88f', 'Arrow2Mend'),
    },
    "biarc_style": {
        'biarc0': marker_style('#88f'),
        'biarc1': marker_style('#8f8'),
        'line': marker_style('#f88'),
        'area': marker_style('#777', width=0.1),
    },
    "biarc_style_dark": {
        'biarc0': marker_style('#33a'),
        'biarc1': marker_style('#3a3'),
        'line': marker_style('#a33'),
        'area': marker_style('#222', width=0.3),
    },
    "biarc_style_dark_area": {
        'biarc0': marker_style('#33a', width=0.1),
        'biarc1': marker_style('#3a3', width=0.1),
        'line': marker_style('#a33', width=0.1),
        'area': marker_style('#222', width=0.3),
    },
    "biarc_style_i": {
        'biarc0': marker_style('#880'),
        'biarc1': marker_style('#808'),
        'line': marker_style('#088'),
        'area': marker_style('#999', width=0.3),
    },
    "biarc_style_dark_i": {
        'biarc0': marker_style('#dd5'),
        'biarc1': marker_style('#d5d'),
        'line': marker_style('#5dd'),
        'area': marker_style('#aaa', width=0.3),
    },
    "biarc_style_lathe_feed": {
        'biarc0': marker_style('#07f', width=0.4),
        'biarc1': marker_style('#0f7', width=0.4),
        'line': marker_style('#f44', width=0.4),
        'area': marker_style('#aaa', width=0.3),
    },
    "biarc_style_lathe_passing feed": {
        'biarc0': marker_style('#07f', width=0.4),
        'biarc1': marker_style('#0f7', width=0.4),
        'line': marker_style('#f44', width=0.4),
        'area': marker_style('#aaa', width=0.3),
    },
    "biarc_style_lathe_fine feed": {
        'biarc0': marker_style('#7f0', width=0.4),
        'biarc1': marker_style('#f70', width=0.4),
        'line': marker_style('#744', width=0.4),
        'area': marker_style('#aaa', width=0.3),
    },
    "area artefact": Style(stroke='#ff0000', fill='#ffff00', stroke_width=1),
    "area artefact arrow": Style(stroke='#ff0000', fill='#ffff00', stroke_width=1),
    "dxf_points": Style(stroke="#ff0000", fill="#ff0000"),
}


################################################################################
# Gcode additional functions
################################################################################

def gcode_comment_str(s, replace_new_line=False):
    if replace_new_line:
        s = re.sub(r"[\n\r]+", ".", s)
    res = ""
    if s[-1] == "\n":
        s = s[:-1]
    for a in s.split("\n"):
        if a != "":
            res += "(" + re.sub(r"[\(\)\\\n\r]", ".", a) + ")\n"
        else:
            res += "\n"
    return res


################################################################################
# Cubic Super Path additional functions
################################################################################


def csp_from_polyline(line):
    return [[[point[:] for _ in range(3)] for point in subline] for subline in line]


def csp_remove_zero_segments(csp, tolerance=1e-7):
    res = []
    for subpath in csp:
        if len(subpath) > 0:
            res.append([subpath[0]])
            for sp1, sp2 in zip(subpath, subpath[1:]):
                if point_to_point_d2(sp1[1], sp2[1]) <= tolerance and point_to_point_d2(sp1[2], sp2[1]) <= tolerance and point_to_point_d2(sp1[1], sp2[0]) <= tolerance:
                    res[-1][-1][2] = sp2[2]
                else:
                    res[-1].append(sp2)
    return res


def point_inside_csp(p, csp, on_the_path=True):
    # we'll do the raytracing and see how many intersections are there on the ray's way.
    # if number of intersections is even then point is outside.
    # ray will be x=p.x and y=>p.y
    # you can assign any value to on_the_path, by default if point is on the path
    # function will return thai it's inside the path.
    x, y = p
    ray_intersections_count = 0
    for subpath in csp:

        for i in range(1, len(subpath)):
            sp1 = subpath[i - 1]
            sp2 = subpath[i]
            ax, ay, bx, by, cx, cy, dx, dy = csp_parameterize(sp1, sp2)
            if ax == 0 and bx == 0 and cx == 0 and dx == x:
                # we've got a special case here
                b = csp_true_bounds([[sp1, sp2]])
                if b[1][1] <= y <= b[3][1]:
                    # points is on the path
                    return on_the_path
                else:
                    # we can skip this segment because it won't influence the answer.
                    pass
            else:
                for t in csp_line_intersection([x, y], [x, y + 5], sp1, sp2):
                    if t == 0 or t == 1:
                        # we've got another special case here
                        x1, y1 = csp_at_t(sp1, sp2, t)
                        if y1 == y:
                            # the point is on the path
                            return on_the_path
                        # if t == 0 we should have considered this case previously.
                        if t == 1:
                            # we have to check the next segment if it is on the same side of the ray
                            st_d = csp_normalized_slope(sp1, sp2, 1)[0]
                            if st_d == 0:
                                st_d = csp_normalized_slope(sp1, sp2, 0.99)[0]

                            for j in range(1, len(subpath) + 1):
                                if (i + j) % len(subpath) == 0:
                                    continue  # skip the closing segment
                                sp11 = subpath[(i - 1 + j) % len(subpath)]
                                sp22 = subpath[(i + j) % len(subpath)]
                                ax1, ay1, bx1, by1, cx1, cy1, dx1, dy1 = csp_parameterize(sp1, sp2)
                                if ax1 == 0 and bx1 == 0 and cx1 == 0 and dx1 == x:
                                    continue  # this segment parallel to the ray, so skip it
                                en_d = csp_normalized_slope(sp11, sp22, 0)[0]
                                if en_d == 0:
                                    en_d = csp_normalized_slope(sp11, sp22, 0.01)[0]
                                if st_d * en_d <= 0:
                                    ray_intersections_count += 1
                                    break
                    else:
                        x1, y1 = csp_at_t(sp1, sp2, t)
                        if y1 == y:
                            # the point is on the path
                            return on_the_path
                        else:
                            if y1 > y and 3 * ax * t ** 2 + 2 * bx * t + cx != 0:  # if it's 0 the path only touches the ray
                                ray_intersections_count += 1
    return ray_intersections_count % 2 == 1


def csp_close_all_subpaths(csp, tolerance=0.000001):
    for i in range(len(csp)):
        if point_to_point_d2(csp[i][0][1], csp[i][-1][1]) > tolerance ** 2:
            csp[i][-1][2] = csp[i][-1][1][:]
            csp[i] += [[csp[i][0][1][:] for _ in range(3)]]
        else:
            if csp[i][0][1] != csp[i][-1][1]:
                csp[i][-1][1] = csp[i][0][1][:]
    return csp


def csp_simple_bound(csp):
    minx = None
    miny = None
    maxx = None
    maxy = None

    for subpath in csp:
        for sp in subpath:
            for p in sp:
                minx = min(minx, p[0]) if minx is not None else p[0]
                miny = min(miny, p[1]) if miny is not None else p[1]
                maxx = max(maxx, p[0]) if maxx is not None else p[0]
                maxy = max(maxy, p[1]) if maxy is not None else p[1]
    return minx, miny, maxx, maxy


def csp_segment_to_bez(sp1, sp2):
    return sp1[1:] + sp2[:2]


def csp_to_point_distance(csp, p, dist_bounds=(0, 1e100)):
    min_dist = [1e100, 0, 0, 0]
    for j in range(len(csp)):
        for i in range(1, len(csp[j])):
            d = csp_seg_to_point_distance(csp[j][i - 1], csp[j][i], p, sample_points=5)
            if d[0] < dist_bounds[0]:
                return [d[0], j, i, d[1]]
            else:
                if d[0] < min_dist[0]:
                    min_dist = [d[0], j, i, d[1]]
    return min_dist


def csp_seg_to_point_distance(sp1, sp2, p, sample_points=5):
    ax, ay, bx, by, cx, cy, dx, dy = csp_parameterize(sp1, sp2)
    dx = dx - p[0]
    dy = dy - p[1]
    if sample_points < 2:
        sample_points = 2
    d = min([(p[0] - sp1[1][0]) ** 2 + (p[1] - sp1[1][1]) ** 2, 0.], [(p[0] - sp2[1][0]) ** 2 + (p[1] - sp2[1][1]) ** 2, 1.])
    for k in range(sample_points):
        t = float(k) / (sample_points - 1)
        i = 0
        while i == 0 or abs(f) > 0.000001 and i < 20:
            t2 = t ** 2
            t3 = t ** 3
            f = (ax * t3 + bx * t2 + cx * t + dx) * (3 * ax * t2 + 2 * bx * t + cx) + (ay * t3 + by * t2 + cy * t + dy) * (3 * ay * t2 + 2 * by * t + cy)
            df = (6 * ax * t + 2 * bx) * (ax * t3 + bx * t2 + cx * t + dx) + (3 * ax * t2 + 2 * bx * t + cx) ** 2 + (6 * ay * t + 2 * by) * (ay * t3 + by * t2 + cy * t + dy) + (3 * ay * t2 + 2 * by * t + cy) ** 2
            if df != 0:
                t = t - f / df
            else:
                break
            i += 1
        if 0 <= t <= 1:
            p1 = csp_at_t(sp1, sp2, t)
            d1 = (p1[0] - p[0]) ** 2 + (p1[1] - p[1]) ** 2
            if d1 < d[0]:
                d = [d1, t]
    return d


def csp_seg_to_csp_seg_distance(sp1, sp2, sp3, sp4, dist_bounds=(0, 1e100), sample_points=5, tolerance=.01):
    # check the ending points first
    dist = csp_seg_to_point_distance(sp1, sp2, sp3[1], sample_points)
    dist += [0.]
    if dist[0] <= dist_bounds[0]:
        return dist
    d = csp_seg_to_point_distance(sp1, sp2, sp4[1], sample_points)
    if d[0] < dist[0]:
        dist = d + [1.]
        if dist[0] <= dist_bounds[0]:
            return dist
    d = csp_seg_to_point_distance(sp3, sp4, sp1[1], sample_points)
    if d[0] < dist[0]:
        dist = [d[0], 0., d[1]]
        if dist[0] <= dist_bounds[0]:
            return dist
    d = csp_seg_to_point_distance(sp3, sp4, sp2[1], sample_points)
    if d[0] < dist[0]:
        dist = [d[0], 1., d[1]]
        if dist[0] <= dist_bounds[0]:
            return dist
    sample_points -= 2
    if sample_points < 1:
        sample_points = 1
    ax1, ay1, bx1, by1, cx1, cy1, dx1, dy1 = csp_parameterize(sp1, sp2)
    ax2, ay2, bx2, by2, cx2, cy2, dx2, dy2 = csp_parameterize(sp3, sp4)
    #    try to find closes points using Newtons method
    for k in range(sample_points):
        for j in range(sample_points):
            t1 = float(k + 1) / (sample_points + 1)
            t2 = float(j) / (sample_points + 1)

            t12 = t1 * t1
            t13 = t1 * t1 * t1
            t22 = t2 * t2
            t23 = t2 * t2 * t2
            i = 0

            F1 = [0, 0]
            F2 = [[0, 0], [0, 0]]
            F = 1e100
            x = ax1 * t13 + bx1 * t12 + cx1 * t1 + dx1 - (ax2 * t23 + bx2 * t22 + cx2 * t2 + dx2)
            y = ay1 * t13 + by1 * t12 + cy1 * t1 + dy1 - (ay2 * t23 + by2 * t22 + cy2 * t2 + dy2)
            while i < 2 or abs(F - Flast) > tolerance and i < 30:
                f1x = 3 * ax1 * t12 + 2 * bx1 * t1 + cx1
                f1y = 3 * ay1 * t12 + 2 * by1 * t1 + cy1
                f2x = 3 * ax2 * t22 + 2 * bx2 * t2 + cx2
                f2y = 3 * ay2 * t22 + 2 * by2 * t2 + cy2
                F1[0] = 2 * f1x * x + 2 * f1y * y
                F1[1] = -2 * f2x * x - 2 * f2y * y
                F2[0][0] = 2 * (6 * ax1 * t1 + 2 * bx1) * x + 2 * f1x * f1x + 2 * (6 * ay1 * t1 + 2 * by1) * y + 2 * f1y * f1y
                F2[0][1] = -2 * f1x * f2x - 2 * f1y * f2y
                F2[1][0] = -2 * f2x * f1x - 2 * f2y * f1y
                F2[1][1] = -2 * (6 * ax2 * t2 + 2 * bx2) * x + 2 * f2x * f2x - 2 * (6 * ay2 * t2 + 2 * by2) * y + 2 * f2y * f2y
                F2 = inv_2x2(F2)
                if F2 is not None:
                    t1 -= (F2[0][0] * F1[0] + F2[0][1] * F1[1])
                    t2 -= (F2[1][0] * F1[0] + F2[1][1] * F1[1])
                    t12 = t1 * t1
                    t13 = t1 * t1 * t1
                    t22 = t2 * t2
                    t23 = t2 * t2 * t2
                    x = ax1 * t13 + bx1 * t12 + cx1 * t1 + dx1 - (ax2 * t23 + bx2 * t22 + cx2 * t2 + dx2)
                    y = ay1 * t13 + by1 * t12 + cy1 * t1 + dy1 - (ay2 * t23 + by2 * t22 + cy2 * t2 + dy2)
                    Flast = F
                    F = x * x + y * y
                else:
                    break
                i += 1
            if F < dist[0] and 0 <= t1 <= 1 and 0 <= t2 <= 1:
                dist = [F, t1, t2]
                if dist[0] <= dist_bounds[0]:
                    return dist
    return dist


def csp_to_csp_distance(csp1, csp2, dist_bounds=(0, 1e100), tolerance=.01):
    dist = [1e100, 0, 0, 0, 0, 0, 0]
    for i1 in range(len(csp1)):
        for j1 in range(1, len(csp1[i1])):
            for i2 in range(len(csp2)):
                for j2 in range(1, len(csp2[i2])):
                    d = csp_seg_bound_to_csp_seg_bound_max_min_distance(csp1[i1][j1 - 1], csp1[i1][j1], csp2[i2][j2 - 1], csp2[i2][j2])
                    if d[0] >= dist_bounds[1]:
                        continue
                    if d[1] < dist_bounds[0]:
                        return [d[1], i1, j1, 1, i2, j2, 1]
                    d = csp_seg_to_csp_seg_distance(csp1[i1][j1 - 1], csp1[i1][j1], csp2[i2][j2 - 1], csp2[i2][j2], dist_bounds, tolerance=tolerance)
                    if d[0] < dist[0]:
                        dist = [d[0], i1, j1, d[1], i2, j2, d[2]]
                    if dist[0] <= dist_bounds[0]:
                        return dist
            if dist[0] >= dist_bounds[1]:
                return dist
    return dist


def csp_split(sp1, sp2, t=.5):
    [x1, y1] = sp1[1]
    [x2, y2] = sp1[2]
    [x3, y3] = sp2[0]
    [x4, y4] = sp2[1]
    x12 = x1 + (x2 - x1) * t
    y12 = y1 + (y2 - y1) * t
    x23 = x2 + (x3 - x2) * t
    y23 = y2 + (y3 - y2) * t
    x34 = x3 + (x4 - x3) * t
    y34 = y3 + (y4 - y3) * t
    x1223 = x12 + (x23 - x12) * t
    y1223 = y12 + (y23 - y12) * t
    x2334 = x23 + (x34 - x23) * t
    y2334 = y23 + (y34 - y23) * t
    x = x1223 + (x2334 - x1223) * t
    y = y1223 + (y2334 - y1223) * t
    return [sp1[0], sp1[1], [x12, y12]], [[x1223, y1223], [x, y], [x2334, y2334]], [[x34, y34], sp2[1], sp2[2]]


def csp_true_bounds(csp):
    # Finds minx,miny,maxx,maxy of the csp and return their (x,y,i,j,t)
    minx = [float("inf"), 0, 0, 0]
    maxx = [float("-inf"), 0, 0, 0]
    miny = [float("inf"), 0, 0, 0]
    maxy = [float("-inf"), 0, 0, 0]
    for i in range(len(csp)):
        for j in range(1, len(csp[i])):
            ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize((csp[i][j - 1][1], csp[i][j - 1][2], csp[i][j][0], csp[i][j][1]))
            roots = cubic_solver(0, 3 * ax, 2 * bx, cx) + [0, 1]
            for root in roots:
                if type(root) is complex and abs(root.imag) < 1e-10:
                    root = root.real
                if type(root) is not complex and 0 <= root <= 1:
                    y = ay * (root ** 3) + by * (root ** 2) + cy * root + y0
                    x = ax * (root ** 3) + bx * (root ** 2) + cx * root + x0
                    maxx = max([x, y, i, j, root], maxx)
                    minx = min([x, y, i, j, root], minx)

            roots = cubic_solver(0, 3 * ay, 2 * by, cy) + [0, 1]
            for root in roots:
                if type(root) is complex and root.imag == 0:
                    root = root.real
                if type(root) is not complex and 0 <= root <= 1:
                    y = ay * (root ** 3) + by * (root ** 2) + cy * root + y0
                    x = ax * (root ** 3) + bx * (root ** 2) + cx * root + x0
                    maxy = max([y, x, i, j, root], maxy)
                    miny = min([y, x, i, j, root], miny)
    maxy[0], maxy[1] = maxy[1], maxy[0]
    miny[0], miny[1] = miny[1], miny[0]

    return minx, miny, maxx, maxy


############################################################################
# csp_segments_intersection(sp1,sp2,sp3,sp4)
#
# Returns array containing all intersections between two segments of cubic
# super path. Results are [ta,tb], or [ta0, ta1, tb0, tb1, "Overlap"]
# where ta, tb are values of t for the intersection point.
############################################################################
def csp_segments_intersection(sp1, sp2, sp3, sp4):
    a = csp_segment_to_bez(sp1, sp2)
    b = csp_segment_to_bez(sp3, sp4)

    def polish_intersection(a, b, ta, tb, tolerance=INTERSECTION_TOLERANCE):
        ax, ay, bx, by, cx, cy, dx, dy = bezierparameterize(a)
        ax1, ay1, bx1, by1, cx1, cy1, dx1, dy1 = bezierparameterize(b)
        i = 0
        F = [.0, .0]
        F1 = [[.0, .0], [.0, .0]]
        while i == 0 or (abs(F[0]) ** 2 + abs(F[1]) ** 2 > tolerance and i < 10):
            ta3 = ta ** 3
            ta2 = ta ** 2
            tb3 = tb ** 3
            tb2 = tb ** 2
            F[0] = ax * ta3 + bx * ta2 + cx * ta + dx - ax1 * tb3 - bx1 * tb2 - cx1 * tb - dx1
            F[1] = ay * ta3 + by * ta2 + cy * ta + dy - ay1 * tb3 - by1 * tb2 - cy1 * tb - dy1
            F1[0][0] = 3 * ax * ta2 + 2 * bx * ta + cx
            F1[0][1] = -3 * ax1 * tb2 - 2 * bx1 * tb - cx1
            F1[1][0] = 3 * ay * ta2 + 2 * by * ta + cy
            F1[1][1] = -3 * ay1 * tb2 - 2 * by1 * tb - cy1
            det = F1[0][0] * F1[1][1] - F1[0][1] * F1[1][0]
            if det != 0:
                F1 = [[F1[1][1] / det, -F1[0][1] / det], [-F1[1][0] / det, F1[0][0] / det]]
                ta = ta - (F1[0][0] * F[0] + F1[0][1] * F[1])
                tb = tb - (F1[1][0] * F[0] + F1[1][1] * F[1])
            else:
                break
            i += 1

        return ta, tb

    def recursion(a, b, ta0, ta1, tb0, tb1, depth_a, depth_b):
        global bezier_intersection_recursive_result
        if a == b:
            bezier_intersection_recursive_result += [[ta0, tb0, ta1, tb1, "Overlap"]]
            return
        tam = (ta0 + ta1) / 2
        tbm = (tb0 + tb1) / 2
        if depth_a > 0 and depth_b > 0:
            a1, a2 = bez_split(a, 0.5)
            b1, b2 = bez_split(b, 0.5)
            if bez_bounds_intersect(a1, b1):
                recursion(a1, b1, ta0, tam, tb0, tbm, depth_a - 1, depth_b - 1)
            if bez_bounds_intersect(a2, b1):
                recursion(a2, b1, tam, ta1, tb0, tbm, depth_a - 1, depth_b - 1)
            if bez_bounds_intersect(a1, b2):
                recursion(a1, b2, ta0, tam, tbm, tb1, depth_a - 1, depth_b - 1)
            if bez_bounds_intersect(a2, b2):
                recursion(a2, b2, tam, ta1, tbm, tb1, depth_a - 1, depth_b - 1)
        elif depth_a > 0:
            a1, a2 = bez_split(a, 0.5)
            if bez_bounds_intersect(a1, b):
                recursion(a1, b, ta0, tam, tb0, tb1, depth_a - 1, depth_b)
            if bez_bounds_intersect(a2, b):
                recursion(a2, b, tam, ta1, tb0, tb1, depth_a - 1, depth_b)
        elif depth_b > 0:
            b1, b2 = bez_split(b, 0.5)
            if bez_bounds_intersect(a, b1):
                recursion(a, b1, ta0, ta1, tb0, tbm, depth_a, depth_b - 1)
            if bez_bounds_intersect(a, b2):
                recursion(a, b2, ta0, ta1, tbm, tb1, depth_a, depth_b - 1)
        else:  # Both segments have been subdivided enough. Let's get some intersections :).
            intersection, t1, t2 = straight_segments_intersection([a[0]] + [a[3]], [b[0]] + [b[3]])
            if intersection:
                if intersection == "Overlap":
                    t1 = (max(0, min(1, t1[0])) + max(0, min(1, t1[1]))) / 2
                    t2 = (max(0, min(1, t2[0])) + max(0, min(1, t2[1]))) / 2
                bezier_intersection_recursive_result += [[ta0 + t1 * (ta1 - ta0), tb0 + t2 * (tb1 - tb0)]]

    global bezier_intersection_recursive_result
    bezier_intersection_recursive_result = []
    recursion(a, b, 0., 1., 0., 1., INTERSECTION_RECURSION_DEPTH, INTERSECTION_RECURSION_DEPTH)
    intersections = bezier_intersection_recursive_result
    for i in range(len(intersections)):
        if len(intersections[i]) < 5 or intersections[i][4] != "Overlap":
            intersections[i] = polish_intersection(a, b, intersections[i][0], intersections[i][1])
    return intersections


def csp_segments_true_intersection(sp1, sp2, sp3, sp4):
    intersections = csp_segments_intersection(sp1, sp2, sp3, sp4)
    res = []
    for intersection in intersections:
        if (
                (len(intersection) == 5 and intersection[4] == "Overlap" and (0 <= intersection[0] <= 1 or 0 <= intersection[1] <= 1) and (0 <= intersection[2] <= 1 or 0 <= intersection[3] <= 1))
                or (0 <= intersection[0] <= 1 and 0 <= intersection[1] <= 1)
        ):
            res += [intersection]
    return res


def csp_get_t_at_curvature(sp1, sp2, c, sample_points=16):
    # returns a list containing [t1,t2,t3,...,tn],  0<=ti<=1...
    if sample_points < 2:
        sample_points = 2
    tolerance = .0000000001
    res = []
    ax, ay, bx, by, cx, cy, dx, dy = csp_parameterize(sp1, sp2)
    for k in range(sample_points):
        t = float(k) / (sample_points - 1)
        i = 0
        F = 1e100
        while i < 2 or abs(F) > tolerance and i < 17:
            try:  # some numerical calculation could exceed the limits
                t2 = t * t
                # slopes...
                f1x = 3 * ax * t2 + 2 * bx * t + cx
                f1y = 3 * ay * t2 + 2 * by * t + cy
                f2x = 6 * ax * t + 2 * bx
                f2y = 6 * ay * t + 2 * by
                f3x = 6 * ax
                f3y = 6 * ay
                d = (f1x ** 2 + f1y ** 2) ** 1.5
                F1 = (
                        ((f1x * f3y - f3x * f1y) * d - (f1x * f2y - f2x * f1y) * 3. * (f2x * f1x + f2y * f1y) * ((f1x ** 2 + f1y ** 2) ** .5)) /
                        ((f1x ** 2 + f1y ** 2) ** 3)
                )
                F = (f1x * f2y - f1y * f2x) / d - c
                t -= F / F1
            except:
                break
            i += 1
        if 0 <= t <= 1 and F <= tolerance:
            if len(res) == 0:
                res.append(t)
            for i in res:
                if abs(t - i) <= 0.001:
                    break
            if not abs(t - i) <= 0.001:
                res.append(t)
    return res


def csp_max_curvature(sp1, sp2):
    ax, ay, bx, by, cx, cy, dx, dy = csp_parameterize(sp1, sp2)
    tolerance = .0001
    F = 0.
    i = 0
    while i < 2 or F - Flast < tolerance and i < 10:
        t = .5
        f1x = 3 * ax * t ** 2 + 2 * bx * t + cx
        f1y = 3 * ay * t ** 2 + 2 * by * t + cy
        f2x = 6 * ax * t + 2 * bx
        f2y = 6 * ay * t + 2 * by
        f3x = 6 * ax
        f3y = 6 * ay
        d = pow(f1x ** 2 + f1y ** 2, 1.5)
        if d != 0:
            Flast = F
            F = (f1x * f2y - f1y * f2x) / d
            F1 = (
                    (d * (f1x * f3y - f3x * f1y) - (f1x * f2y - f2x * f1y) * 3. * (f2x * f1x + f2y * f1y) * pow(f1x ** 2 + f1y ** 2, .5)) /
                    (f1x ** 2 + f1y ** 2) ** 3
            )
            i += 1
            if F1 != 0:
                t -= F / F1
            else:
                break
        else:
            break
    return t


def csp_curvature_at_t(sp1, sp2, t, depth=3):
    ax, ay, bx, by, cx, cy, dx, dy = bezierparameterize(csp_segment_to_bez(sp1, sp2))

    # curvature = (x'y''-y'x'') / (x'^2+y'^2)^1.5

    f1x = 3 * ax * t ** 2 + 2 * bx * t + cx
    f1y = 3 * ay * t ** 2 + 2 * by * t + cy
    f2x = 6 * ax * t + 2 * bx
    f2y = 6 * ay * t + 2 * by
    d = (f1x ** 2 + f1y ** 2) ** 1.5
    if d != 0:
        return (f1x * f2y - f1y * f2x) / d
    else:
        t1 = f1x * f2y - f1y * f2x
        if t1 > 0:
            return 1e100
        if t1 < 0:
            return -1e100
        # Use the Lapitals rule to solve 0/0 problem for 2 times...
        t1 = 2 * (bx * ay - ax * by) * t + (ay * cx - ax * cy)
        if t1 > 0:
            return 1e100
        if t1 < 0:
            return -1e100
        t1 = bx * ay - ax * by
        if t1 > 0:
            return 1e100
        if t1 < 0:
            return -1e100
        if depth > 0:
            # little hack ;^) hope it won't influence anything...
            return csp_curvature_at_t(sp1, sp2, t * 1.004, depth - 1)
        return 1e100


def csp_subpath_ccw(subpath):
    # Remove all zero length segments
    s = 0
    if (P(subpath[-1][1]) - P(subpath[0][1])).l2() > 1e-10:
        subpath[-1][2] = subpath[-1][1]
        subpath[0][0] = subpath[0][1]
        subpath += [[subpath[0][1], subpath[0][1], subpath[0][1]]]
    pl = subpath[-1][2]
    for sp1 in subpath:
        for p in sp1:
            s += (p[0] - pl[0]) * (p[1] + pl[1])
            pl = p
    return s < 0


def csp_at_t(sp1, sp2, t):
    ax = sp1[1][0]
    bx = sp1[2][0]
    cx = sp2[0][0]
    dx = sp2[1][0]

    ay = sp1[1][1]
    by = sp1[2][1]
    cy = sp2[0][1]
    dy = sp2[1][1]

    x1 = ax + (bx - ax) * t
    y1 = ay + (by - ay) * t

    x2 = bx + (cx - bx) * t
    y2 = by + (cy - by) * t

    x3 = cx + (dx - cx) * t
    y3 = cy + (dy - cy) * t

    x4 = x1 + (x2 - x1) * t
    y4 = y1 + (y2 - y1) * t

    x5 = x2 + (x3 - x2) * t
    y5 = y2 + (y3 - y2) * t

    x = x4 + (x5 - x4) * t
    y = y4 + (y5 - y4) * t

    return [x, y]


def csp_at_length(sp1, sp2, l=0.5, tolerance=0.01):
    bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
    t = beziertatlength(bez, l, tolerance)
    return csp_at_t(sp1, sp2, t)


def cspseglength(sp1, sp2, tolerance=0.01):
    bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
    return bezierlength(bez, tolerance)


def csp_line_intersection(l1, l2, sp1, sp2):
    dd = l1[0]
    cc = l2[0] - l1[0]
    bb = l1[1]
    aa = l2[1] - l1[1]
    if aa == cc == 0:
        return []
    if aa:
        coef1 = cc / aa
        coef2 = 1
    else:
        coef1 = 1
        coef2 = aa / cc
    bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
    ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez)
    a = coef1 * ay - coef2 * ax
    b = coef1 * by - coef2 * bx
    c = coef1 * cy - coef2 * cx
    d = coef1 * (y0 - bb) - coef2 * (x0 - dd)
    roots = cubic_solver(a, b, c, d)
    retval = []
    for i in roots:
        if type(i) is complex and abs(i.imag) < 1e-7:
            i = i.real
        if type(i) is not complex and -1e-10 <= i <= 1. + 1e-10:
            retval.append(i)
    return retval


def csp_split_by_two_points(sp1, sp2, t1, t2):
    if t1 > t2:
        t1, t2 = t2, t1
    if t1 == t2:
        sp1, sp2, sp3 = csp_split(sp1, sp2, t1)
        return [sp1, sp2, sp2, sp3]
    elif t1 <= 1e-10 and t2 >= 1. - 1e-10:
        return [sp1, sp1, sp2, sp2]
    elif t1 <= 1e-10:
        sp1, sp2, sp3 = csp_split(sp1, sp2, t2)
        return [sp1, sp1, sp2, sp3]
    elif t2 >= 1. - 1e-10:
        sp1, sp2, sp3 = csp_split(sp1, sp2, t1)
        return [sp1, sp2, sp3, sp3]
    else:
        sp1, sp2, sp3 = csp_split(sp1, sp2, t1)
        sp2, sp3, sp4 = csp_split(sp2, sp3, (t2 - t1) / (1 - t1))
        return [sp1, sp2, sp3, sp4]


def csp_seg_split(sp1, sp2, points):
    # points is float=t or list [t1, t2, ..., tn]
    if type(points) is float:
        points = [points]
    points.sort()
    res = [sp1, sp2]
    last_t = 0
    for t in points:
        if 1e-10 < t < 1. - 1e-10:
            sp3, sp4, sp5 = csp_split(res[-2], res[-1], (t - last_t) / (1 - last_t))
            last_t = t
            res[-2:] = [sp3, sp4, sp5]
    return res


def csp_subpath_split_by_points(subpath, points):
    # points are [[i,t]...] where i-segment's number
    points.sort()
    points = [[1, 0.]] + points + [[len(subpath) - 1, 1.]]
    parts = []
    for int1, int2 in zip(points, points[1:]):
        if int1 == int2:
            continue
        if int1[1] == 1.:
            int1[0] += 1
            int1[1] = 0.
        if int1 == int2:
            continue
        if int2[1] == 0.:
            int2[0] -= 1
            int2[1] = 1.
        if int1[0] == 0 and int2[0] == len(subpath) - 1:  # and small(int1[1]) and small(int2[1]-1) :
            continue
        if int1[0] == int2[0]:  # same segment
            sp = csp_split_by_two_points(subpath[int1[0] - 1], subpath[int1[0]], int1[1], int2[1])
            if sp[1] != sp[2]:
                parts += [[sp[1], sp[2]]]
        else:
            sp5, sp1, sp2 = csp_split(subpath[int1[0] - 1], subpath[int1[0]], int1[1])
            sp3, sp4, sp5 = csp_split(subpath[int2[0] - 1], subpath[int2[0]], int2[1])
            if int1[0] == int2[0] - 1:
                parts += [[sp1, [sp2[0], sp2[1], sp3[2]], sp4]]
            else:
                parts += [[sp1, sp2] + subpath[int1[0] + 1:int2[0] - 1] + [sp3, sp4]]
    return parts


def arc_from_s_r_n_l(s, r, n, l):
    if abs(n[0] ** 2 + n[1] ** 2 - 1) > 1e-10:
        n = normalize(n)
    return arc_from_c_s_l([s[0] + n[0] * r, s[1] + n[1] * r], s, l)


def arc_from_c_s_l(c, s, l):
    r = point_to_point_d(c, s)
    if r == 0:
        return []
    alpha = l / r
    cos_ = math.cos(alpha)
    sin_ = math.sin(alpha)
    e = [c[0] + (s[0] - c[0]) * cos_ - (s[1] - c[1]) * sin_, c[1] + (s[0] - c[0]) * sin_ + (s[1] - c[1]) * cos_]
    n = [c[0] - s[0], c[1] - s[1]]
    slope = rotate_cw(n) if l > 0 else rotate_ccw(n)
    return csp_from_arc(s, e, c, r, slope)


def csp_from_arc(start, end, center, r, slope_st):
    # Creates csp that approximise specified arc
    r = abs(r)
    alpha = (atan2(end[0] - center[0], end[1] - center[1]) - atan2(start[0] - center[0], start[1] - center[1])) % TAU

    sectors = int(abs(alpha) * 2 / math.pi) + 1
    alpha_start = atan2(start[0] - center[0], start[1] - center[1])
    cos_ = math.cos(alpha_start)
    sin_ = math.sin(alpha_start)
    k = (4. * math.tan(alpha / sectors / 4.) / 3.)
    if dot(slope_st, [- sin_ * k * r, cos_ * k * r]) < 0:
        if alpha > 0:
            alpha -= TAU
        else:
            alpha += TAU
    if abs(alpha * r) < 0.001:
        return []

    sectors = int(abs(alpha) * 2 / math.pi) + 1
    k = (4. * math.tan(alpha / sectors / 4.) / 3.)
    result = []
    for i in range(sectors + 1):
        cos_ = math.cos(alpha_start + alpha * i / sectors)
        sin_ = math.sin(alpha_start + alpha * i / sectors)
        sp = [[], [center[0] + cos_ * r, center[1] + sin_ * r], []]
        sp[0] = [sp[1][0] + sin_ * k * r, sp[1][1] - cos_ * k * r]
        sp[2] = [sp[1][0] - sin_ * k * r, sp[1][1] + cos_ * k * r]
        result += [sp]
    result[0][0] = result[0][1][:]
    result[-1][2] = result[-1][1]

    return result


def point_to_arc_distance(p, arc):
    # Distance calculattion from point to arc
    P0, P2, c, a = arc
    p = P(p)
    r = (P0 - c).mag()
    if r > 0:
        i = c + (p - c).unit() * r
        alpha = ((i - c).angle() - (P0 - c).angle())
        if a * alpha < 0:
            if alpha > 0:
                alpha = alpha - TAU
            else:
                alpha = TAU + alpha
        if between(alpha, 0, a) or min(abs(alpha), abs(alpha - a)) < STRAIGHT_TOLERANCE:
            return (p - i).mag(), [i.x, i.y]
        else:
            d1 = (p - P0).mag()
            d2 = (p - P2).mag()
            if d1 < d2:
                return d1, [P0.x, P0.y]
            else:
                return d2, [P2.x, P2.y]


def csp_to_arc_distance(sp1, sp2, arc1, arc2, tolerance=0.01):  # arc = [start,end,center,alpha]
    n = 10
    i = 0
    d = (0, [0, 0])
    d1 = (0, [0, 0])
    dl = 0
    while i < 1 or (abs(d1[0] - dl[0]) > tolerance and i < 4):
        i += 1
        dl = d1 * 1
        for j in range(n + 1):
            t = float(j) / n
            p = csp_at_t(sp1, sp2, t)
            d = min(point_to_arc_distance(p, arc1), point_to_arc_distance(p, arc2))
            d1 = max(d1, d)
        n = n * 2
    return d1[0]


def csp_point_inside_bound(sp1, sp2, p):
    bez = [sp1[1], sp1[2], sp2[0], sp2[1]]
    x, y = p
    c = 0
    # CLT added test of x in range
    xmin = 1e100
    xmax = -1e100
    for i in range(4):
        [x0, y0] = bez[i - 1]
        [x1, y1] = bez[i]
        xmin = min(xmin, x0)
        xmax = max(xmax, x0)
        if x0 - x1 != 0 and (y - y0) * (x1 - x0) >= (x - x0) * (y1 - y0) and x > min(x0, x1) and x <= max(x0, x1):
            c += 1
    return xmin <= x <= xmax and c % 2 == 0


def line_line_intersect(p1, p2, p3, p4):  # Return only true intersection.
    if (p1[0] == p2[0] and p1[1] == p2[1]) or (p3[0] == p4[0] and p3[1] == p4[1]):
        return False
    x = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
    if x == 0:  # Lines are parallel
        if (p3[0] - p1[0]) * (p2[1] - p1[1]) == (p3[1] - p1[1]) * (p2[0] - p1[0]):
            if p3[0] != p4[0]:
                t11 = (p1[0] - p3[0]) / (p4[0] - p3[0])
                t12 = (p2[0] - p3[0]) / (p4[0] - p3[0])
                t21 = (p3[0] - p1[0]) / (p2[0] - p1[0])
                t22 = (p4[0] - p1[0]) / (p2[0] - p1[0])
            else:
                t11 = (p1[1] - p3[1]) / (p4[1] - p3[1])
                t12 = (p2[1] - p3[1]) / (p4[1] - p3[1])
                t21 = (p3[1] - p1[1]) / (p2[1] - p1[1])
                t22 = (p4[1] - p1[1]) / (p2[1] - p1[1])
            return "Overlap" if (0 <= t11 <= 1 or 0 <= t12 <= 1) and (0 <= t21 <= 1 or 0 <= t22 <= 1) else False
        else:
            return False
    else:
        return (
                0 <= ((p4[0] - p3[0]) * (p1[1] - p3[1]) - (p4[1] - p3[1]) * (p1[0] - p3[0])) / x <= 1 and
                0 <= ((p2[0] - p1[0]) * (p1[1] - p3[1]) - (p2[1] - p1[1]) * (p1[0] - p3[0])) / x <= 1)


def line_line_intersection_points(p1, p2, p3, p4):  # Return only points [ (x,y) ]
    if (p1[0] == p2[0] and p1[1] == p2[1]) or (p3[0] == p4[0] and p3[1] == p4[1]):
        return []
    x = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
    if x == 0:  # Lines are parallel
        if (p3[0] - p1[0]) * (p2[1] - p1[1]) == (p3[1] - p1[1]) * (p2[0] - p1[0]):
            if p3[0] != p4[0]:
                t11 = (p1[0] - p3[0]) / (p4[0] - p3[0])
                t12 = (p2[0] - p3[0]) / (p4[0] - p3[0])
                t21 = (p3[0] - p1[0]) / (p2[0] - p1[0])
                t22 = (p4[0] - p1[0]) / (p2[0] - p1[0])
            else:
                t11 = (p1[1] - p3[1]) / (p4[1] - p3[1])
                t12 = (p2[1] - p3[1]) / (p4[1] - p3[1])
                t21 = (p3[1] - p1[1]) / (p2[1] - p1[1])
                t22 = (p4[1] - p1[1]) / (p2[1] - p1[1])
            res = []
            if (0 <= t11 <= 1 or 0 <= t12 <= 1) and (0 <= t21 <= 1 or 0 <= t22 <= 1):
                if 0 <= t11 <= 1:
                    res += [p1]
                if 0 <= t12 <= 1:
                    res += [p2]
                if 0 <= t21 <= 1:
                    res += [p3]
                if 0 <= t22 <= 1:
                    res += [p4]
            return res
        else:
            return []
    else:
        t1 = ((p4[0] - p3[0]) * (p1[1] - p3[1]) - (p4[1] - p3[1]) * (p1[0] - p3[0])) / x
        t2 = ((p2[0] - p1[0]) * (p1[1] - p3[1]) - (p2[1] - p1[1]) * (p1[0] - p3[0])) / x
        if 0 <= t1 <= 1 and 0 <= t2 <= 1:
            return [[p1[0] * (1 - t1) + p2[0] * t1, p1[1] * (1 - t1) + p2[1] * t1]]
        else:
            return []


def point_to_point_d2(a, b):
    return (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2


def point_to_point_d(a, b):
    return math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)


def point_to_line_segment_distance_2(p1, p2, p3):
    # p1 - point, p2,p3 - line segment
    # draw_pointer(p1)
    w0 = [p1[0] - p2[0], p1[1] - p2[1]]
    v = [p3[0] - p2[0], p3[1] - p2[1]]
    c1 = w0[0] * v[0] + w0[1] * v[1]
    if c1 <= 0:
        return w0[0] * w0[0] + w0[1] * w0[1]
    c2 = v[0] * v[0] + v[1] * v[1]
    if c2 <= c1:
        return (p1[0] - p3[0]) ** 2 + (p1[1] - p3[1]) ** 2
    return (p1[0] - p2[0] - v[0] * c1 / c2) ** 2 + (p1[1] - p2[1] - v[1] * c1 / c2)


def line_to_line_distance_2(p1, p2, p3, p4):
    if line_line_intersect(p1, p2, p3, p4):
        return 0
    return min(
            point_to_line_segment_distance_2(p1, p3, p4),
            point_to_line_segment_distance_2(p2, p3, p4),
            point_to_line_segment_distance_2(p3, p1, p2),
            point_to_line_segment_distance_2(p4, p1, p2))


def csp_seg_bound_to_csp_seg_bound_max_min_distance(sp1, sp2, sp3, sp4):
    bez1 = csp_segment_to_bez(sp1, sp2)
    bez2 = csp_segment_to_bez(sp3, sp4)
    min_dist = 1e100
    max_dist = 0.
    for i in range(4):
        if csp_point_inside_bound(sp1, sp2, bez2[i]) or csp_point_inside_bound(sp3, sp4, bez1[i]):
            min_dist = 0.
            break
    for i in range(4):
        for j in range(4):
            d = line_to_line_distance_2(bez1[i - 1], bez1[i], bez2[j - 1], bez2[j])
            if d < min_dist:
                min_dist = d
            d = (bez2[j][0] - bez1[i][0]) ** 2 + (bez2[j][1] - bez1[i][1]) ** 2
            if max_dist < d:
                max_dist = d
    return min_dist, max_dist


def csp_reverse(csp):
    for i in range(len(csp)):
        n = []
        for j in csp[i]:
            n = [[j[2][:], j[1][:], j[0][:]]] + n
        csp[i] = n[:]
    return csp


def csp_normalized_slope(sp1, sp2, t):
    ax, ay, bx, by, cx, cy, dx, dy = bezierparameterize((sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]))
    if sp1[1] == sp2[1] == sp1[2] == sp2[0]:
        return [1., 0.]
    f1x = 3 * ax * t * t + 2 * bx * t + cx
    f1y = 3 * ay * t * t + 2 * by * t + cy
    if abs(f1x * f1x + f1y * f1y) > 1e-9:  # LT changed this from 1e-20, which caused problems
        l = math.sqrt(f1x * f1x + f1y * f1y)
        return [f1x / l, f1y / l]

    if t == 0:
        f1x = sp2[0][0] - sp1[1][0]
        f1y = sp2[0][1] - sp1[1][1]
        if abs(f1x * f1x + f1y * f1y) > 1e-9:  # LT changed this from 1e-20, which caused problems
            l = math.sqrt(f1x * f1x + f1y * f1y)
            return [f1x / l, f1y / l]
        else:
            f1x = sp2[1][0] - sp1[1][0]
            f1y = sp2[1][1] - sp1[1][1]
            if f1x * f1x + f1y * f1y != 0:
                l = math.sqrt(f1x * f1x + f1y * f1y)
                return [f1x / l, f1y / l]
    elif t == 1:
        f1x = sp2[1][0] - sp1[2][0]
        f1y = sp2[1][1] - sp1[2][1]
        if abs(f1x * f1x + f1y * f1y) > 1e-9:
            l = math.sqrt(f1x * f1x + f1y * f1y)
            return [f1x / l, f1y / l]
        else:
            f1x = sp2[1][0] - sp1[1][0]
            f1y = sp2[1][1] - sp1[1][1]
            if f1x * f1x + f1y * f1y != 0:
                l = math.sqrt(f1x * f1x + f1y * f1y)
                return [f1x / l, f1y / l]
    else:
        return [1., 0.]


def csp_normalized_normal(sp1, sp2, t):
    nx, ny = csp_normalized_slope(sp1, sp2, t)
    return [-ny, nx]


def csp_parameterize(sp1, sp2):
    return bezierparameterize(csp_segment_to_bez(sp1, sp2))


def csp_concat_subpaths(*s):
    def concat(s1, s2):
        if not s1:
            return s2
        if not s2:
            return s1
        if (s1[-1][1][0] - s2[0][1][0]) ** 2 + (s1[-1][1][1] - s2[0][1][1]) ** 2 > 0.00001:
            return s1[:-1] + [[s1[-1][0], s1[-1][1], s1[-1][1]], [s2[0][1], s2[0][1], s2[0][2]]] + s2[1:]
        else:
            return s1[:-1] + [[s1[-1][0], s2[0][1], s2[0][2]]] + s2[1:]

    if len(s) == 0:
        return []
    if len(s) == 1:
        return s[0]
    result = s[0]
    for s1 in s[1:]:
        result = concat(result, s1)
    return result


def csp_subpaths_end_to_start_distance2(s1, s2):
    return (s1[-1][1][0] - s2[0][1][0]) ** 2 + (s1[-1][1][1] - s2[0][1][1]) ** 2


def csp_clip_by_line(csp, l1, l2):
    result = []
    for i in range(len(csp)):
        s = csp[i]
        intersections = []
        for j in range(1, len(s)):
            intersections += [[j, int_] for int_ in csp_line_intersection(l1, l2, s[j - 1], s[j])]
        splitted_s = csp_subpath_split_by_points(s, intersections)
        for s in splitted_s[:]:
            clip = False
            for p in csp_true_bounds([s]):
                if (l1[1] - l2[1]) * p[0] + (l2[0] - l1[0]) * p[1] + (l1[0] * l2[1] - l2[0] * l1[1]) < -0.01:
                    clip = True
                    break
            if clip:
                splitted_s.remove(s)
        result += splitted_s
    return result


def csp_subpath_line_to(subpath, points, prepend=False):
    # Appends subpath with line or polyline.
    if len(points) > 0:
        if not prepend:
            if len(subpath) > 0:
                subpath[-1][2] = subpath[-1][1][:]
            if type(points[0]) == type([1, 1]):
                for p in points:
                    subpath += [[p[:], p[:], p[:]]]
            else:
                subpath += [[points, points, points]]
        else:
            if len(subpath) > 0:
                subpath[0][0] = subpath[0][1][:]
            if type(points[0]) == type([1, 1]):
                for p in points:
                    subpath = [[p[:], p[:], p[:]]] + subpath
            else:
                subpath = [[points, points, points]] + subpath
    return subpath


def csp_join_subpaths(csp):
    result = csp[:]
    done_smf = True
    joined_result = []
    while done_smf:
        done_smf = False
        while len(result) > 0:
            s1 = result[-1][:]
            del (result[-1])
            j = 0
            joined_smf = False
            while j < len(joined_result):
                if csp_subpaths_end_to_start_distance2(joined_result[j], s1) < 0.000001:
                    joined_result[j] = csp_concat_subpaths(joined_result[j], s1)
                    done_smf = True
                    joined_smf = True
                    break
                if csp_subpaths_end_to_start_distance2(s1, joined_result[j]) < 0.000001:
                    joined_result[j] = csp_concat_subpaths(s1, joined_result[j])
                    done_smf = True
                    joined_smf = True
                    break
                j += 1
            if not joined_smf:
                joined_result += [s1[:]]
        if done_smf:
            result = joined_result[:]
            joined_result = []
    return joined_result


def triangle_cross(a, b, c):
    return (a[0] - b[0]) * (c[1] - b[1]) - (c[0] - b[0]) * (a[1] - b[1])


def csp_segment_convex_hull(sp1, sp2):
    a = sp1[1][:]
    b = sp1[2][:]
    c = sp2[0][:]
    d = sp2[1][:]

    abc = triangle_cross(a, b, c)
    abd = triangle_cross(a, b, d)
    bcd = triangle_cross(b, c, d)
    cad = triangle_cross(c, a, d)
    if abc == 0 and abd == 0:
        return [min(a, b, c, d), max(a, b, c, d)]
    if abc == 0:
        return [d, min(a, b, c), max(a, b, c)]
    if abd == 0:
        return [c, min(a, b, d), max(a, b, d)]
    if bcd == 0:
        return [a, min(b, c, d), max(b, c, d)]
    if cad == 0:
        return [b, min(c, a, d), max(c, a, d)]

    m1 = abc * abd > 0
    m2 = abc * bcd > 0
    m3 = abc * cad > 0

    if m1 and m2 and m3:
        return [a, b, c]
    if m1 and m2 and not m3:
        return [a, b, c, d]
    if m1 and not m2 and m3:
        return [a, b, d, c]
    if not m1 and m2 and m3:
        return [a, d, b, c]
    if m1 and not (m2 and m3):
        return [a, b, d]
    if not (m1 and m2) and m3:
        return [c, a, d]
    if not (m1 and m3) and m2:
        return [b, c, d]

    raise ValueError("csp_segment_convex_hull happened which is something that shouldn't happen!")


################################################################################
# Bezier additional functions
################################################################################

def bez_bounds_intersect(bez1, bez2):
    return bounds_intersect(bez_bound(bez2), bez_bound(bez1))


def bez_bound(bez):
    return [
        min(bez[0][0], bez[1][0], bez[2][0], bez[3][0]),
        min(bez[0][1], bez[1][1], bez[2][1], bez[3][1]),
        max(bez[0][0], bez[1][0], bez[2][0], bez[3][0]),
        max(bez[0][1], bez[1][1], bez[2][1], bez[3][1]),
    ]


def bounds_intersect(a, b):
    return not ((a[0] > b[2]) or (b[0] > a[2]) or (a[1] > b[3]) or (b[1] > a[3]))


def tpoint(xy1, xy2, t):
    (x1, y1) = xy1
    (x2, y2) = xy2
    return [x1 + t * (x2 - x1), y1 + t * (y2 - y1)]


def bez_split(a, t=0.5):
    a1 = tpoint(a[0], a[1], t)
    at = tpoint(a[1], a[2], t)
    b2 = tpoint(a[2], a[3], t)
    a2 = tpoint(a1, at, t)
    b1 = tpoint(b2, at, t)
    a3 = tpoint(a2, b1, t)
    return [a[0], a1, a2, a3], [a3, b1, b2, a[3]]


################################################################################
# Some vector functions
################################################################################

def normalize(xy):
    (x, y) = xy
    l = math.sqrt(x ** 2 + y ** 2)
    if l == 0:
        return [0., 0.]
    else:
        return [x / l, y / l]


def cross(a, b):
    return a[1] * b[0] - a[0] * b[1]


def dot(a, b):
    return a[0] * b[0] + a[1] * b[1]


def rotate_ccw(d):
    return [-d[1], d[0]]


def rotate_cw(d):
    return [d[1], -d[0]]


def vectors_ccw(a, b):
    return a[0] * b[1] - b[0] * a[1] < 0


################################################################################
# Common functions
################################################################################

def inv_2x2(a):  # invert matrix 2x2
    det = a[0][0] * a[1][1] - a[1][0] * a[0][1]
    if det == 0:
        return None
    return [
        [a[1][1] / det, -a[0][1] / det],
        [-a[1][0] / det, a[0][0] / det]
    ]


def small(a):
    global small_tolerance
    return abs(a) < small_tolerance


def atan2(*arg):
    if len(arg) == 1 and (type(arg[0]) == type([0., 0.]) or type(arg[0]) == type((0., 0.))):
        return (math.pi / 2 - math.atan2(arg[0][0], arg[0][1])) % TAU
    elif len(arg) == 2:
        return (math.pi / 2 - math.atan2(arg[0], arg[1])) % TAU
    else:
        raise ValueError("Bad argumets for atan! ({})".format(*arg))


def draw_text(text, x, y, group=None, style=None, font_size=10, gcodetools_tag=None):
    if style is None:
        style = "font-family:DejaVu Sans;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:DejaVu Sans;fill:#000000;fill-opacity:1;stroke:none;"
    style += "font-size:{:f}px;".format(font_size)
    attributes = {'x': str(x), 'y': str(y), 'style': style}
    if gcodetools_tag is not None:
        attributes["gcodetools"] = str(gcodetools_tag)

    if group is None:
        group = options.doc_root

    text_elem = group.add(TextElement(**attributes))
    text_elem.set("xml:space", "preserve")
    text = str(text).split("\n")
    for string in text:
        span = text_elem.add(Tspan(x=str(x), y=str(y)))
        span.set('sodipodi:role', 'line')
        y += font_size
        span.text = str(string)


def draw_csp(csp, stroke="#f00", fill="none", comment="", width=0.354, group=None, style=None):
    if group is None:
        group = options.doc_root
    node = group.add(PathElement())

    node.style = style if style is not None else \
        {'fill': fill, 'fill-opacity': 1, 'stroke': stroke, 'stroke-width': width}

    node.path = CubicSuperPath(csp)

    if comment != '':
        node.set('comment', comment)

    return node


def draw_pointer(x, color="#f00", figure="cross", group=None, comment="", fill=None, width=.1, size=10., text=None, font_size=None, pointer_type=None, attrib=None):
    size = size / 2
    if attrib is None:
        attrib = {}
    if pointer_type is None:
        pointer_type = "Pointer"
    attrib["gcodetools"] = pointer_type
    if group is None:
        group = options.self.svg.get_current_layer()
    if text is not None:
        if font_size is None:
            font_size = 7
        group = group.add(Group(gcodetools=pointer_type + " group"))
        draw_text(text, x[0] + size * 2.2, x[1] - size, group=group, font_size=font_size)
    if figure == "line":
        s = ""
        for i in range(1, len(x) / 2):
            s += " {}, {} ".format(x[i * 2], x[i * 2 + 1])
        attrib.update({"d": "M {},{} L {}".format(x[0], x[1], s), "style": "fill:none;stroke:{};stroke-width:{:f};".format(color, width), "comment": str(comment)})
    elif figure == "arrow":
        if fill is None:
            fill = "#12b3ff"
        fill_opacity = "0.8"
        d = "m {},{} ".format(x[0], x[1]) + re.sub("([0-9\\-.e]+)", (lambda match: str(float(match.group(1)) * size * 2.)), "0.88464,-0.40404 c -0.0987,-0.0162 -0.186549,-0.0589 -0.26147,-0.1173 l 0.357342,-0.35625 c 0.04631,-0.039 0.0031,-0.13174 -0.05665,-0.12164 -0.0029,-1.4e-4 -0.0058,-1.4e-4 -0.0087,0 l -2.2e-5,2e-5 c -0.01189,0.004 -0.02257,0.0119 -0.0305,0.0217 l -0.357342,0.35625 c -0.05818,-0.0743 -0.102813,-0.16338 -0.117662,-0.26067 l -0.409636,0.88193 z")
        attrib.update({"d": d, "style": "fill:{};stroke:none;fill-opacity:{};".format(fill, fill_opacity), "comment": str(comment)})
    else:
        attrib.update({"d": "m {},{} l {:f},{:f} {:f},{:f} {:f},{:f} {:f},{:f} , {:f},{:f}".format(x[0], x[1], size, size, -2 * size, -2 * size, size, size, size, -size, -2 * size, 2 * size), "style": "fill:none;stroke:{};stroke-width:{:f};".format(color, width), "comment": str(comment)})
    group.add(PathElement(**attrib))


def straight_segments_intersection(a, b, true_intersection=True):  # (True intersection means check ta and tb are in [0,1])
    ax = a[0][0]
    bx = a[1][0]
    cx = b[0][0]
    dx = b[1][0]
    ay = a[0][1]
    by = a[1][1]
    cy = b[0][1]
    dy = b[1][1]
    if (ax == bx and ay == by) or (cx == dx and cy == dy):
        return False, 0, 0
    if (bx - ax) * (dy - cy) - (by - ay) * (dx - cx) == 0:  # Lines are parallel
        ta = (ax - cx) / (dx - cx) if cx != dx else (ay - cy) / (dy - cy)
        tb = (bx - cx) / (dx - cx) if cx != dx else (by - cy) / (dy - cy)
        tc = (cx - ax) / (bx - ax) if ax != bx else (cy - ay) / (by - ay)
        td = (dx - ax) / (bx - ax) if ax != bx else (dy - ay) / (by - ay)
        return ("Overlap" if 0 <= ta <= 1 or 0 <= tb <= 1 or 0 <= tc <= 1 or 0 <= td <= 1 or not true_intersection else False), (ta, tb), (tc, td)
    else:
        ta = ((ay - cy) * (dx - cx) - (ax - cx) * (dy - cy)) / ((bx - ax) * (dy - cy) - (by - ay) * (dx - cx))
        tb = (ax - cx + ta * (bx - ax)) / (dx - cx) if dx != cx else (ay - cy + ta * (by - ay)) / (dy - cy)
        return (0 <= ta <= 1 and 0 <= tb <= 1 or not true_intersection), ta, tb


def between(c, x, y):
    return x - STRAIGHT_TOLERANCE <= c <= y + STRAIGHT_TOLERANCE or y - STRAIGHT_TOLERANCE <= c <= x + STRAIGHT_TOLERANCE


def cubic_solver_real(a, b, c, d):
    # returns only real roots of a cubic equation.
    roots = cubic_solver(a, b, c, d)
    res = []
    for root in roots:
        if type(root) is complex:
            if -1e-10 < root.imag < 1e-10:
                res.append(root.real)
        else:
            res.append(root)
    return res


def cubic_solver(a, b, c, d):
    if a != 0:
        #    Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
        a, b, c = (b / a, c / a, d / a)
        m = 2 * a ** 3 - 9 * a * b + 27 * c
        k = a ** 2 - 3 * b
        n = m ** 2 - 4 * k ** 3
        w1 = -.5 + .5 * cmath.sqrt(3) * 1j
        w2 = -.5 - .5 * cmath.sqrt(3) * 1j
        if n >= 0:
            t = m + math.sqrt(n)
            m1 = pow(t / 2, 1. / 3) if t >= 0 else -pow(-t / 2, 1. / 3)
            t = m - math.sqrt(n)
            n1 = pow(t / 2, 1. / 3) if t >= 0 else -pow(-t / 2, 1. / 3)
        else:
            m1 = pow(complex((m + cmath.sqrt(n)) / 2), 1. / 3)
            n1 = pow(complex((m - cmath.sqrt(n)) / 2), 1. / 3)
        x1 = -1. / 3 * (a + m1 + n1)
        x2 = -1. / 3 * (a + w1 * m1 + w2 * n1)
        x3 = -1. / 3 * (a + w2 * m1 + w1 * n1)
        return [x1, x2, x3]
    elif b != 0:
        det = c ** 2 - 4 * b * d
        if det > 0:
            return [(-c + math.sqrt(det)) / (2 * b), (-c - math.sqrt(det)) / (2 * b)]
        elif d == 0:
            return [-c / (b * b)]
        else:
            return [(-c + cmath.sqrt(det)) / (2 * b), (-c - cmath.sqrt(det)) / (2 * b)]
    elif c != 0:
        return [-d / c]
    else:
        return []


################################################################################
# print_ prints any arguments into specified log file
################################################################################

def print_(*arg):
    with open(options.log_filename, "ab") as f:
        for s in arg:
            s = unicode(s).encode('unicode_escape') + b" "
            f.write(s)
        f.write(b"\n")


################################################################################
# Point (x,y) operations
################################################################################
class P(object):
    def __init__(self, x, y=None):
        if not y is None:
            self.x = float(x)
            self.y = float(y)
        else:
            self.x = float(x[0])
            self.y = float(x[1])

    def __add__(self, other):
        return P(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        return P(self.x - other.x, self.y - other.y)

    def __neg__(self):
        return P(-self.x, -self.y)

    def __mul__(self, other):
        if isinstance(other, P):
            return self.x * other.x + self.y * other.y
        return P(self.x * other, self.y * other)

    __rmul__ = __mul__

    def __div__(self, other):
        return P(self.x / other, self.y / other)

    def __truediv__(self, other):
        return self.__div__(other)

    def mag(self):
        return math.hypot(self.x, self.y)

    def unit(self):
        h_mag = self.mag()
        if h_mag:
            return self / h_mag
        return P(0, 0)

    def dot(self, other):
        return self.x * other.x + self.y * other.y

    def rot(self, theta):
        c = math.cos(theta)
        s = math.sin(theta)
        return P(self.x * c - self.y * s, self.x * s + self.y * c)

    def angle(self):
        return math.atan2(self.y, self.x)

    def __repr__(self):
        return '{:f},{:f}'.format(self.x, self.y)

    def pr(self):
        return "{:.2f},{:.2f}".format(self.x, self.y)

    def to_list(self):
        return [self.x, self.y]

    def ccw(self):
        return P(-self.y, self.x)

    def l2(self):
        return self.x * self.x + self.y * self.y


class Line(object):
    def __init__(self, st, end):
        if st.__class__ == P:
            st = st.to_list()
        if end.__class__ == P:
            end = end.to_list()
        self.st = P(st)
        self.end = P(end)
        self.l = self.length()
        if self.l != 0:
            self.n = ((self.end - self.st) / self.l).ccw()
        else:
            self.n = [0, 1]

    def offset(self, r):
        self.st -= self.n * r
        self.end -= self.n * r

    def l2(self):
        return (self.st - self.end).l2()

    def length(self):
        return (self.st - self.end).mag()

    def draw(self, group, style, layer, transform, num=0, reverse_angle=1):
        st = gcodetools.transform(self.st.to_list(), layer, True)
        end = gcodetools.transform(self.end.to_list(), layer, True)

        attr = {'style': style['line'],
                'd': 'M {},{} L {},{}'.format(st[0], st[1], end[0], end[1]),
                "gcodetools": "Preview",
                }
        if transform:
            attr["transform"] = transform
        group.add(PathElement(**attr))

    def intersect(self, b):
        if b.__class__ == Line:
            if self.l < 10e-8 or b.l < 10e-8:
                return []
            v1 = self.end - self.st
            v2 = b.end - b.st
            x = v1.x * v2.y - v2.x * v1.y
            if x == 0:
                # lines are parallel
                res = []

                if (self.st.x - b.st.x) * v1.y - (self.st.y - b.st.y) * v1.x == 0:
                    # lines are the same
                    if v1.x != 0:
                        if 0 <= (self.st.x - b.st.x) / v2.x <= 1:
                            res.append(self.st)
                        if 0 <= (self.end.x - b.st.x) / v2.x <= 1:
                            res.append(self.end)
                        if 0 <= (b.st.x - self.st.x) / v1.x <= 1:
                            res.append(b.st)
                        if 0 <= (b.end.x - b.st.x) / v1.x <= 1:
                            res.append(b.end)
                    else:
                        if 0 <= (self.st.y - b.st.y) / v2.y <= 1:
                            res.append(self.st)
                        if 0 <= (self.end.y - b.st.y) / v2.y <= 1:
                            res.append(self.end)
                        if 0 <= (b.st.y - self.st.y) / v1.y <= 1:
                            res.append(b.st)
                        if 0 <= (b.end.y - b.st.y) / v1.y <= 1:
                            res.append(b.end)
                return res
            else:
                t1 = (-v1.x * (b.end.y - self.end.y) + v1.y * (b.end.x - self.end.x)) / x
                t2 = (-v1.y * (self.st.x - b.st.x) + v1.x * (self.st.y - b.st.y)) / x

                gcodetools.error(str((x, t1, t2)))
                if 0 <= t1 <= 1 and 0 <= t2 <= 1:
                    return [self.st + v1 * t1]
                else:
                    return []
        else:
            return []


################################################################################
#
# Offset function
#
# This function offsets given cubic super path.
# It's based on src/livarot/PathOutline.cpp from Inkscape's source code.
#
#
################################################################################
def csp_offset(csp, r):
    offset_tolerance = 0.05
    offset_subdivision_depth = 10
    time_ = time.time()
    time_start = time_
    print_("Offset start at {}".format(time_))
    print_("Offset radius {}".format(r))

    def csp_offset_segment(sp1, sp2, r):
        result = []
        t = csp_get_t_at_curvature(sp1, sp2, 1 / r)
        if len(t) == 0:
            t = [0., 1.]
        t.sort()
        if t[0] > .00000001:
            t = [0.] + t
        if t[-1] < .99999999:
            t.append(1.)
        for st, end in zip(t, t[1:]):
            c = csp_curvature_at_t(sp1, sp2, (st + end) / 2)
            sp = csp_split_by_two_points(sp1, sp2, st, end)
            if sp[1] != sp[2]:
                if c > 1 / r and r < 0 or c < 1 / r and r > 0:
                    offset = offset_segment_recursion(sp[1], sp[2], r, offset_subdivision_depth, offset_tolerance)
                else:  # This part will be clipped for sure... TODO Optimize it...
                    offset = offset_segment_recursion(sp[1], sp[2], r, offset_subdivision_depth, offset_tolerance)

                if not result:
                    result = offset[:]
                else:
                    if csp_subpaths_end_to_start_distance2(result, offset) < 0.0001:
                        result = csp_concat_subpaths(result, offset)
                    else:

                        intersection = csp_get_subapths_last_first_intersection(result, offset)
                        if intersection:
                            i, t1, j, t2 = intersection
                            sp1_, sp2_, sp3_ = csp_split(result[i - 1], result[i], t1)
                            result = result[:i - 1] + [sp1_, sp2_]
                            sp1_, sp2_, sp3_ = csp_split(offset[j - 1], offset[j], t2)
                            result = csp_concat_subpaths(result, [sp2_, sp3_] + offset[j + 1:])
                        else:
                            pass  # ???
        return result

    def create_offset_segment(sp1, sp2, r):
        # See    Gernot Hoffmann "Bezier Curves"  p.34 -> 7.1 Bezier Offset Curves
        p0 = P(sp1[1])
        p1 = P(sp1[2])
        p2 = P(sp2[0])
        p3 = P(sp2[1])

        s0 = p1 - p0
        s1 = p2 - p1
        s3 = p3 - p2

        n0 = s0.ccw().unit() if s0.l2() != 0 else P(csp_normalized_normal(sp1, sp2, 0))
        n3 = s3.ccw().unit() if s3.l2() != 0 else P(csp_normalized_normal(sp1, sp2, 1))
        n1 = s1.ccw().unit() if s1.l2() != 0 else (n0.unit() + n3.unit()).unit()

        q0 = p0 + r * n0
        q3 = p3 + r * n3
        c = csp_curvature_at_t(sp1, sp2, 0)
        q1 = q0 + (p1 - p0) * (1 - (r * c if abs(c) < 100 else 0))
        c = csp_curvature_at_t(sp1, sp2, 1)
        q2 = q3 + (p2 - p3) * (1 - (r * c if abs(c) < 100 else 0))

        return [[q0.to_list(), q0.to_list(), q1.to_list()], [q2.to_list(), q3.to_list(), q3.to_list()]]

    def csp_get_subapths_last_first_intersection(s1, s2):
        _break = False
        for i in range(1, len(s1)):
            sp11 = s1[-i - 1]
            sp12 = s1[-i]
            for j in range(1, len(s2)):
                sp21 = s2[j - 1]
                sp22 = s2[j]
                intersection = csp_segments_true_intersection(sp11, sp12, sp21, sp22)
                if intersection:
                    _break = True
                    break
            if _break:
                break
        if _break:
            intersection = max(intersection)
            return [len(s1) - i, intersection[0], j, intersection[1]]
        else:
            return []

    def csp_join_offsets(prev, next, sp1, sp2, sp1_l, sp2_l, r):
        if len(next) > 1:
            if (P(prev[-1][1]) - P(next[0][1])).l2() < 0.001:
                return prev, [], next
            intersection = csp_get_subapths_last_first_intersection(prev, next)
            if intersection:
                i, t1, j, t2 = intersection
                sp1_, sp2_, sp3_ = csp_split(prev[i - 1], prev[i], t1)
                sp3_, sp4_, sp5_ = csp_split(next[j - 1], next[j], t2)
                return prev[:i - 1] + [sp1_, sp2_], [], [sp4_, sp5_] + next[j + 1:]

        # Offsets do not intersect... will add an arc...
        start = (P(csp_at_t(sp1_l, sp2_l, 1.)) + r * P(csp_normalized_normal(sp1_l, sp2_l, 1.))).to_list()
        end = (P(csp_at_t(sp1, sp2, 0.)) + r * P(csp_normalized_normal(sp1, sp2, 0.))).to_list()
        arc = csp_from_arc(start, end, sp1[1], r, csp_normalized_slope(sp1_l, sp2_l, 1.))
        if not arc:
            return prev, [], next
        else:
            # Clip prev by arc
            if csp_subpaths_end_to_start_distance2(prev, arc) > 0.00001:
                intersection = csp_get_subapths_last_first_intersection(prev, arc)
                if intersection:
                    i, t1, j, t2 = intersection
                    sp1_, sp2_, sp3_ = csp_split(prev[i - 1], prev[i], t1)
                    sp3_, sp4_, sp5_ = csp_split(arc[j - 1], arc[j], t2)
                    prev = prev[:i - 1] + [sp1_, sp2_]
                    arc = [sp4_, sp5_] + arc[j + 1:]
            # Clip next by arc
            if not next:
                return prev, [], arc
            if csp_subpaths_end_to_start_distance2(arc, next) > 0.00001:
                intersection = csp_get_subapths_last_first_intersection(arc, next)
                if intersection:
                    i, t1, j, t2 = intersection
                    sp1_, sp2_, sp3_ = csp_split(arc[i - 1], arc[i], t1)
                    sp3_, sp4_, sp5_ = csp_split(next[j - 1], next[j], t2)
                    arc = arc[:i - 1] + [sp1_, sp2_]
                    next = [sp4_, sp5_] + next[j + 1:]

            return prev, arc, next

    def offset_segment_recursion(sp1, sp2, r, depth, tolerance):
        sp1_r, sp2_r = create_offset_segment(sp1, sp2, r)
        err = max(
                csp_seg_to_point_distance(sp1_r, sp2_r, (P(csp_at_t(sp1, sp2, .25)) + P(csp_normalized_normal(sp1, sp2, .25)) * r).to_list())[0],
                csp_seg_to_point_distance(sp1_r, sp2_r, (P(csp_at_t(sp1, sp2, .50)) + P(csp_normalized_normal(sp1, sp2, .50)) * r).to_list())[0],
                csp_seg_to_point_distance(sp1_r, sp2_r, (P(csp_at_t(sp1, sp2, .75)) + P(csp_normalized_normal(sp1, sp2, .75)) * r).to_list())[0],
        )

        if err > tolerance ** 2 and depth > 0:
            if depth > offset_subdivision_depth - 2:
                t = csp_max_curvature(sp1, sp2)
                t = max(.1, min(.9, t))
            else:
                t = .5
            sp3, sp4, sp5 = csp_split(sp1, sp2, t)
            r1 = offset_segment_recursion(sp3, sp4, r, depth - 1, tolerance)
            r2 = offset_segment_recursion(sp4, sp5, r, depth - 1, tolerance)
            return r1[:-1] + [[r1[-1][0], r1[-1][1], r2[0][2]]] + r2[1:]
        else:
            return [sp1_r, sp2_r]

    ############################################################################
    # Some small definitions
    ############################################################################
    csp_len = len(csp)

    ############################################################################
    # Prepare the path
    ############################################################################
    # Remove all small segments (segment length < 0.001)

    for i in xrange(len(csp)):
        for j in xrange(len(csp[i])):
            sp = csp[i][j]
            if (P(sp[1]) - P(sp[0])).mag() < 0.001:
                csp[i][j][0] = sp[1]
            if (P(sp[2]) - P(sp[0])).mag() < 0.001:
                csp[i][j][2] = sp[1]
    for i in xrange(len(csp)):
        for j in xrange(1, len(csp[i])):
            if cspseglength(csp[i][j - 1], csp[i][j]) < 0.001:
                csp[i] = csp[i][:j] + csp[i][j + 1:]
        if cspseglength(csp[i][-1], csp[i][0]) > 0.001:
            csp[i][-1][2] = csp[i][-1][1]
            csp[i] += [[csp[i][0][1], csp[i][0][1], csp[i][0][1]]]

    # TODO Get rid of self intersections.

    original_csp = csp[:]
    # Clip segments which has curvature>1/r. Because their offset will be self-intersecting and very nasty.

    print_("Offset prepared the path in {}".format(time.time() - time_))
    print_("Path length = {}".format(sum([len(i) for i in csp])))
    time_ = time.time()

    ############################################################################
    # Offset
    ############################################################################
    # Create offsets for all segments in the path. And join them together inside each subpath.
    unclipped_offset = [[] for i in xrange(csp_len)]

    intersection = [[] for i in xrange(csp_len)]
    for i in xrange(csp_len):
        subpath = csp[i]
        subpath_offset = []
        for sp1, sp2 in zip(subpath, subpath[1:]):
            segment_offset = csp_offset_segment(sp1, sp2, r)
            if not subpath_offset:
                subpath_offset = segment_offset

                prev_l = len(subpath_offset)
            else:
                prev, arc, next = csp_join_offsets(subpath_offset[-prev_l:], segment_offset, sp1, sp2, sp1_l, sp2_l, r)

                subpath_offset = csp_concat_subpaths(subpath_offset[:-prev_l + 1], prev, arc, next)
                prev_l = len(next)
            sp1_l = sp1[:]
            sp2_l = sp2[:]

        # Join last and first offsets togother to close the curve

        prev, arc, next = csp_join_offsets(subpath_offset[-prev_l:], subpath_offset[:2], subpath[0], subpath[1], sp1_l, sp2_l, r)
        subpath_offset[:2] = next[:]
        subpath_offset = csp_concat_subpaths(subpath_offset[:-prev_l + 1], prev, arc)

        # Collect subpath's offset and save it to unclipped offset list.
        unclipped_offset[i] = subpath_offset[:]

    print_("Offsetted path in {}".format(time.time() - time_))
    time_ = time.time()

    ############################################################################
    # Now to the clipping.
    ############################################################################
    # First of all find all intersection's between all segments of all offset subpaths, including self intersections.

    # TODO define offset tolerance here
    global small_tolerance
    small_tolerance = 0.01
    summ = 0
    summ1 = 0
    for subpath_i in xrange(csp_len):
        for subpath_j in xrange(subpath_i, csp_len):
            subpath = unclipped_offset[subpath_i]
            subpath1 = unclipped_offset[subpath_j]
            for i in xrange(1, len(subpath)):
                # If subpath_i==subpath_j we are looking for self intersections, so
                # we'll need search intersections only for xrange(i,len(subpath1))
                for j in (xrange(i, len(subpath1)) if subpath_i == subpath_j else xrange(len(subpath1))):
                    if subpath_i == subpath_j and j == i:
                        # Find self intersections of a segment
                        sp1, sp2, sp3 = csp_split(subpath[i - 1], subpath[i], .5)
                        intersections = csp_segments_intersection(sp1, sp2, sp2, sp3)
                        summ += 1
                        for t in intersections:
                            summ1 += 1
                            if not (small(t[0] - 1) and small(t[1])) and 0 <= t[0] <= 1 and 0 <= t[1] <= 1:
                                intersection[subpath_i] += [[i, t[0] / 2], [j, t[1] / 2 + .5]]
                    else:
                        intersections = csp_segments_intersection(subpath[i - 1], subpath[i], subpath1[j - 1], subpath1[j])
                        summ += 1
                        for t in intersections:
                            summ1 += 1
                            # TODO tolerance dependence to cpsp_length(t)
                            if len(t) == 2 and 0 <= t[0] <= 1 and 0 <= t[1] <= 1 and not (
                                    subpath_i == subpath_j and (
                                    (j - i - 1) % (len(subpath) - 1) == 0 and small(t[0] - 1) and small(t[1]) or
                                    (i - j - 1) % (len(subpath) - 1) == 0 and small(t[1] - 1) and small(t[0]))):
                                intersection[subpath_i] += [[i, t[0]]]
                                intersection[subpath_j] += [[j, t[1]]]

                            elif len(t) == 5 and t[4] == "Overlap":
                                intersection[subpath_i] += [[i, t[0]], [i, t[1]]]
                                intersection[subpath_j] += [[j, t[1]], [j, t[3]]]

    print_("Intersections found in {}".format(time.time() - time_))
    print_("Examined {} segments".format(summ))
    print_("found {} intersections".format(summ1))
    time_ = time.time()

    ########################################################################
    # Split unclipped offset by intersection points into splitted_offset
    ########################################################################
    splitted_offset = []
    for i in xrange(csp_len):
        subpath = unclipped_offset[i]
        if len(intersection[i]) > 0:
            parts = csp_subpath_split_by_points(subpath, intersection[i])
            # Close    parts list to close path (The first and the last parts are joined together)
            if [1, 0.] not in intersection[i]:
                parts[0][0][0] = parts[-1][-1][0]
                parts[0] = csp_concat_subpaths(parts[-1], parts[0])
                splitted_offset += parts[:-1]
            else:
                splitted_offset += parts[:]
        else:
            splitted_offset += [subpath[:]]

    print_("Split in {}".format(time.time() - time_))
    time_ = time.time()

    ########################################################################
    # Clipping
    ########################################################################
    result = []
    for subpath_i in range(len(splitted_offset)):
        clip = False
        s1 = splitted_offset[subpath_i]
        for subpath_j in range(len(splitted_offset)):
            s2 = splitted_offset[subpath_j]
            if (P(s1[0][1]) - P(s2[-1][1])).l2() < 0.0001 and ((subpath_i + 1) % len(splitted_offset) != subpath_j):
                if dot(csp_normalized_normal(s2[-2], s2[-1], 1.), csp_normalized_slope(s1[0], s1[1], 0.)) * r < -0.0001:
                    clip = True
                    break
            if (P(s2[0][1]) - P(s1[-1][1])).l2() < 0.0001 and ((subpath_j + 1) % len(splitted_offset) != subpath_i):
                if dot(csp_normalized_normal(s2[0], s2[1], 0.), csp_normalized_slope(s1[-2], s1[-1], 1.)) * r > 0.0001:
                    clip = True
                    break

        if not clip:
            result += [s1[:]]
        elif options.offset_draw_clippend_path:
            draw_csp([s1], width=.1)
            draw_pointer(csp_at_t(s2[-2], s2[-1], 1.) +
                         (P(csp_at_t(s2[-2], s2[-1], 1.)) + P(csp_normalized_normal(s2[-2], s2[-1], 1.)) * 10).to_list(), "Green", "line")
            draw_pointer(csp_at_t(s1[0], s1[1], 0.) +
                         (P(csp_at_t(s1[0], s1[1], 0.)) + P(csp_normalized_slope(s1[0], s1[1], 0.)) * 10).to_list(), "Red", "line")

    # Now join all together and check closure and orientation of result
    joined_result = csp_join_subpaths(result)
    # Check if each subpath from joined_result is closed

    for s in joined_result[:]:
        if csp_subpaths_end_to_start_distance2(s, s) > 0.001:
            # Remove open parts
            if options.offset_draw_clippend_path:
                draw_csp([s], width=1)
                draw_pointer(s[0][1], comment=csp_subpaths_end_to_start_distance2(s, s))
                draw_pointer(s[-1][1], comment=csp_subpaths_end_to_start_distance2(s, s))
            joined_result.remove(s)
        else:
            # Remove small parts
            minx, miny, maxx, maxy = csp_true_bounds([s])
            if (minx[0] - maxx[0]) ** 2 + (miny[1] - maxy[1]) ** 2 < 0.1:
                joined_result.remove(s)
    print_("Clipped and joined path in {}".format(time.time() - time_))

    ########################################################################
    # Now to the Dummy clipping: remove parts from split offset if their
    # centers are  closer to the original path than offset radius.
    ########################################################################

    if abs(r * .01) < 1:
        r1 = (0.99 * r) ** 2
        r2 = (1.01 * r) ** 2
    else:
        r1 = (abs(r) - 1) ** 2
        r2 = (abs(r) + 1) ** 2

    for s in joined_result[:]:
        dist = csp_to_point_distance(original_csp, s[int(len(s) / 2)][1], dist_bounds=[r1, r2])
        if not r1 < dist[0] < r2:
            joined_result.remove(s)
            if options.offset_draw_clippend_path:
                draw_csp([s], comment=math.sqrt(dist[0]))
                draw_pointer(csp_at_t(csp[dist[1]][dist[2] - 1], csp[dist[1]][dist[2]], dist[3]) + s[int(len(s) / 2)][1], "blue", "line", comment=[math.sqrt(dist[0]), i, j, sp])

    print_("-----------------------------")
    print_("Total offset time {}".format(time.time() - time_start))
    print_()
    return joined_result


################################################################################
#
# Biarc function
#
# Calculates biarc approximation of cubic super path segment
#  splits segment if needed or approximates it with straight line
#
################################################################################
def biarc(sp1, sp2, z1, z2, depth=0):
    def biarc_split(sp1, sp2, z1, z2, depth):
        if depth < options.biarc_max_split_depth:
            sp1, sp2, sp3 = csp_split(sp1, sp2)
            l1 = cspseglength(sp1, sp2)
            l2 = cspseglength(sp2, sp3)
            if l1 + l2 == 0:
                zm = z1
            else:
                zm = z1 + (z2 - z1) * l1 / (l1 + l2)
            return biarc(sp1, sp2, z1, zm, depth + 1) + biarc(sp2, sp3, zm, z2, depth + 1)
        else:
            return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]]

    P0 = P(sp1[1])
    P4 = P(sp2[1])
    TS = (P(sp1[2]) - P0)
    TE = -(P(sp2[0]) - P4)
    v = P0 - P4
    tsa = TS.angle()
    tea = TE.angle()
    va = v.angle()
    if TE.mag() < STRAIGHT_DISTANCE_TOLERANCE and TS.mag() < STRAIGHT_DISTANCE_TOLERANCE:
        # Both tangents are zero - line straight
        return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]]
    if TE.mag() < STRAIGHT_DISTANCE_TOLERANCE:
        TE = -(TS + v).unit()
        r = TS.mag() / v.mag() * 2
    elif TS.mag() < STRAIGHT_DISTANCE_TOLERANCE:
        TS = -(TE + v).unit()
        r = 1 / (TE.mag() / v.mag() * 2)
    else:
        r = TS.mag() / TE.mag()
    TS = TS.unit()
    TE = TE.unit()
    tang_are_parallel = ((tsa - tea) % math.pi < STRAIGHT_TOLERANCE or math.pi - (tsa - tea) % math.pi < STRAIGHT_TOLERANCE)
    if (tang_are_parallel and
            ((v.mag() < STRAIGHT_DISTANCE_TOLERANCE or TE.mag() < STRAIGHT_DISTANCE_TOLERANCE or TS.mag() < STRAIGHT_DISTANCE_TOLERANCE) or
             1 - abs(TS * v / (TS.mag() * v.mag())) < STRAIGHT_TOLERANCE)):
        # Both tangents are parallel and start and end are the same - line straight
        # or one of tangents still smaller then tolerance

        # Both tangents and v are parallel - line straight
        return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]]

    c = v * v
    b = 2 * v * (r * TS + TE)
    a = 2 * r * (TS * TE - 1)
    if v.mag() == 0:
        return biarc_split(sp1, sp2, z1, z2, depth)
    asmall = abs(a) < 10 ** -10
    bsmall = abs(b) < 10 ** -10
    csmall = abs(c) < 10 ** -10
    if asmall and b != 0:
        beta = -c / b
    elif csmall and a != 0:
        beta = -b / a
    elif not asmall:
        discr = b * b - 4 * a * c
        if discr < 0:
            raise ValueError(a, b, c, discr)
        disq = discr ** .5
        beta1 = (-b - disq) / 2 / a
        beta2 = (-b + disq) / 2 / a
        if beta1 * beta2 > 0:
            raise ValueError(a, b, c, disq, beta1, beta2)
        beta = max(beta1, beta2)
    elif asmall and bsmall:
        return biarc_split(sp1, sp2, z1, z2, depth)
    alpha = beta * r
    ab = alpha + beta
    P1 = P0 + alpha * TS
    P3 = P4 - beta * TE
    P2 = (beta / ab) * P1 + (alpha / ab) * P3

    def calculate_arc_params(P0, P1, P2):
        D = (P0 + P2) / 2
        if (D - P1).mag() == 0:
            return None, None
        R = D - ((D - P0).mag() ** 2 / (D - P1).mag()) * (P1 - D).unit()
        p0a = (P0 - R).angle() % (2 * math.pi)
        p1a = (P1 - R).angle() % (2 * math.pi)
        p2a = (P2 - R).angle() % (2 * math.pi)
        alpha = (p2a - p0a) % (2 * math.pi)
        if (p0a < p2a and (p1a < p0a or p2a < p1a)) or (p2a < p1a < p0a):
            alpha = -2 * math.pi + alpha
        if abs(R.x) > 1000000 or abs(R.y) > 1000000 or (R - P0).mag() < options.min_arc_radius ** 2:
            return None, None
        else:
            return R, alpha

    R1, a1 = calculate_arc_params(P0, P1, P2)
    R2, a2 = calculate_arc_params(P2, P3, P4)
    if R1 is None or R2 is None or (R1 - P0).mag() < STRAIGHT_TOLERANCE or (R2 - P2).mag() < STRAIGHT_TOLERANCE:
        return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]]

    d = csp_to_arc_distance(sp1, sp2, [P0, P2, R1, a1], [P2, P4, R2, a2])
    if d > options.biarc_tolerance and depth < options.biarc_max_split_depth:
        return biarc_split(sp1, sp2, z1, z2, depth)
    else:
        if R2.mag() * a2 == 0:
            zm = z2
        else:
            zm = z1 + (z2 - z1) * (abs(R1.mag() * a1)) / (abs(R2.mag() * a2) + abs(R1.mag() * a1))

        l = (P0 - P2).l2()
        if l < EMC_TOLERANCE_EQUAL ** 2 or l < EMC_TOLERANCE_EQUAL ** 2 * R1.l2() / 100:
            # arc should be straight otherwise it could be treated as full circle
            arc1 = [sp1[1], 'line', 0, 0, [P2.x, P2.y], [z1, zm]]
        else:
            arc1 = [sp1[1], 'arc', [R1.x, R1.y], a1, [P2.x, P2.y], [z1, zm]]

        l = (P4 - P2).l2()
        if l < EMC_TOLERANCE_EQUAL ** 2 or l < EMC_TOLERANCE_EQUAL ** 2 * R2.l2() / 100:
            # arc should be straight otherwise it could be treated as full circle
            arc2 = [[P2.x, P2.y], 'line', 0, 0, [P4.x, P4.y], [zm, z2]]
        else:
            arc2 = [[P2.x, P2.y], 'arc', [R2.x, R2.y], a2, [P4.x, P4.y], [zm, z2]]

        return [arc1, arc2]


class Postprocessor(object):
    def __init__(self, error_function_handler):
        self.error = error_function_handler
        self.functions = {
            "remap": self.remap,
            "remapi": self.remapi,
            "scale": self.scale,
            "move": self.move,
            "flip": self.flip_axis,
            "flip_axis": self.flip_axis,
            "round": self.round_coordinates,
            "parameterize": self.parameterize,
            "regex": self.re_sub_on_gcode_lines
        }

    def process(self, command):
        command = re.sub(r"\\\\", ":#:#:slash:#:#:", command)
        command = re.sub(r"\\;", ":#:#:semicolon:#:#:", command)
        command = command.split(";")
        for s in command:
            s = re.sub(":#:#:slash:#:#:", "\\\\", s)
            s = re.sub(":#:#:semicolon:#:#:", "\\;", s)
            s = s.strip()
            if s != "":
                self.parse_command(s)

    def parse_command(self, command):
        r = re.match(r"([A-Za-z0-9_]+)\s*\(\s*(.*)\)", command)
        if not r:
            self.error("Parse error while postprocessing.\n(Command: '{}')".format(command), "error")
        function = r.group(1).lower()
        parameters = r.group(2)
        if function in self.functions:
            print_("Postprocessor: executing function {}({})".format(function, parameters))
            self.functions[function](parameters)
        else:
            self.error("Unrecognized function '{}' while postprocessing.\n(Command: '{}')".format(function, command), "error")

    def re_sub_on_gcode_lines(self, parameters):
        gcode = self.gcode.split("\n")
        self.gcode = ""
        try:
            for line in gcode:
                self.gcode += eval("re.sub({},line)".format(parameters)) + "\n"

        except Exception as ex:
            self.error("Bad parameters for regexp. "
                       "They should be as re.sub pattern and replacement parameters! "
                       "For example: r\"G0(\\d)\", r\"G\\1\" \n"
                       "(Parameters: '{}')\n {}".format(parameters, ex), "error")

    def remapi(self, parameters):
        self.remap(parameters, case_sensitive=True)

    def remap(self, parameters, case_sensitive=False):
        # remap parameters should be like "x->y,y->x"
        parameters = parameters.replace("\\,", ":#:#:coma:#:#:")
        parameters = parameters.split(",")
        pattern = []
        remap = []
        for s in parameters:
            s = s.replace(":#:#:coma:#:#:", "\\,")
            r = re.match("""\\s*(\'|\")(.*)\\1\\s*->\\s*(\'|\")(.*)\\3\\s*""", s)
            if not r:
                self.error("Bad parameters for remap.\n(Parameters: '{}')".format(parameters), "error")
            pattern += [r.group(2)]
            remap += [r.group(4)]

        for i in range(len(pattern)):
            if case_sensitive:
                self.gcode = ireplace(self.gcode, pattern[i], ":#:#:remap_pattern{}:#:#:".format(i))
            else:
                self.gcode = self.gcode.replace(pattern[i], ":#:#:remap_pattern{}:#:#:".format(i))

        for i in range(len(remap)):
            self.gcode = self.gcode.replace(":#:#:remap_pattern{}:#:#:".format(i), remap[i])

    def transform(self, move, scale):
        axis = ["xi", "yj", "zk", "a"]
        flip = scale[0] * scale[1] * scale[2] < 0
        gcode = ""
        warned = []
        r_scale = scale[0]
        plane = "g17"
        for s in self.gcode.split("\n"):
            # get plane selection:
            s_wo_comments = re.sub(r"\([^\)]*\)", "", s)
            r = re.search(r"(?i)(G17|G18|G19)", s_wo_comments)
            if r:
                plane = r.group(1).lower()
                if plane == "g17":
                    r_scale = scale[0]  # plane XY -> scale x
                if plane == "g18":
                    r_scale = scale[0]  # plane XZ -> scale x
                if plane == "g19":
                    r_scale = scale[1]  # plane YZ -> scale y
            # Raise warning if scale factors are not the game for G02 and G03
            if plane not in warned:
                r = re.search(r"(?i)(G02|G03)", s_wo_comments)
                if r:
                    if plane == "g17" and scale[0] != scale[1]:
                        self.error("Post-processor: Scale factors for X and Y axis are not the same. G02 and G03 codes will be corrupted.")
                    if plane == "g18" and scale[0] != scale[2]:
                        self.error("Post-processor: Scale factors for X and Z axis are not the same. G02 and G03 codes will be corrupted.")
                    if plane == "g19" and scale[1] != scale[2]:
                        self.error("Post-processor: Scale factors for Y and Z axis are not the same. G02 and G03 codes will be corrupted.")
                    warned += [plane]
            # Transform
            for i in range(len(axis)):
                if move[i] != 0 or scale[i] != 1:
                    for a in axis[i]:
                        r = re.search(r"(?i)(" + a + r")\s*(-?)\s*(\d*\.?\d*)", s)
                        if r and r.group(3) != "":
                            s = re.sub(r"(?i)(" + a + r")\s*(-?)\s*(\d*\.?\d*)", r"\1 {:f}".format(float(r.group(2) + r.group(3)) * scale[i] + (move[i] if a not in ["i", "j", "k"] else 0)), s)
            # scale radius R
            if r_scale != 1:
                r = re.search(r"(?i)(r)\s*(-?\s*(\d*\.?\d*))", s)
                if r and r.group(3) != "":
                    try:
                        s = re.sub(r"(?i)(r)\s*(-?)\s*(\d*\.?\d*)", r"\1 {:f}".format(float(r.group(2) + r.group(3)) * r_scale), s)
                    except:
                        pass

            gcode += s + "\n"

        self.gcode = gcode
        if flip:
            self.remapi("'G02'->'G03', 'G03'->'G02'")

    def parameterize(self, parameters):
        planes = []
        feeds = {}
        coords = []
        gcode = ""
        coords_def = {"x": "x", "y": "y", "z": "z", "i": "x", "j": "y", "k": "z", "a": "a"}
        for s in self.gcode.split("\n"):
            s_wo_comments = re.sub(r"\([^\)]*\)", "", s)
            # get Planes
            r = re.search(r"(?i)(G17|G18|G19)", s_wo_comments)
            if r:
                plane = r.group(1).lower()
                if plane not in planes:
                    planes += [plane]
            # get Feeds
            r = re.search(r"(?i)(F)\s*(-?)\s*(\d*\.?\d*)", s_wo_comments)
            if r:
                feed = float(r.group(2) + r.group(3))
                if feed not in feeds:
                    feeds[feed] = "#" + str(len(feeds) + 20)

            # Coordinates
            for c in "xyzijka":
                r = re.search(r"(?i)(" + c + r")\s*(-?)\s*(\d*\.?\d*)", s_wo_comments)
                if r:
                    c = coords_def[r.group(1).lower()]
                    if c not in coords:
                        coords += [c]
        # Add offset parametrization
        offset = {"x": "#6", "y": "#7", "z": "#8", "a": "#9"}
        for c in coords:
            gcode += "{}  = 0 ({} axis offset)\n".format(offset[c], c.upper())

        # Add scale parametrization
        if not planes:
            planes = ["g17"]
        if len(planes) > 1:  # have G02 and G03 in several planes scale_x = scale_y = scale_z required
            gcode += "#10 = 1 (Scale factor)\n"
            scale = {"x": "#10", "i": "#10", "y": "#10", "j": "#10", "z": "#10", "k": "#10", "r": "#10"}
        else:
            gcode += "#10 = 1 ({} Scale factor)\n".format({"g17": "XY", "g18": "XZ", "g19": "YZ"}[planes[0]])
            gcode += "#11 = 1 ({} Scale factor)\n".format({"g17": "Z", "g18": "Y", "g19": "X"}[planes[0]])
            scale = {"x": "#10", "i": "#10", "y": "#10", "j": "#10", "z": "#10", "k": "#10", "r": "#10"}
            if "g17" in planes:
                scale["z"] = "#11"
                scale["k"] = "#11"
            if "g18" in planes:
                scale["y"] = "#11"
                scale["j"] = "#11"
            if "g19" in planes:
                scale["x"] = "#11"
                scale["i"] = "#11"
        # Add a scale
        if "a" in coords:
            gcode += "#12  = 1 (A axis scale)\n"
            scale["a"] = "#12"

        # Add feed parametrization
        for f in feeds:
            gcode += "{} = {:f} (Feed definition)\n".format(feeds[f], f)

        # Parameterize Gcode
        for s in self.gcode.split("\n"):
            # feed replace :
            r = re.search(r"(?i)(F)\s*(-?)\s*(\d*\.?\d*)", s)
            if r and len(r.group(3)) > 0:
                s = re.sub(r"(?i)(F)\s*(-?)\s*(\d*\.?\d*)", "F [{}]".format(feeds[float(r.group(2) + r.group(3))]), s)
            # Coords XYZA replace
            for c in "xyza":
                r = re.search(r"(?i)((" + c + r")\s*(-?)\s*(\d*\.?\d*))", s)
                if r and len(r.group(4)) > 0:
                    s = re.sub(r"(?i)(" + c + r")\s*((-?)\s*(\d*\.?\d*))", r"\1[\2*{}+{}]".format(scale[c], offset[c]), s)

            # Coords IJKR replace
            for c in "ijkr":
                r = re.search(r"(?i)((" + c + r")\s*(-?)\s*(\d*\.?\d*))", s)
                if r and len(r.group(4)) > 0:
                    s = re.sub(r"(?i)(" + c + r")\s*((-?)\s*(\d*\.?\d*))", r"\1[\2*{}]".format(scale[c]), s)

            gcode += s + "\n"

        self.gcode = gcode

    def round_coordinates(self, parameters):
        try:
            round_ = int(parameters)
        except:
            self.error("Bad parameters for round. Round should be an integer! \n(Parameters: '{}')".format(parameters), "error")
        gcode = ""
        for s in self.gcode.split("\n"):
            for a in "xyzijkaf":
                r = re.search(r"(?i)(" + a + r")\s*(-?\s*(\d*\.?\d*))", s)
                if r:

                    if r.group(2) != "":
                        s = re.sub(
                                r"(?i)(" + a + r")\s*(-?)\s*(\d*\.?\d*)",
                                (r"\1 %0." + str(round_) + "f" if round_ > 0 else r"\1 %d") % round(float(r.group(2)), round_),
                                s)
            gcode += s + "\n"
        self.gcode = gcode

    def scale(self, parameters):
        parameters = parameters.split(",")
        scale = [1., 1., 1., 1.]
        try:
            for i in range(len(parameters)):
                if float(parameters[i]) == 0:
                    self.error("Bad parameters for scale. Scale should not be 0 at any axis! \n(Parameters: '{}')".format(parameters), "error")
                scale[i] = float(parameters[i])
        except:
            self.error("Bad parameters for scale.\n(Parameters: '{}')".format(parameters), "error")
        self.transform([0, 0, 0, 0], scale)

    def move(self, parameters):
        parameters = parameters.split(",")
        move = [0., 0., 0., 0.]
        try:
            for i in range(len(parameters)):
                move[i] = float(parameters[i])
        except:
            self.error("Bad parameters for move.\n(Parameters: '{}')".format(parameters), "error")
        self.transform(move, [1., 1., 1., 1.])

    def flip_axis(self, parameters):
        parameters = parameters.lower()
        axis = {"x": 1., "y": 1., "z": 1., "a": 1.}
        for p in parameters:
            if p in [",", " ", "    ", "\r", "'", '"']:
                continue
            if p not in ["x", "y", "z", "a"]:
                self.error("Bad parameters for flip_axis. Parameter should be string consists of 'xyza' \n(Parameters: '{}')".format(parameters), "error")
            axis[p] = -axis[p]
        self.scale("{:f},{:f},{:f},{:f}".format(axis["x"], axis["y"], axis["z"], axis["a"]))


################################################################################
# Polygon class
################################################################################
class Polygon(object):
    def __init__(self, polygon=None):
        self.polygon = [] if polygon is None else polygon[:]

    def move(self, x, y):
        for i in range(len(self.polygon)):
            for j in range(len(self.polygon[i])):
                self.polygon[i][j][0] += x
                self.polygon[i][j][1] += y

    def bounds(self):
        minx = 1e400
        miny = 1e400
        maxx = -1e400
        maxy = -1e400
        for poly in self.polygon:
            for p in poly:
                if minx > p[0]:
                    minx = p[0]
                if miny > p[1]:
                    miny = p[1]
                if maxx < p[0]:
                    maxx = p[0]
                if maxy < p[1]:
                    maxy = p[1]
        return minx * 1, miny * 1, maxx * 1, maxy * 1

    def width(self):
        b = self.bounds()
        return b[2] - b[0]

    def rotate_(self, sin, cos):
        self.polygon = [
            [
                [point[0] * cos - point[1] * sin, point[0] * sin + point[1] * cos] for point in subpoly
            ]
            for subpoly in self.polygon
        ]

    def rotate(self, a):
        cos = math.cos(a)
        sin = math.sin(a)
        self.rotate_(sin, cos)

    def drop_into_direction(self, direction, surface):
        # Polygon is a list of simple polygons
        # Surface is a polygon + line y = 0
        # Direction is [dx,dy]
        if len(self.polygon) == 0 or len(self.polygon[0]) == 0:
            return
        if direction[0] ** 2 + direction[1] ** 2 < 1e-10:
            return
        direction = normalize(direction)
        sin = direction[0]
        cos = -direction[1]
        self.rotate_(-sin, cos)
        surface.rotate_(-sin, cos)
        self.drop_down(surface, zerro_plane=False)
        self.rotate_(sin, cos)
        surface.rotate_(sin, cos)

    def centroid(self):
        centroids = []
        sa = 0
        for poly in self.polygon:
            cx = 0
            cy = 0
            a = 0
            for i in range(len(poly)):
                [x1, y1] = poly[i - 1]
                [x2, y2] = poly[i]
                cx += (x1 + x2) * (x1 * y2 - x2 * y1)
                cy += (y1 + y2) * (x1 * y2 - x2 * y1)
                a += (x1 * y2 - x2 * y1)
            a *= 3.
            if abs(a) > 0:
                cx /= a
                cy /= a
                sa += abs(a)
                centroids += [[cx, cy, a]]
        if sa == 0:
            return [0., 0.]
        cx = 0
        cy = 0
        for c in centroids:
            cx += c[0] * c[2]
            cy += c[1] * c[2]
        cx /= sa
        cy /= sa
        return [cx, cy]

    def drop_down(self, surface, zerro_plane=True):
        # Polygon is a list of simple polygons
        # Surface is a polygon + line y = 0
        # Down means min y (0,-1)
        if len(self.polygon) == 0 or len(self.polygon[0]) == 0:
            return
        # Get surface top point
        top = surface.bounds()[3]
        if zerro_plane:
            top = max(0, top)
        # Get polygon bottom point
        bottom = self.bounds()[1]
        self.move(0, top - bottom + 10)
        # Now get shortest distance from surface to polygon in positive x=0 direction
        # Such distance = min(distance(vertex, edge)...)  where edge from surface and
        # vertex from polygon and vice versa...
        dist = 1e300
        for poly in surface.polygon:
            for i in range(len(poly)):
                for poly1 in self.polygon:
                    for i1 in range(len(poly1)):
                        st = poly[i - 1]
                        end = poly[i]
                        vertex = poly1[i1]
                        if st[0] <= vertex[0] <= end[0] or end[0] <= vertex[0] <= st[0]:
                            if st[0] == end[0]:
                                d = min(vertex[1] - st[1], vertex[1] - end[1])
                            else:
                                d = vertex[1] - st[1] - (end[1] - st[1]) * (vertex[0] - st[0]) / (end[0] - st[0])
                            if dist > d:
                                dist = d
                        # and vice versa just change the sign because vertex now under the edge
                        st = poly1[i1 - 1]
                        end = poly1[i1]
                        vertex = poly[i]
                        if st[0] <= vertex[0] <= end[0] or end[0] <= vertex[0] <= st[0]:
                            if st[0] == end[0]:
                                d = min(- vertex[1] + st[1], -vertex[1] + end[1])
                            else:
                                d = - vertex[1] + st[1] + (end[1] - st[1]) * (vertex[0] - st[0]) / (end[0] - st[0])
                            if dist > d:
                                dist = d

        if zerro_plane and dist > 10 + top:
            dist = 10 + top
        self.move(0, -dist)

    def draw(self, color="#075", width=.1, group=None):
        csp = [csp_subpath_line_to([], poly + [poly[0]]) for poly in self.polygon]
        draw_csp(csp, width=width, group=group)

    def add(self, add):
        if type(add) == type([]):
            self.polygon += add[:]
        else:
            self.polygon += add.polygon[:]

    def point_inside(self, p):
        inside = False
        for poly in self.polygon:
            for i in range(len(poly)):
                st = poly[i - 1]
                end = poly[i]
                if p == st or p == end:
                    return True  # point is a vertex = point is on the edge
                if st[0] > end[0]:
                    st, end = end, st  # This will be needed to check that edge if open only at right end
                c = (p[1] - st[1]) * (end[0] - st[0]) - (end[1] - st[1]) * (p[0] - st[0])
                if st[0] <= p[0] < end[0]:
                    if c < 0:
                        inside = not inside
                    elif c == 0:
                        return True  # point is on the edge
                elif st[0] == end[0] == p[0] and (st[1] <= p[1] <= end[1] or end[1] <= p[1] <= st[1]):  # point is on the edge
                    return True
        return inside

    def hull(self):
        # Add vertices at all self intersection points.
        hull = []
        for i1 in range(len(self.polygon)):
            poly1 = self.polygon[i1]
            poly_ = []
            for j1 in range(len(poly1)):
                s = poly1[j1 - 1]
                e = poly1[j1]
                poly_ += [s]

                # Check self intersections
                for j2 in range(j1 + 1, len(poly1)):
                    s1 = poly1[j2 - 1]
                    e1 = poly1[j2]
                    int_ = line_line_intersection_points(s, e, s1, e1)
                    for p in int_:
                        if point_to_point_d2(p, s) > 0.000001 and point_to_point_d2(p, e) > 0.000001:
                            poly_ += [p]
                # Check self intersections with other polys
                for i2 in range(len(self.polygon)):
                    if i1 == i2:
                        continue
                    poly2 = self.polygon[i2]
                    for j2 in range(len(poly2)):
                        s1 = poly2[j2 - 1]
                        e1 = poly2[j2]
                        int_ = line_line_intersection_points(s, e, s1, e1)
                        for p in int_:
                            if point_to_point_d2(p, s) > 0.000001 and point_to_point_d2(p, e) > 0.000001:
                                poly_ += [p]
            hull += [poly_]
        # Create the dictionary containing all edges in both directions
        edges = {}
        for poly in self.polygon:
            for i in range(len(poly)):
                s = tuple(poly[i - 1])
                e = tuple(poly[i])
                if point_to_point_d2(e, s) < 0.000001:
                    continue
                break_s = False
                break_e = False
                for p in edges:
                    if point_to_point_d2(p, s) < 0.000001:
                        break_s = True
                        s = p
                    if point_to_point_d2(p, e) < 0.000001:
                        break_e = True
                        e = p
                    if break_s and break_e:
                        break
                l = point_to_point_d(s, e)
                if not break_s and not break_e:
                    edges[s] = [[s, e, l]]
                    edges[e] = [[e, s, l]]
                else:
                    if e in edges:
                        for edge in edges[e]:
                            if point_to_point_d2(edge[1], s) < 0.000001:
                                break
                        if point_to_point_d2(edge[1], s) > 0.000001:
                            edges[e] += [[e, s, l]]
                    else:
                        edges[e] = [[e, s, l]]
                    if s in edges:
                        for edge in edges[s]:
                            if point_to_point_d2(edge[1], e) < 0.000001:
                                break
                        if point_to_point_d2(edge[1], e) > 0.000001:
                            edges[s] += [[s, e, l]]
                    else:
                        edges[s] = [[s, e, l]]

        def angle_quadrant(sin, cos):
            # quadrants are (0,pi/2], (pi/2,pi], (pi,3*pi/2], (3*pi/2, 2*pi], i.e. 0 is in the 4-th quadrant
            if sin > 0 and cos >= 0:
                return 1
            if sin >= 0 and cos < 0:
                return 2
            if sin < 0 and cos <= 0:
                return 3
            if sin <= 0 and cos > 0:
                return 4

        def angle_is_less(sin, cos, sin1, cos1):
            # 0 = 2*pi is the largest angle
            if [sin1, cos1] == [0, 1]:
                return True
            if [sin, cos] == [0, 1]:
                return False
            if angle_quadrant(sin, cos) > angle_quadrant(sin1, cos1):
                return False
            if angle_quadrant(sin, cos) < angle_quadrant(sin1, cos1):
                return True
            if sin >= 0 and cos > 0:
                return sin < sin1
            if sin > 0 and cos <= 0:
                return sin > sin1
            if sin <= 0 and cos < 0:
                return sin > sin1
            if sin < 0 and cos >= 0:
                return sin < sin1

        def get_closes_edge_by_angle(edges, last):
            # Last edge is normalized vector of the last edge.
            min_angle = [0, 1]
            next = last
            last_edge = [(last[0][0] - last[1][0]) / last[2], (last[0][1] - last[1][1]) / last[2]]
            for p in edges:

                cur = [(p[1][0] - p[0][0]) / p[2], (p[1][1] - p[0][1]) / p[2]]
                cos = dot(cur, last_edge)
                sin = cross(cur, last_edge)

                if angle_is_less(sin, cos, min_angle[0], min_angle[1]):
                    min_angle = [sin, cos]
                    next = p

            return next

        # Join edges together into new polygon cutting the vertexes inside new polygon
        self.polygon = []
        len_edges = sum([len(edges[p]) for p in edges])
        loops = 0

        while len(edges) > 0:
            poly = []
            if loops > len_edges:
                raise ValueError("Hull error")
            loops += 1
            # Find left most vertex.
            start = (1e100, 1)
            for edge in edges:
                start = min(start, min(edges[edge]))
            last = [(start[0][0] - 1, start[0][1]), start[0], 1]
            first_run = True
            loops1 = 0
            while last[1] != start[0] or first_run:
                first_run = False
                if loops1 > len_edges:
                    raise ValueError("Hull error")
                loops1 += 1
                next = get_closes_edge_by_angle(edges[last[1]], last)

                last = next
                poly += [list(last[0])]
            self.polygon += [poly]
            # Remove all edges that are intersects new poly (any vertex inside new poly)
            poly_ = Polygon([poly])
            for p in edges.keys()[:]:
                if poly_.point_inside(list(p)):
                    del edges[p]
        self.draw(color="Green", width=1)


################################################################################
#
# Gcodetools class
#
################################################################################

class Gcodetools(inkex.EffectExtension):
    multi_inx = True # XXX Remove this after refactoring

    def export_gcode(self, gcode, no_headers=False):
        if self.options.postprocessor != "" or self.options.postprocessor_custom != "":
            postprocessor = Postprocessor(self.error)
            postprocessor.gcode = gcode
            if self.options.postprocessor != "":
                postprocessor.process(self.options.postprocessor)
            if self.options.postprocessor_custom != "":
                postprocessor.process(self.options.postprocessor_custom)

        if not no_headers:
            postprocessor.gcode = self.header + postprocessor.gcode + self.footer

        with open(os.path.join(self.options.directory, self.options.file), "w") as f:
            f.write(postprocessor.gcode)

    ################################################################################
    # In/out paths:
    # TODO move it to the bottom
    ################################################################################
    def plasma_prepare_path(self):
        self.get_info_plus()

        def add_arc(sp1, sp2, end=False, l=10., r=10.):
            if not end:
                n = csp_normalized_normal(sp1, sp2, 0.)
                return csp_reverse([arc_from_s_r_n_l(sp1[1], r, n, -l)])[0]
            else:
                n = csp_normalized_normal(sp1, sp2, 1.)
                return arc_from_s_r_n_l(sp2[1], r, n, l)

        def add_normal(sp1, sp2, end=False, l=10., r=10.):
            # r is needed only for be compatible with add_arc
            if not end:
                n = csp_normalized_normal(sp1, sp2, 0.)
                p = [n[0] * l + sp1[1][0], n[1] * l + sp1[1][1]]
                return csp_subpath_line_to([], [p, sp1[1]])
            else:
                n = csp_normalized_normal(sp1, sp2, 1.)
                p = [n[0] * l + sp2[1][0], n[1] * l + sp2[1][1]]
                return csp_subpath_line_to([], [sp2[1], p])

        def add_tangent(sp1, sp2, end=False, l=10., r=10.):
            # r is needed only for be compatible with add_arc
            if not end:
                n = csp_normalized_slope(sp1, sp2, 0.)
                p = [-n[0] * l + sp1[1][0], -n[1] * l + sp1[1][1]]
                return csp_subpath_line_to([], [p, sp1[1]])
            else:
                n = csp_normalized_slope(sp1, sp2, 1.)
                p = [n[0] * l + sp2[1][0], n[1] * l + sp2[1][1]]
                return csp_subpath_line_to([], [sp2[1], p])

        if not self.options.in_out_path and not self.options.plasma_prepare_corners and self.options.in_out_path_do_not_add_reference_point:
            self.error("Warning! Extension is not said to do anything! Enable one of Create in-out paths or Prepare corners checkboxes or disable Do not add in-out reference point!")
            return

        # Add in-out-reference point if there is no one yet.
        if ((len(self.in_out_reference_points) == 0 and self.options.in_out_path
             or not self.options.in_out_path and not self.options.plasma_prepare_corners)
                and not self.options.in_out_path_do_not_add_reference_point):
            self.options.orientation_points_count = "in-out reference point"
            self.orientation()

        if self.options.in_out_path or self.options.plasma_prepare_corners:
            self.set_markers()
            add_func = {"Round": add_arc, "Perpendicular": add_normal, "Tangent": add_tangent}[self.options.in_out_path_type]
            if self.options.in_out_path_type == "Round" and self.options.in_out_path_len > self.options.in_out_path_radius * 3 / 2 * math.pi:
                self.error("In-out len is to big for in-out radius will cropp it to be r*3/2*pi!")

            if self.selected_paths == {} and self.options.auto_select_paths:
                self.selected_paths = self.paths
                self.error("No paths are selected! Trying to work on all available paths.")

            if self.selected_paths == {}:
                self.error("Nothing is selected. Please select something.")
            a = self.options.plasma_prepare_corners_tolerance
            corner_tolerance = cross([1., 0.], [math.cos(a), math.sin(a)])

            for layer in self.layers:
                if layer in self.selected_paths:
                    max_dist = self.transform_scalar(self.options.in_out_path_point_max_dist, layer, reverse=True)
                    l = self.transform_scalar(self.options.in_out_path_len, layer, reverse=True)
                    plasma_l = self.transform_scalar(self.options.plasma_prepare_corners_distance, layer, reverse=True)
                    r = self.transform_scalar(self.options.in_out_path_radius, layer, reverse=True)
                    l = min(l, r * 3 / 2 * math.pi)

                    for path in self.selected_paths[layer]:
                        csp = self.apply_transforms(path, path.path.to_superpath())
                        csp = csp_remove_zero_segments(csp)
                        res = []

                        for subpath in csp:
                            # Find closes point to in-out reference point
                            # If subpath is open skip this step
                            if self.options.in_out_path:
                                # split and reverse path for further add in-out points
                                if point_to_point_d2(subpath[0][1], subpath[-1][1]) < 1.e-10:
                                    d = [1e100, 1, 1, 1.]
                                    for p in self.in_out_reference_points:
                                        d1 = csp_to_point_distance([subpath], p, dist_bounds=[0, max_dist])
                                        if d1[0] < d[0]:
                                            d = d1[:]
                                            p_ = p
                                    if d[0] < max_dist ** 2:
                                        # Lets find is there any angles near this point to put in-out path in
                                        # the angle if it's possible
                                        # remove last node to make iterations easier
                                        subpath[0][0] = subpath[-1][0]
                                        del subpath[-1]
                                        max_cross = [-1e100, None]
                                        for j in range(len(subpath)):
                                            sp1 = subpath[j - 2]
                                            sp2 = subpath[j - 1]
                                            sp3 = subpath[j]
                                            if point_to_point_d2(sp2[1], p_) < max_dist ** 2:
                                                s1 = csp_normalized_slope(sp1, sp2, 1.)
                                                s2 = csp_normalized_slope(sp2, sp3, 0.)
                                                max_cross = max(max_cross, [cross(s1, s2), j - 1])
                                        # return back last point
                                        subpath.append(subpath[0])
                                        if max_cross[1] is not None and max_cross[0] > corner_tolerance:
                                            # there's an angle near the point
                                            j = max_cross[1]
                                            if j < 0:
                                                j -= 1
                                            if j != 0:
                                                subpath = csp_concat_subpaths(subpath[j:], subpath[:j + 1])
                                        else:
                                            # have to cut path's segment
                                            d, i, j, t = d
                                            sp1, sp2, sp3 = csp_split(subpath[j - 1], subpath[j], t)
                                            subpath = csp_concat_subpaths([sp2, sp3], subpath[j:], subpath[:j], [sp1, sp2])

                            if self.options.plasma_prepare_corners:
                                # prepare corners
                                # find corners and add some nodes
                                # corner at path's start/end is ignored
                                res_ = [subpath[0]]
                                for sp2, sp3 in zip(subpath[1:], subpath[2:]):
                                    sp1 = res_[-1]
                                    s1 = csp_normalized_slope(sp1, sp2, 1.)
                                    s2 = csp_normalized_slope(sp2, sp3, 0.)
                                    if cross(s1, s2) > corner_tolerance:
                                        # got a corner to process
                                        S1 = P(s1)
                                        S2 = P(s2)
                                        N = (S1 - S2).unit() * plasma_l
                                        SP2 = P(sp2[1])
                                        P1 = (SP2 + N)
                                        res_ += [
                                            [sp2[0], sp2[1], (SP2 + S1 * plasma_l).to_list()],
                                            [(P1 - N.ccw() / 2).to_list(), P1.to_list(), (P1 + N.ccw() / 2).to_list()],
                                            [(SP2 - S2 * plasma_l).to_list(), sp2[1], sp2[2]]
                                        ]
                                    else:
                                        res_ += [sp2]
                                res_ += [sp3]
                                subpath = res_
                            if self.options.in_out_path:
                                # finally add let's add in-out paths...
                                subpath = csp_concat_subpaths(
                                    add_func(subpath[0], subpath[1], False, l, r),
                                    subpath,
                                    add_func(subpath[-2], subpath[-1], True, l, r)
                                )

                            res += [subpath]

                        if self.options.in_out_path_replace_original_path:
                            path.path = CubicSuperPath(self.apply_transforms(path, res, True))
                        else:
                            draw_csp(res, width=1, style=MARKER_STYLE["in_out_path_style"])

    def add_arguments(self, pars):
        add_argument = pars.add_argument
        add_argument("-d", "--directory", default="/home/", help="Directory for gcode file")
        add_argument("-f", "--filename", dest="file", default="-1.0", help="File name")
        add_argument("--add-numeric-suffix-to-filename", type=inkex.Boolean, default=True, help="Add numeric suffix to filename")
        add_argument("--Zscale", type=float, default="1.0", help="Scale factor Z")
        add_argument("--Zoffset", type=float, default="0.0", help="Offset along Z")
        add_argument("-s", "--Zsafe", type=float, default="0.5", help="Z above all obstacles")
        add_argument("-z", "--Zsurface", type=float, default="0.0", help="Z of the surface")
        add_argument("-c", "--Zdepth", type=float, default="-0.125", help="Z depth of cut")
        add_argument("--Zstep", type=float, default="-0.125", help="Z step of cutting")
        add_argument("-p", "--feed", type=float, default="4.0", help="Feed rate in unit/min")

        add_argument("--biarc-tolerance", type=float, default="1", help="Tolerance used when calculating biarc interpolation.")
        add_argument("--biarc-max-split-depth", type=int, default="4", help="Defines maximum depth of splitting while approximating using biarcs.")
        add_argument("--path-to-gcode-order", default="path by path", help="Defines cutting order path by path or layer by layer.")
        add_argument("--path-to-gcode-depth-function", default="zd", help="Path to gcode depth function.")
        add_argument("--path-to-gcode-sort-paths", type=inkex.Boolean, default=True, help="Sort paths to reduce rapid distance.")
        add_argument("--comment-gcode", default="", help="Comment Gcode")
        add_argument("--comment-gcode-from-properties", type=inkex.Boolean, default=False, help="Get additional comments from Object Properties")

        add_argument("--tool-diameter", type=float, default="3", help="Tool diameter used for area cutting")
        add_argument("--max-area-curves", type=int, default="100", help="Maximum area curves for each area")
        add_argument("--area-inkscape-radius", type=float, default="0", help="Area curves overlapping (depends on tool diameter [0, 0.9])")
        add_argument("--area-tool-overlap", type=float, default="-10", help="Radius for preparing curves using inkscape")
        add_argument("--unit", default="G21 (All units in mm)", help="Units")
        add_argument("--active-tab", type=self.arg_method('tab'), default=self.tab_help, help="Defines which tab is active")

        add_argument("--area-fill-angle", type=float, default="0", help="Fill area with lines heading this angle")
        add_argument("--area-fill-shift", type=float, default="0", help="Shift the lines by tool d * shift")
        add_argument("--area-fill-method", default="zig-zag", help="Filling method either zig-zag or spiral")

        add_argument("--area-find-artefacts-diameter", type=float, default="1", help="Artefacts seeking radius")
        add_argument("--area-find-artefacts-action", default="mark with an arrow", help="Artefacts action type")

        add_argument("--auto_select_paths", type=inkex.Boolean, default=True, help="Select all paths if nothing is selected.")

        add_argument("--loft-distances", default="10", help="Distances between paths.")
        add_argument("--loft-direction", default="crosswise", help="Direction of loft's interpolation.")
        add_argument("--loft-interpolation-degree", type=float, default="2", help="Which interpolation use to loft the paths smooth interpolation or staright.")

        add_argument("--min-arc-radius", type=float, default=".1", help="All arc having radius less than minimum will be considered as straight line")

        add_argument("--engraving-sharp-angle-tollerance", type=float, default="150", help="All angles thar are less than engraving-sharp-angle-tollerance will be thought sharp")
        add_argument("--engraving-max-dist", type=float, default="10", help="Distance from original path where engraving is not needed (usually it's cutting tool diameter)")
        add_argument("--engraving-newton-iterations", type=int, default="4", help="Number of sample points used to calculate distance")
        add_argument("--engraving-draw-calculation-paths", type=inkex.Boolean, default=False, help="Draw additional graphics to debug engraving path")
        add_argument("--engraving-cutter-shape-function", default="w", help="Cutter shape function z(w). Ex. cone: w. ")

        add_argument("--lathe-width", type=float, default=10., help="Lathe width")
        add_argument("--lathe-fine-cut-width", type=float, default=1., help="Fine cut width")
        add_argument("--lathe-fine-cut-count", type=int, default=1., help="Fine cut count")
        add_argument("--lathe-create-fine-cut-using", default="Move path", help="Create fine cut using")
        add_argument("--lathe-x-axis-remap", default="X", help="Lathe X axis remap")
        add_argument("--lathe-z-axis-remap", default="Z", help="Lathe Z axis remap")

        add_argument("--lathe-rectangular-cutter-width", type=float, default="4", help="Rectangular cutter width")

        add_argument("--create-log", type=inkex.Boolean, dest="log_create_log", default=False, help="Create log files")
        add_argument("--log-filename", default='', help="Create log files")

        add_argument("--orientation-points-count", default="2", help="Orientation points count")
        add_argument("--tools-library-type", default='cylinder cutter', help="Create tools definition")

        add_argument("--dxfpoints-action", default='replace', help="dxfpoint sign toggle")

        add_argument("--help-language", default='http://www.cnc-club.ru/forum/viewtopic.php?f=33&t=35', help="Open help page in webbrowser.")

        add_argument("--offset-radius", type=float, default=10., help="Offset radius")
        add_argument("--offset-step", type=float, default=10., help="Offset step")
        add_argument("--offset-draw-clippend-path", type=inkex.Boolean, default=False, help="Draw clipped path")
        add_argument("--offset-just-get-distance", type=inkex.Boolean, default=False, help="Don't do offset just get distance")

        add_argument("--postprocessor", default='', help="Postprocessor command.")
        add_argument("--postprocessor-custom", default='', help="Postprocessor custom command.")

        add_argument("--graffiti-max-seg-length", type=float, default=1., help="Graffiti maximum segment length.")
        add_argument("--graffiti-min-radius", type=float, default=10., help="Graffiti minimal connector's radius.")
        add_argument("--graffiti-start-pos", default="(0;0)", help="Graffiti Start position (x;y).")
        add_argument("--graffiti-create-linearization-preview", type=inkex.Boolean, default=True, help="Graffiti create linearization preview.")
        add_argument("--graffiti-create-preview", type=inkex.Boolean, default=True, help="Graffiti create preview.")
        add_argument("--graffiti-preview-size", type=int, default=800, help="Graffiti preview's size.")
        add_argument("--graffiti-preview-emmit", type=int, default=800, help="Preview's paint emmit (pts/s).")

        add_argument("--in-out-path", type=inkex.Boolean, default=True, help="Create in-out paths")
        add_argument("--in-out-path-do-not-add-reference-point", type=inkex.Boolean, default=False, help="Just add reference in-out point")
        add_argument("--in-out-path-point-max-dist", type=float, default=10., help="In-out path max distance to reference point")
        add_argument("--in-out-path-type", default="Round", help="In-out path type")
        add_argument("--in-out-path-len", type=float, default=10., help="In-out path length")
        add_argument("--in-out-path-replace-original-path", type=inkex.Boolean, default=False, help="Replace original path")
        add_argument("--in-out-path-radius", type=float, default=10., help="In-out path radius for round path")

        add_argument("--plasma-prepare-corners", type=inkex.Boolean, default=True, help="Prepare corners")
        add_argument("--plasma-prepare-corners-distance", type=float, default=10., help="Stepout distance for corners")
        add_argument("--plasma-prepare-corners-tolerance", type=float, default=10., help="Maximum angle for corner (0-180 deg)")

    def __init__(self):
        super(Gcodetools, self).__init__()
        self.default_tool = {
            "name": "Default tool",
            "id": "default tool",
            "diameter": 10.,
            "shape": "10",
            "penetration angle": 90.,
            "penetration feed": 100.,
            "depth step": 1.,
            "feed": 400.,
            "in trajectotry": "",
            "out trajectotry": "",
            "gcode before path": "",
            "gcode after path": "",
            "sog": "",
            "spinlde rpm": "",
            "CW or CCW": "",
            "tool change gcode": " ",
            "4th axis meaning": " ",
            "4th axis scale": 1.,
            "4th axis offset": 0.,
            "passing feed": "800",
            "fine feed": "800",
        }
        self.tools_field_order = [
            'name',
            'id',
            'diameter',
            'feed',
            'shape',
            'penetration angle',
            'penetration feed',
            "passing feed",
            'depth step',
            "in trajectotry",
            "out trajectotry",
            "gcode before path",
            "gcode after path",
            "sog",
            "spinlde rpm",
            "CW or CCW",
            "tool change gcode",
        ]

    def parse_curve(self, p, layer, w=None, f=None):
        c = []
        if len(p) == 0:
            return []
        p = self.transform_csp(p, layer)

        # Sort to reduce Rapid distance
        k = list(range(1, len(p)))
        keys = [0]
        while len(k) > 0:
            end = p[keys[-1]][-1][1]
            dist = None
            for i in range(len(k)):
                start = p[k[i]][0][1]
                dist = max((-((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2), i), dist)
            keys += [k[dist[1]]]
            del k[dist[1]]
        for k in keys:
            subpath = p[k]
            c += [[[subpath[0][1][0], subpath[0][1][1]], 'move', 0, 0]]
            for i in range(1, len(subpath)):
                sp1 = [[subpath[i - 1][j][0], subpath[i - 1][j][1]] for j in range(3)]
                sp2 = [[subpath[i][j][0], subpath[i][j][1]] for j in range(3)]
                c += biarc(sp1, sp2, 0, 0) if w is None else biarc(sp1, sp2, -f(w[k][i - 1]), -f(w[k][i]))
            c += [[[subpath[-1][1][0], subpath[-1][1][1]], 'end', 0, 0]]
        return c

    ################################################################################
    # Draw csp
    ################################################################################

    def draw_csp(self, csp, layer=None, group=None, fill='none', stroke='#178ade', width=0.354, style=None):
        if layer is not None:
            csp = self.transform_csp(csp, layer, reverse=True)
        if group is None and layer is None:
            group = self.document.getroot()
        elif group is None and layer is not None:
            group = layer
        csp = self.apply_transforms(group, csp, reverse=True)
        if style is not None:
            return draw_csp(csp, group=group, style=style)
        else:
            return draw_csp(csp, group=group, fill=fill, stroke=stroke, width=width)

    def draw_curve(self, curve, layer, group=None, style=MARKER_STYLE["biarc_style"]):
        self.set_markers()

        for i in [0, 1]:
            sid = 'biarc{}_r'.format(i)
            style[sid] = style['biarc{}'.format(i)].copy()
            style[sid]["marker-start"] = "url(#DrawCurveMarker_r)"
            del style[sid]["marker-end"]

        if group is None:
            group = self.layers[min(1, len(self.layers) - 1)].add(Group(gcodetools="Preview group"))
            if not hasattr(self, "preview_groups"):
                self.preview_groups = {layer: group}
            elif layer not in self.preview_groups:
                self.preview_groups[layer] = group
            group = self.preview_groups[layer]

        s = ''
        arcn = 0

        transform = self.get_transforms(group)
        if transform:
            transform = self.reverse_transform(transform)
            transform = str(Transform(transform))

        a = [0., 0.]
        b = [1., 0.]
        c = [0., 1.]
        k = (b[0] - a[0]) * (c[1] - a[1]) - (c[0] - a[0]) * (b[1] - a[1])
        a = self.transform(a, layer, True)
        b = self.transform(b, layer, True)
        c = self.transform(c, layer, True)
        if ((b[0] - a[0]) * (c[1] - a[1]) - (c[0] - a[0]) * (b[1] - a[1])) * k > 0:
            reverse_angle = 1
        else:
            reverse_angle = -1
        for sk in curve:
            si = sk[:]
            si[0] = self.transform(si[0], layer, True)
            si[2] = self.transform(si[2], layer, True) if type(si[2]) == type([]) and len(si[2]) == 2 else si[2]

            if s != '':
                if s[1] == 'line':
                    elem = group.add(PathElement(gcodetools="Preview"))
                    elem.transform = transform
                    elem.style = style['line']
                    elem.path = 'M {},{} L {},{}'.format(s[0][0], s[0][1], si[0][0], si[0][1])
                elif s[1] == 'arc':
                    arcn += 1
                    sp = s[0]
                    c = s[2]
                    s[3] = s[3] * reverse_angle

                    a = ((P(si[0]) - P(c)).angle() - (P(s[0]) - P(c)).angle()) % TAU  # s[3]
                    if s[3] * a < 0:
                        if a > 0:
                            a = a - TAU
                        else:
                            a = TAU + a
                    r = math.sqrt((sp[0] - c[0]) ** 2 + (sp[1] - c[1]) ** 2)
                    a_st = (math.atan2(sp[0] - c[0], - (sp[1] - c[1])) - math.pi / 2) % (math.pi * 2)
                    if a > 0:
                        a_end = a_st + a
                        st = style['biarc{}'.format(arcn % 2)]
                    else:
                        a_end = a_st * 1
                        a_st = a_st + a
                        st = style['biarc{}_r'.format(arcn % 2)]

                    elem = group.add(PathElement.arc(c, r, start=a_st, end=a_end,
                                                     open=True, gcodetools="Preview"))
                    elem.transform = transform
                    elem.style = st

            s = si

    def check_dir(self):
        print_("Checking directory: '{}'".format(self.options.directory))
        if os.path.isdir(self.options.directory):
            if os.path.isfile(os.path.join(self.options.directory, 'header')):
                with open(os.path.join(self.options.directory, 'header')) as f:
                    self.header = f.read()
            else:
                self.header = defaults['header']
            if os.path.isfile(os.path.join(self.options.directory, 'footer')):
                with open(os.path.join(self.options.directory, 'footer')) as f:
                    self.footer = f.read()
            else:
                self.footer = defaults['footer']
            self.header += self.options.unit + "\n"
        else:
            self.error("Directory does not exist! Please specify existing directory at Preferences tab!", "error")
            return False

        if self.options.add_numeric_suffix_to_filename:
            dir_list = os.listdir(self.options.directory)
            if "." in self.options.file:
                r = re.match(r"^(.*)(\..*)$", self.options.file)
                ext = r.group(2)
                name = r.group(1)
            else:
                ext = ""
                name = self.options.file
            max_n = 0
            for s in dir_list:
                r = re.match(r"^{}_0*(\d+){}$".format(re.escape(name), re.escape(ext)), s)
                if r:
                    max_n = max(max_n, int(r.group(1)))
            filename = name + "_" + ("0" * (4 - len(str(max_n + 1))) + str(max_n + 1)) + ext
            self.options.file = filename

        try:
            with open(os.path.join(self.options.directory, self.options.file), "w") as f:
                pass
        except:
            self.error("Can not write to specified file!\n{}".format(os.path.join(self.options.directory, self.options.file)), "error")
            return False
        return True

    ################################################################################
    #
    # Generate Gcode
    # Generates Gcode on given curve.
    #
    # Curve definition [start point, type = {'arc','line','move','end'}, arc center, arc angle, end point, [zstart, zend]]
    #
    ################################################################################
    def generate_gcode(self, curve, layer, depth):
        Zauto_scale = self.Zauto_scale[layer]
        tool = self.tools[layer][0]
        g = ""

        def c(c):
            c = [c[i] if i < len(c) else None for i in range(6)]
            if c[5] == 0:
                c[5] = None
            s = [" X", " Y", " Z", " I", " J", " K"]
            s1 = ["", "", "", "", "", ""]
            m = [1, 1, self.options.Zscale * Zauto_scale, 1, 1, self.options.Zscale * Zauto_scale]
            a = [0, 0, self.options.Zoffset, 0, 0, 0]
            r = ''
            for i in range(6):
                if c[i] is not None:
                    r += s[i] + ("{:f}".format(c[i] * m[i] + a[i])) + s1[i]
            return r

        def calculate_angle(a, current_a):
            return min(
                    [abs(a - current_a % TAU + TAU), a + current_a - current_a % TAU + TAU],
                    [abs(a - current_a % TAU - TAU), a + current_a - current_a % TAU - TAU],
                    [abs(a - current_a % TAU), a + current_a - current_a % TAU])[1]

        if len(curve) == 0:
            return ""

        try:
            self.last_used_tool is None
        except:
            self.last_used_tool = None
        print_("working on curve")
        print_(curve)

        if tool != self.last_used_tool:
            g += ("(Change tool to {})\n".format(re.sub("\"'\\(\\)\\\\", " ", tool["name"]))) + tool["tool change gcode"] + "\n"

        lg = 'G00'
        zs = self.options.Zsafe
        f = " F{:f}".format(tool['feed'])
        current_a = 0
        go_to_safe_distance = "G00" + c([None, None, zs]) + "\n"
        penetration_feed = " F{}".format(tool['penetration feed'])
        for i in range(1, len(curve)):
            #    Creating Gcode for curve between s=curve[i-1] and si=curve[i] start at s[0] end at s[4]=si[0]
            s = curve[i - 1]
            si = curve[i]
            feed = f if lg not in ['G01', 'G02', 'G03'] else ''
            if s[1] == 'move':
                g += go_to_safe_distance + "G00" + c(si[0]) + "\n" + tool['gcode before path'] + "\n"
                lg = 'G00'
            elif s[1] == 'end':
                g += go_to_safe_distance + tool['gcode after path'] + "\n"
                lg = 'G00'
            elif s[1] == 'line':
                if tool['4th axis meaning'] == "tangent knife":
                    a = atan2(si[0][0] - s[0][0], si[0][1] - s[0][1])
                    a = calculate_angle(a, current_a)
                    g += "G01 A{}\n".format(a * tool['4th axis scale'] + tool['4th axis offset'])
                    current_a = a
                if lg == "G00":
                    g += "G01" + c([None, None, s[5][0] + depth]) + penetration_feed + "(Penetrate)\n"
                g += "G01" + c(si[0] + [s[5][1] + depth]) + feed + "\n"
                lg = 'G01'
            elif s[1] == 'arc':
                r = [(s[2][0] - s[0][0]), (s[2][1] - s[0][1])]
                if tool['4th axis meaning'] == "tangent knife":
                    if s[3] < 0:  # CW
                        a1 = atan2(s[2][1] - s[0][1], -s[2][0] + s[0][0]) + math.pi
                    else:  # CCW
                        a1 = atan2(-s[2][1] + s[0][1], s[2][0] - s[0][0]) + math.pi
                    a = calculate_angle(a1, current_a)
                    g += "G01 A{}\n".format(a * tool['4th axis scale'] + tool['4th axis offset'])
                    current_a = a
                    axis4 = " A{}".format((current_a + s[3]) * tool['4th axis scale'] + tool['4th axis offset'])
                    current_a = current_a + s[3]
                else:
                    axis4 = ""
                if lg == "G00":
                    g += "G01" + c([None, None, s[5][0] + depth]) + penetration_feed + "(Penetrate)\n"
                if (r[0] ** 2 + r[1] ** 2) > self.options.min_arc_radius ** 2:
                    r1 = (P(s[0]) - P(s[2]))
                    r2 = (P(si[0]) - P(s[2]))
                    if abs(r1.mag() - r2.mag()) < 0.001:
                        g += ("G02" if s[3] < 0 else "G03") + c(si[0] + [s[5][1] + depth, (s[2][0] - s[0][0]), (s[2][1] - s[0][1])]) + feed + axis4 + "\n"
                    else:
                        r = (r1.mag() + r2.mag()) / 2
                        g += ("G02" if s[3] < 0 else "G03") + c(si[0] + [s[5][1] + depth]) + " R{:f}".format(r) + feed + axis4 + "\n"
                    lg = 'G02'
                else:
                    if tool['4th axis meaning'] == "tangent knife":
                        a = atan2(si[0][0] - s[0][0], si[0][1] - s[0][1]) + math.pi
                        a = calculate_angle(a, current_a)
                        g += "G01 A{}\n".format(a * tool['4th axis scale'] + tool['4th axis offset'])
                        current_a = a
                    g += "G01" + c(si[0] + [s[5][1] + depth]) + feed + "\n"
                    lg = 'G01'
        if si[1] == 'end':
            g += go_to_safe_distance + tool['gcode after path'] + "\n"
        return g

    def get_transforms(self, g):
        root = self.document.getroot()
        trans = []
        while g != root:
            if 'transform' in g.keys():
                t = g.get('transform')
                t = Transform(t).matrix
                trans = (Transform(t) * Transform(trans)).matrix if trans != [] else t

                print_(trans)
            g = g.getparent()
        return trans

    def reverse_transform(self, transform):
        trans = numpy.array(transform + ([0, 0, 1],))
        if numpy.linalg.det(trans) != 0:
            trans = numpy.linalg.inv(trans).tolist()[:2]
            return trans
        else:
            return transform

    def apply_transforms(self, g, csp, reverse=False):
        trans = self.get_transforms(g)
        if trans:
            if not reverse:
                # TODO: This was applyTransformToPath but was deprecated.   Candidate for refactoring.
                for comp in csp:
                    for ctl in comp:
                        for pt in ctl:
                            pt[0], pt[1] = Transform(trans).apply_to_point(pt)

            else:
                # TODO: This was applyTransformToPath but was deprecated.   Candidate for refactoring.
                for comp in csp:
                    for ctl in comp:
                        for pt in ctl:
                            pt[0], pt[1] = Transform(self.reverse_transform(trans)).apply_to_point(pt)
        return csp

    def transform_scalar(self, x, layer, reverse=False):
        return self.transform([x, 0], layer, reverse)[0] - self.transform([0, 0], layer, reverse)[0]

    def transform(self, source_point, layer, reverse=False):
        if layer not in self.transform_matrix:
            for i in range(self.layers.index(layer), -1, -1):
                if self.layers[i] in self.orientation_points:
                    break
            if self.layers[i] not in self.orientation_points:
                self.error("Orientation points for '{}' layer have not been found! Please add orientation points using Orientation tab!".format(layer.label), "error")
            elif self.layers[i] in self.transform_matrix:
                self.transform_matrix[layer] = self.transform_matrix[self.layers[i]]
                self.Zcoordinates[layer] = self.Zcoordinates[self.layers[i]]
            else:
                orientation_layer = self.layers[i]
                if len(self.orientation_points[orientation_layer]) > 1:
                    self.error("There are more than one orientation point groups in '{}' layer".format(orientation_layer.label))
                points = self.orientation_points[orientation_layer][0]
                if len(points) == 2:
                    points += [[[(points[1][0][1] - points[0][0][1]) + points[0][0][0], -(points[1][0][0] - points[0][0][0]) + points[0][0][1]], [-(points[1][1][1] - points[0][1][1]) + points[0][1][0], points[1][1][0] - points[0][1][0] + points[0][1][1]]]]
                if len(points) == 3:
                    print_("Layer '{orientation_layer.label}' Orientation points: ")
                    for point in points:
                        print_(point)
                    #    Zcoordinates definition taken from Orientatnion point 1 and 2
                    self.Zcoordinates[layer] = [max(points[0][1][2], points[1][1][2]), min(points[0][1][2], points[1][1][2])]
                    matrix = numpy.array([
                        [points[0][0][0], points[0][0][1], 1, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, points[0][0][0], points[0][0][1], 1, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, points[0][0][0], points[0][0][1], 1],
                        [points[1][0][0], points[1][0][1], 1, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, points[1][0][0], points[1][0][1], 1, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, points[1][0][0], points[1][0][1], 1],
                        [points[2][0][0], points[2][0][1], 1, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, points[2][0][0], points[2][0][1], 1, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, points[2][0][0], points[2][0][1], 1]
                    ])

                    if numpy.linalg.det(matrix) != 0:
                        m = numpy.linalg.solve(matrix,
                                               numpy.array(
                                                       [[points[0][1][0]], [points[0][1][1]], [1], [points[1][1][0]], [points[1][1][1]], [1], [points[2][1][0]], [points[2][1][1]], [1]]
                                               )
                                               ).tolist()
                        self.transform_matrix[layer] = [[m[j * 3 + i][0] for i in range(3)] for j in range(3)]

                    else:
                        self.error("Orientation points are wrong! (if there are two orientation points they should not be the same. If there are three orientation points they should not be in a straight line.)", "error")
                else:
                    self.error("Orientation points are wrong! (if there are two orientation points they should not be the same. If there are three orientation points they should not be in a straight line.)", "error")

            self.transform_matrix_reverse[layer] = numpy.linalg.inv(self.transform_matrix[layer]).tolist()
            print_("\n Layer '{}' transformation matrixes:".format(layer.label))
            print_(self.transform_matrix)
            print_(self.transform_matrix_reverse)

            # Zautoscale is obsolete
            self.Zauto_scale[layer] = 1
            print_("Z automatic scale = {} (computed according orientation points)".format(self.Zauto_scale[layer]))

        x = source_point[0]
        y = source_point[1]
        if not reverse:
            t = self.transform_matrix[layer]
        else:
            t = self.transform_matrix_reverse[layer]
        return [t[0][0] * x + t[0][1] * y + t[0][2], t[1][0] * x + t[1][1] * y + t[1][2]]

    def transform_csp(self, csp_, layer, reverse=False):
        csp = [[[csp_[i][j][0][:], csp_[i][j][1][:], csp_[i][j][2][:]] for j in range(len(csp_[i]))] for i in range(len(csp_))]
        for i in xrange(len(csp)):
            for j in xrange(len(csp[i])):
                for k in xrange(len(csp[i][j])):
                    csp[i][j][k] = self.transform(csp[i][j][k], layer, reverse)
        return csp

    def error(self, s, msg_type="warning"):
        """
        Errors handling function
        warnings are printed into log file and warning message is displayed but
        extension continues working,
        errors causes log and execution is halted
        """
        if msg_type == "warning":
            print_(s)
            inkex.errormsg(s + "\n")

        elif msg_type == "error":
            print_(s)
            raise inkex.AbortExtension(s)

        else:
            print_("Unknown message type: {}".format(msg_type))
            print_(s)
            raise inkex.AbortExtension(s)

    ################################################################################
    # Set markers
    ################################################################################
    def set_markers(self):
        """Make sure all markers are available"""
        def ensure_marker(elem_id, x=-4, polA='', polB='-', fill='#000044'):
            if self.svg.getElementById(elem_id) is None:
                marker = self.svg.defs.add(Marker(
                    id=elem_id, orient="auto", refX=str(x), refY="-1.687441",
                    style="overflow:visible"))
                path = marker.add(PathElement(
                    d="m {0}4.588864,-1.687441 0.0,0.0 L {0}9.177728,0.0 "\
                      "c {1}0.73311,-0.996261 {1}0.728882,-2.359329 0.0,-3.374882"\
                      .format(polA, polB)))
                path.style = "fill:{};fill-rule:evenodd;stroke:none;".format(fill)

        ensure_marker("CheckToolsAndOPMarker")
        ensure_marker("DrawCurveMarker")
        ensure_marker("DrawCurveMarker_r", x=4, polA='-', polB='')
        ensure_marker("InOutPathMarker", fill='#0072a7')

    def get_info(self):
        """Get Gcodetools info from the svg"""
        self.selected_paths = {}
        self.paths = {}
        self.tools = {}
        self.orientation_points = {}
        self.graffiti_reference_points = {}
        self.layers = [self.document.getroot()]
        self.Zcoordinates = {}
        self.transform_matrix = {}
        self.transform_matrix_reverse = {}
        self.Zauto_scale = {}
        self.in_out_reference_points = []
        self.my3Dlayer = None

        def recursive_search(g, layer, selected=False):
            items = g.getchildren()
            items.reverse()
            for i in items:
                if selected:
                    self.svg.selected[i.get("id")] = i
                if isinstance(i, Layer):
                    if i.label == '3D':
                        self.my3Dlayer = i
                    else:
                        self.layers += [i]
                        recursive_search(i, i)

                elif i.get('gcodetools') == "Gcodetools orientation group":
                    points = self.get_orientation_points(i)
                    if points is not None:
                        self.orientation_points[layer] = self.orientation_points[layer] + [points[:]] if layer in self.orientation_points else [points[:]]
                        print_("Found orientation points in '{}' layer: {}".format(layer.label, points))
                    else:
                        self.error("Warning! Found bad orientation points in '{}' layer. Resulting Gcode could be corrupt!".format(layer.label))

                # Need to recognise old files ver 1.6.04 and earlier
                elif i.get("gcodetools") == "Gcodetools tool definition" or i.get("gcodetools") == "Gcodetools tool definition":
                    tool = self.get_tool(i)
                    self.tools[layer] = self.tools[layer] + [tool.copy()] if layer in self.tools else [tool.copy()]
                    print_("Found tool in '{}' layer: {}".format(layer.label, tool))

                elif i.get("gcodetools") == "Gcodetools graffiti reference point":
                    point = self.get_graffiti_reference_points(i)
                    if point:
                        self.graffiti_reference_points[layer] = self.graffiti_reference_points[layer] + [point[:]] if layer in self.graffiti_reference_points else [point]
                    else:
                        self.error("Warning! Found bad graffiti reference point in '{}' layer. Resulting Gcode could be corrupt!".format(layer.label))

                elif isinstance(i, inkex.PathElement):
                    if "gcodetools" not in i.keys():
                        self.paths[layer] = self.paths[layer] + [i] if layer in self.paths else [i]
                        if i.get("id") in self.svg.selected.ids:
                            self.selected_paths[layer] = self.selected_paths[layer] + [i] if layer in self.selected_paths else [i]

                elif i.get("gcodetools") == "In-out reference point group":
                    items_ = i.getchildren()
                    items_.reverse()
                    for j in items_:
                        if j.get("gcodetools") == "In-out reference point":
                            self.in_out_reference_points.append(self.apply_transforms(j, j.path.to_superpath())[0][0][1])

                elif isinstance(i, inkex.Group):
                    recursive_search(i, layer, (i.get("id") in self.svg.selected))

                elif i.get("id") in self.svg.selected:
                    # xgettext:no-pango-format
                    self.error("This extension works with Paths and Dynamic Offsets and groups of them only! "
                               "All other objects will be ignored!\n"
                               "Solution 1: press Path->Object to path or Shift+Ctrl+C.\n"
                               "Solution 2: Path->Dynamic offset or Ctrl+J.\n"
                               "Solution 3: export all contours to PostScript level 2 (File->Save As->.ps) and File->Import this file.")

        recursive_search(self.document.getroot(), self.document.getroot())

        if len(self.layers) == 1:
            self.error("Document has no layers! Add at least one layer using layers panel (Ctrl+Shift+L)", "error")
        root = self.document.getroot()

        if root in self.selected_paths or root in self.paths:
            self.error("Warning! There are some paths in the root of the document, but not in any layer! Using bottom-most layer for them.")

        if root in self.selected_paths:
            if self.layers[-1] in self.selected_paths:
                self.selected_paths[self.layers[-1]] += self.selected_paths[root][:]
            else:
                self.selected_paths[self.layers[-1]] = self.selected_paths[root][:]
            del self.selected_paths[root]

        if root in self.paths:
            if self.layers[-1] in self.paths:
                self.paths[self.layers[-1]] += self.paths[root][:]
            else:
                self.paths[self.layers[-1]] = self.paths[root][:]
            del self.paths[root]

    def get_orientation_points(self, g):
        items = g.getchildren()
        items.reverse()
        p2 = []
        p3 = []
        p = None
        for i in items:
            if isinstance(i, inkex.Group):
                if i.get("gcodetools") == "Gcodetools orientation point (2 points)":
                    p2 += [i]
                if i.get("gcodetools") == "Gcodetools orientation point (3 points)":
                    p3 += [i]
        if len(p2) == 2:
            p = p2
        elif len(p3) == 3:
            p = p3
        if p is None:
            return None
        points = []
        for i in p:
            point = [[], []]
            for node in i:
                if node.get('gcodetools') == "Gcodetools orientation point arrow":
                    csp = node.path.transform(node.composed_transform()).to_superpath()
                    point[0] = csp[0][0][1]
                if node.get('gcodetools') == "Gcodetools orientation point text":
                    r = re.match(r'(?i)\s*\(\s*(-?\s*\d*(?:,|\.)*\d*)\s*;\s*(-?\s*\d*(?:,|\.)*\d*)\s*;\s*(-?\s*\d*(?:,|\.)*\d*)\s*\)\s*', node.get_text())
                    point[1] = [float(r.group(1)), float(r.group(2)), float(r.group(3))]
            if point[0] != [] and point[1] != []:
                points += [point]
        if len(points) == len(p2) == 2 or len(points) == len(p3) == 3:
            return points
        else:
            return None

    def get_graffiti_reference_points(self, g):
        point = [[], '']
        for node in g:
            if node.get('gcodetools') == "Gcodetools graffiti reference point arrow":
                point[0] = self.apply_transforms(node, node.path.to_superpath())[0][0][1]
            if node.get('gcodetools') == "Gcodetools graffiti reference point text":
                point[1] = node.get_text()
        if point[0] != [] and point[1] != '':
            return point
        else:
            return []

    def get_tool(self, g):
        tool = self.default_tool.copy()
        tool["self_group"] = g
        for i in g:
            # Get parameters
            if i.get("gcodetools") == "Gcodetools tool background":
                tool["style"] = dict(inkex.Style.parse_str(i.get("style")))
            elif i.get("gcodetools") == "Gcodetools tool parameter":
                key = None
                value = None
                for j in i:
                    # need to recognise old tools from ver 1.6.04
                    if j.get("gcodetools") == "Gcodetools tool definition field name" or j.get("gcodetools") == "Gcodetools tool defention field name":
                        key = j.get_text()
                    if j.get("gcodetools") == "Gcodetools tool definition field value" or j.get("gcodetools") == "Gcodetools tool defention field value":
                        value = j.get_text()
                        if value == "(None)":
                            value = ""
                if value is None or key is None:
                    continue
                if key in self.default_tool.keys():
                    try:
                        tool[key] = type(self.default_tool[key])(value)
                    except:
                        tool[key] = self.default_tool[key]
                        self.error("Warning! Tool's and default tool's parameter's ({}) types are not the same ( type('{}') != type('{}') ).".format(key, value, self.default_tool[key]))
                else:
                    tool[key] = value
                    self.error("Warning! Tool has parameter that default tool has not ( '{}': '{}' ).".format(key, value))
        return tool

    def set_tool(self, layer):
        for i in range(self.layers.index(layer), -1, -1):
            if self.layers[i] in self.tools:
                break
        if self.layers[i] in self.tools:
            if self.layers[i] != layer:
                self.tools[layer] = self.tools[self.layers[i]]
            if len(self.tools[layer]) > 1:
                label = self.layers[i].label
                self.error("Layer '{}' contains more than one tool!".format(label))
            return self.tools[layer]
        else:
            self.error("Can not find tool for '{}' layer! Please add one with Tools library tab!".format(layer.label), "error")

    ################################################################################
    #
    # Path to Gcode
    #
    ################################################################################
    def tab_path_to_gcode(self):
        self.get_info_plus()
        def get_boundaries(points):
            minx = None
            miny = None
            maxx = None
            maxy = None
            out = [[], [], [], []]
            for p in points:
                if minx == p[0]:
                    out[0] += [p]
                if minx is None or p[0] < minx:
                    minx = p[0]
                    out[0] = [p]

                if miny == p[1]:
                    out[1] += [p]
                if miny is None or p[1] < miny:
                    miny = p[1]
                    out[1] = [p]

                if maxx == p[0]:
                    out[2] += [p]
                if maxx is None or p[0] > maxx:
                    maxx = p[0]
                    out[2] = [p]

                if maxy == p[1]:
                    out[3] += [p]
                if maxy is None or p[1] > maxy:
                    maxy = p[1]
                    out[3] = [p]
            return out

        def remove_duplicates(points):
            i = 0
            out = []
            for p in points:
                for j in xrange(i, len(points)):
                    if p == points[j]:
                        points[j] = [None, None]
                if p != [None, None]:
                    out += [p]
            i += 1
            return out

        def get_way_len(points):
            l = 0
            for i in xrange(1, len(points)):
                l += math.sqrt((points[i][0] - points[i - 1][0]) ** 2 + (points[i][1] - points[i - 1][1]) ** 2)
            return l

        def sort_dxfpoints(points):
            points = remove_duplicates(points)
            ways = [
                # l=0, d=1, r=2, u=3
                [3, 0],  # ul
                [3, 2],  # ur
                [1, 0],  # dl
                [1, 2],  # dr
                [0, 3],  # lu
                [0, 1],  # ld
                [2, 3],  # ru
                [2, 1],  # rd
            ]
            minimal_way = []
            minimal_len = None
            for w in ways:
                tpoints = points[:]
                cw = []
                for j in xrange(0, len(points)):
                    p = get_boundaries(get_boundaries(tpoints)[w[0]])[w[1]]
                    tpoints.remove(p[0])
                    cw += p
                curlen = get_way_len(cw)
                if minimal_len is None or curlen < minimal_len:
                    minimal_len = curlen
                    minimal_way = cw

            return minimal_way

        def sort_lines(lines):
            if len(lines) == 0:
                return []
            lines = [[key] + lines[key] for key in range(len(lines))]
            keys = [0]
            end_point = lines[0][3:]
            print_("!!!", lines, "\n", end_point)
            del lines[0]
            while len(lines) > 0:
                dist = [[point_to_point_d2(end_point, lines[i][1:3]), i] for i in range(len(lines))]
                i = min(dist)[1]
                keys.append(lines[i][0])
                end_point = lines[i][3:]
                del lines[i]
            return keys

        def sort_curves(curves):
            lines = []
            for curve in curves:
                lines += [curve[0][0][0] + curve[-1][-1][0]]
            return sort_lines(lines)

        def print_dxfpoints(points):
            gcode = ""
            for point in points:
                gcode += "(drilling dxfpoint)\nG00 Z{:f}\nG00 X{:f} Y{:f}\nG01 Z{:f} F{:f}\nG04 P{:f}\nG00 Z{:f}\n".format(self.options.Zsafe, point[0], point[1], self.Zcoordinates[layer][1], self.tools[layer][0]["penetration feed"], 0.2, self.options.Zsafe)
            return gcode

        def get_path_properties(node):
            res = {}
            done = False
            while not done and node != self.svg:
                for i in node.getchildren():
                    if isinstance(i, inkex.Desc):
                        res["Description"] = i.text
                    elif isinstance(i, inkex.Title):
                        res["Title"] = i.text
                    done = True
                node = node.getparent()
            return res

        if self.selected_paths == {} and self.options.auto_select_paths:
            paths = self.paths
            self.error("No paths are selected! Trying to work on all available paths.")
        else:
            paths = self.selected_paths
        self.check_dir()
        gcode = ""

        parent = list(self.selected_paths)[0] if self.selected_paths else self.layers[0]
        biarc_group = parent.add(Group())
        print_(("self.layers=", self.layers))
        print_(("paths=", paths))
        colors = {}
        for layer in self.layers:
            if layer in paths:
                print_(("layer", layer))
                # transform simple path to get all var about orientation
                self.transform_csp([[[[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]]], layer)

                self.set_tool(layer)
                curves = []
                dxfpoints = []

                try:
                    depth_func = eval('lambda c,d,s: ' + self.options.path_to_gcode_depth_function.strip('"'))
                except:
                    self.error("Bad depth function! Enter correct function at Path to Gcode tab!")

                for path in paths[layer]:
                    if "d" not in path.keys():
                        self.error("Warning: One or more paths do not have 'd' parameter, try to Ungroup (Ctrl+Shift+G) and Object to Path (Ctrl+Shift+C)!")
                        continue
                    csp = path.path.to_superpath()
                    csp = self.apply_transforms(path, csp)
                    id_ = path.get("id")

                    def set_comment(match, path):
                        if match.group(1) in path.keys():
                            return path.get(match.group(1))
                        else:
                            return "None"

                    if self.options.comment_gcode != "":
                        comment = re.sub("\\[([A-Za-z_\\-\\:]+)\\]", partial(set_comment, path=path), self.options.comment_gcode)
                        comment = comment.replace(":newline:", "\n")
                        comment = gcode_comment_str(comment)
                    else:
                        comment = ""
                    if self.options.comment_gcode_from_properties:
                        tags = get_path_properties(path)
                        for tag in tags:
                            comment += gcode_comment_str("{}: {}".format(tag, tags[tag]))

                    style = dict(inkex.Style.parse_str(path.get("style")))
                    colors[id_] = inkex.Color(style['stroke'] if "stroke" in style and style['stroke'] != 'none' else "#000").to_rgb()
                    if path.get("dxfpoint") == "1":
                        tmp_curve = self.transform_csp(csp, layer)
                        x = tmp_curve[0][0][0][0]
                        y = tmp_curve[0][0][0][1]
                        print_("got dxfpoint (scaled) at ({:f},{:f})".format(x, y))
                        dxfpoints += [[x, y]]
                    else:

                        zd = self.Zcoordinates[layer][1]
                        zs = self.Zcoordinates[layer][0]
                        c = 1. - float(sum(colors[id_])) / 255 / 3
                        curves += [
                            [
                                [id_, depth_func(c, zd, zs), comment],
                                [self.parse_curve([subpath], layer) for subpath in csp]
                            ]
                        ]
                dxfpoints = sort_dxfpoints(dxfpoints)
                gcode += print_dxfpoints(dxfpoints)

                for curve in curves:
                    for subcurve in curve[1]:
                        self.draw_curve(subcurve, layer)

                if self.options.path_to_gcode_order == 'subpath by subpath':
                    curves_ = []
                    for curve in curves:
                        curves_ += [[curve[0], [subcurve]] for subcurve in curve[1]]
                    curves = curves_

                    self.options.path_to_gcode_order = 'path by path'

                if self.options.path_to_gcode_order == 'path by path':
                    if self.options.path_to_gcode_sort_paths:
                        keys = sort_curves([curve[1] for curve in curves])
                    else:
                        keys = range(len(curves))
                    for key in keys:
                        d = curves[key][0][1]
                        for step in range(0, 1 + int(math.ceil(abs((zs - d) / self.tools[layer][0]["depth step"])))):
                            z = max(d, zs - abs(self.tools[layer][0]["depth step"] * (step + 1)))

                            gcode += gcode_comment_str("\nStart cutting path id: {}".format(curves[key][0][0]))
                            if curves[key][0][2] != "()":
                                gcode += curves[key][0][2]  # add comment

                            for curve in curves[key][1]:
                                gcode += self.generate_gcode(curve, layer, z)

                            gcode += gcode_comment_str("End cutting path id: {}\n\n".format(curves[key][0][0]))

                else:  # pass by pass
                    mind = min([curve[0][1] for curve in curves])
                    for step in range(0, 1 + int(math.ceil(abs((zs - mind) / self.tools[layer][0]["depth step"])))):
                        z = zs - abs(self.tools[layer][0]["depth step"] * step)
                        curves_ = []
                        for curve in curves:
                            if curve[0][1] < z:
                                curves_.append(curve)

                        z = zs - abs(self.tools[layer][0]["depth step"] * (step + 1))
                        gcode += "\n(Pass at depth {})\n".format(z)

                        if self.options.path_to_gcode_sort_paths:
                            keys = sort_curves([curve[1] for curve in curves_])
                        else:
                            keys = range(len(curves_))
                        for key in keys:

                            gcode += gcode_comment_str("Start cutting path id: {}".format(curves[key][0][0]))
                            if curves[key][0][2] != "()":
                                gcode += curves[key][0][2]  # add comment

                            for subcurve in curves_[key][1]:
                                gcode += self.generate_gcode(subcurve, layer, max(z, curves_[key][0][1]))

                            gcode += gcode_comment_str("End cutting path id: {}\n\n".format(curves[key][0][0]))

        self.export_gcode(gcode)

    ################################################################################
    #
    # dxfpoints
    #
    ################################################################################
    def tab_dxfpoints(self):
        self.get_info_plus()
        if self.selected_paths == {}:
            self.error("Nothing is selected. Please select something to convert to drill point (dxfpoint) or clear point sign.")
        for layer in self.layers:
            if layer in self.selected_paths:
                for path in self.selected_paths[layer]:
                    if self.options.dxfpoints_action == 'replace':

                        path.set("dxfpoint", "1")
                        r = re.match("^\\s*.\\s*(\\S+)", path.get("d"))
                        if r is not None:
                            print_(("got path=", r.group(1)))
                            path.set("d", "m {} 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.812500000001 z".format(r.group(1)))
                            path.set("style", MARKER_STYLE["dxf_points"])

                    if self.options.dxfpoints_action == 'save':
                        path.set("dxfpoint", "1")

                    if self.options.dxfpoints_action == 'clear' and path.get("dxfpoint") == "1":
                        path.set("dxfpoint", "0")

    ################################################################################
    #
    # Artefacts
    #
    ################################################################################
    def tab_area_artefacts(self):
        self.get_info_plus()
        if self.selected_paths == {} and self.options.auto_select_paths:
            paths = self.paths
            self.error("No paths are selected! Trying to work on all available paths.")
        else:
            paths = self.selected_paths
        for layer in paths:
            for path in paths[layer]:
                parent = path.getparent()
                if "d" not in path.keys():
                    self.error("Warning: One or more paths do not have 'd' parameter, try to Ungroup (Ctrl+Shift+G) and Object to Path (Ctrl+Shift+C)!")
                    continue
                csp = path.path.to_superpath()
                remove = []
                for i in range(len(csp)):
                    subpath = [[point[:] for point in points] for points in csp[i]]
                    subpath = self.apply_transforms(path, [subpath])[0]
                    bounds = csp_simple_bound([subpath])
                    if (bounds[2] - bounds[0]) ** 2 + (bounds[3] - bounds[1]) ** 2 < self.options.area_find_artefacts_diameter ** 2:
                        if self.options.area_find_artefacts_action == "mark with an arrow":
                            arrow = Path('m {},{} 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.812500000001 z'.format(subpath[0][1][0], subpath[0][1][1])).to_superpath()
                            arrow = self.apply_transforms(path, arrow, True)
                            node = parent.add(PathElement())
                            node.path = CubicSuperPath(arrow)
                            node.style = MARKER_STYLE["area artefact arrow"]
                            node.set('gcodetools', 'area artefact arrow')
                        elif self.options.area_find_artefacts_action == "mark with style":
                            node = parent.add(PathElement())
                            node.path = CubicSuperPath(csp[i])
                            node.style = MARKER_STYLE["area artefact"]
                            remove.append(i)
                        elif self.options.area_find_artefacts_action == "delete":
                            remove.append(i)
                            print_("Deleted artefact {}".format(subpath))
                remove.reverse()
                for i in remove:
                    del csp[i]
                if len(csp) == 0:
                    parent.remove(path)
                else:
                    path.path = CubicSuperPath(csp)

        return

    def tab_area(self):
        """Calculate area curves"""
        self.get_info_plus()
        if len(self.selected_paths) <= 0:
            self.error("This extension requires at least one selected path.")
            return
        for layer in self.layers:
            if layer in self.selected_paths:
                self.set_tool(layer)
                if self.tools[layer][0]['diameter'] <= 0:
                    self.error("Tool diameter must be > 0 but tool's diameter on '{}' layer is not!".format(layer.label), "error")

                for path in self.selected_paths[layer]:
                    print_(("doing path", path.get("style"), path.get("d")))

                    area_group = path.getparent().add(Group())

                    csp = path.path.to_superpath()
                    print_(csp)
                    if not csp:
                        print_("omitting non-path")
                        self.error("Warning: omitting non-path")
                        continue

                    if path.get('sodipodi:type') != "inkscape:offset":
                        print_("Path {} is not an offset. Preparation started.".format(path.get("id")))
                        # Path is not offset. Preparation will be needed.
                        # Finding top most point in path (min y value)

                        min_x, min_y, min_i, min_j, min_t = csp_true_bounds(csp)[1]

                        # Reverse path if needed.
                        if min_y != float("-inf"):
                            # Move outline subpath to the beginning of csp
                            subp = csp[min_i]
                            del csp[min_i]
                            j = min_j
                            # Split by the topmost point and join again
                            if min_t in [0, 1]:
                                if min_t == 0:
                                    j = j - 1
                                subp[-1][2], subp[0][0] = subp[-1][1], subp[0][1]
                                subp = [[subp[j][1], subp[j][1], subp[j][2]]] + subp[j + 1:] + subp[:j] + [[subp[j][0], subp[j][1], subp[j][1]]]
                            else:
                                sp1, sp2, sp3 = csp_split(subp[j - 1], subp[j], min_t)
                                subp[-1][2], subp[0][0] = subp[-1][1], subp[0][1]
                                subp = [[sp2[1], sp2[1], sp2[2]]] + [sp3] + subp[j + 1:] + subp[:j - 1] + [sp1] + [[sp2[0], sp2[1], sp2[1]]]
                            csp = [subp] + csp
                            # reverse path if needed
                            if csp_subpath_ccw(csp[0]):
                                for i in range(len(csp)):
                                    n = []
                                    for j in csp[i]:
                                        n = [[j[2][:], j[1][:], j[0][:]]] + n
                                    csp[i] = n[:]

                        # What the absolute fudge is this doing? Closing paths? Ugh.
                        d = str(CubicSuperPath(csp))
                        print_(("original  d=", d))
                        d = re.sub(r'(?i)(m[^mz]+)', r'\1 Z ', d)
                        d = re.sub(r'(?i)\s*z\s*z\s*', r' Z ', d)
                        d = re.sub(r'(?i)\s*([A-Za-z])\s*', r' \1 ', d)
                        print_(("formatted d=", d))
                    p0 = self.transform([0, 0], layer)
                    p1 = self.transform([0, 1], layer)
                    scale = (P(p0) - P(p1)).mag()
                    if scale == 0:
                        scale = 1.
                    else:
                        scale = 1. / scale
                    print_(scale)
                    tool_d = self.tools[layer][0]['diameter'] * scale
                    r = self.options.area_inkscape_radius * scale
                    sign = 1 if r > 0 else -1
                    print_("Tool diameter = {}, r = {}".format(tool_d, r))

                    # avoiding infinite loops
                    if self.options.area_tool_overlap > 0.9:
                        self.options.area_tool_overlap = .9

                    for i in range(self.options.max_area_curves):
                        radius = - tool_d * (i * (1 - self.options.area_tool_overlap) + 0.5) * sign
                        if abs(radius) > abs(r):
                            radius = -r

                        elem = area_group.add(PathElement(style=MARKER_STYLE["biarc_style_i"]['area']))
                        elem.set('sodipodi:type', 'inkscape:offset')
                        elem.set('inkscape:radius', radius)
                        elem.set('inkscape:original', d)
                        print_(("adding curve", area_group, d, MARKER_STYLE["biarc_style_i"]['area']))
                        if radius == -r:
                            break

    def tab_area_fill(self):
        """Fills area with lines"""
        self.get_info_plus()
        # convert degrees into rad
        self.options.area_fill_angle = self.options.area_fill_angle * math.pi / 180
        if len(self.selected_paths) <= 0:
            self.error("This extension requires at least one selected path.")
            return
        for layer in self.layers:
            if layer in self.selected_paths:
                self.set_tool(layer)
                if self.tools[layer][0]['diameter'] <= 0:
                    self.error("Tool diameter must be > 0 but tool's diameter on '{}' layer is not!".format(layer.label), "error")
                tool = self.tools[layer][0]
                for path in self.selected_paths[layer]:
                    lines = []
                    print_(("doing path", path.get("style"), path.get("d")))
                    area_group = path.getparent().add(Group())
                    csp = path.path.to_superpath()
                    if not csp:
                        print_("omitting non-path")
                        self.error("Warning: omitting non-path")
                        continue
                    csp = self.apply_transforms(path, csp)
                    csp = csp_close_all_subpaths(csp)
                    csp = self.transform_csp(csp, layer)

                    # rotate the path to get bounds in defined direction.
                    a = - self.options.area_fill_angle
                    rotated_path = [[[[point[0] * math.cos(a) - point[1] * math.sin(a), point[0] * math.sin(a) + point[1] * math.cos(a)] for point in sp] for sp in subpath] for subpath in csp]
                    bounds = csp_true_bounds(rotated_path)

                    # Draw the lines
                    # Get path's bounds
                    b = [0.0, 0.0, 0.0, 0.0]  # [minx,miny,maxx,maxy]
                    for k in range(4):
                        i = bounds[k][2]
                        j = bounds[k][3]
                        t = bounds[k][4]

                        b[k] = csp_at_t(rotated_path[i][j - 1], rotated_path[i][j], t)[k % 2]

                    # Zig-zag
                    r = tool['diameter'] * (1 - self.options.area_tool_overlap)
                    if r <= 0:
                        self.error('Tools diameter must be greater than 0!', 'error')
                        return

                    lines += [[]]

                    if self.options.area_fill_method == 'zig-zag':
                        i = b[0] - self.options.area_fill_shift * r
                        top = True
                        last_one = True
                        while i < b[2] or last_one:
                            if i >= b[2]:
                                last_one = False
                            if not lines[-1]:
                                lines[-1] += [[i, b[3]]]

                            if top:
                                lines[-1] += [[i, b[1]], [i + r, b[1]]]

                            else:
                                lines[-1] += [[i, b[3]], [i + r, b[3]]]

                            top = not top
                            i += r
                    else:

                        w = b[2] - b[0] + self.options.area_fill_shift * r
                        h = b[3] - b[1] + self.options.area_fill_shift * r
                        x = b[0] - self.options.area_fill_shift * r
                        y = b[1] - self.options.area_fill_shift * r
                        lines[-1] += [[x, y]]
                        stage = 0
                        start = True
                        while w > 0 and h > 0:
                            stage = (stage + 1) % 4
                            if stage == 0:
                                y -= h
                                h -= r
                            elif stage == 1:
                                x += w
                                if not start:
                                    w -= r
                                start = False
                            elif stage == 2:
                                y += h
                                h -= r
                            elif stage == 3:
                                x -= w
                                w -= r

                            lines[-1] += [[x, y]]

                        stage = (stage + 1) % 4
                        if w <= 0 and h > 0:
                            y = y - h if stage == 0 else y + h
                        if h <= 0 and w > 0:
                            x = x - w if stage == 3 else x + w
                        lines[-1] += [[x, y]]
                    # Rotate created paths back
                    a = self.options.area_fill_angle
                    lines = [[[point[0] * math.cos(a) - point[1] * math.sin(a), point[0] * math.sin(a) + point[1] * math.cos(a)] for point in subpath] for subpath in lines]

                    # get the intersection points

                    splitted_line = [[lines[0][0]]]
                    intersections = {}
                    for l1, l2, in zip(lines[0], lines[0][1:]):
                        ints = []

                        if l1[0] == l2[0] and l1[1] == l2[1]:
                            continue
                        for i in range(len(csp)):
                            for j in range(1, len(csp[i])):
                                sp1 = csp[i][j - 1]
                                sp2 = csp[i][j]
                                roots = csp_line_intersection(l1, l2, sp1, sp2)
                                for t in roots:
                                    p = tuple(csp_at_t(sp1, sp2, t))
                                    if l1[0] == l2[0]:
                                        t1 = (p[1] - l1[1]) / (l2[1] - l1[1])
                                    else:
                                        t1 = (p[0] - l1[0]) / (l2[0] - l1[0])
                                    if 0 <= t1 <= 1:
                                        ints += [[t1, p[0], p[1], i, j, t]]
                                        if p in intersections:
                                            intersections[p] += [[i, j, t]]
                                        else:
                                            intersections[p] = [[i, j, t]]

                        ints.sort()
                        for i in ints:
                            splitted_line[-1] += [[i[1], i[2]]]
                            splitted_line += [[[i[1], i[2]]]]
                        splitted_line[-1] += [l2]
                        i = 0
                    print_(splitted_line)
                    while i < len(splitted_line):
                        # check if the middle point of the first lines segment is inside the path.
                        # and remove the subline if not.
                        l1 = splitted_line[i][0]
                        l2 = splitted_line[i][1]
                        p = [(l1[0] + l2[0]) / 2, (l1[1] + l2[1]) / 2]
                        if not point_inside_csp(p, csp):
                            del splitted_line[i]
                        else:
                            i += 1

                    # and apply back transrormations to draw them
                    csp_line = csp_from_polyline(splitted_line)
                    csp_line = self.transform_csp(csp_line, layer, True)

                    self.draw_csp(csp_line, group=area_group)

    ################################################################################
    #
    # Engraving
    #
    # LT Notes to self: See wiki.inkscape.org/wiki/index.php/PythonEffectTutorial
    # To create anything in the Inkscape document, look at the XML editor for
    # details of how such an element looks in XML, then follow this model.
    # layer number n appears in XML as <svg:g id="layern" inkscape:label="layername">
    #
    # to create it, use
    # Mylayer = self.svg.add(Layer.new('layername'))
    #
    # group appears in XML as <svg:g id="gnnnnn"> where nnnnn is a number
    #
    # to create it, use
    # Mygroup = parent.add(Group(gcodetools="My group label")
    # where parent may be the layer or a parent group. To get the parent group, you can use
    # parent = self.selected_paths[layer][0].getparent()
    ################################################################################
    def tab_engraving(self):
        self.get_info_plus()
        global cspm
        global wl
        global nlLT
        global i
        global j
        global gcode_3Dleft
        global gcode_3Dright
        global max_dist  # minimum of tool radius and user's requested maximum distance
        global eye_dist
        eye_dist = 100  # 3D constant. Try varying it for your eyes

        def bisect(nxy1, nxy2):
            """LT Find angle bisecting the normals n1 and n2

            Parameters: Normalised normals
            Returns: nx - Normal of bisector, normalised to 1/cos(a)
                   ny -
                   sinBis2 - sin(angle turned/2): positive if turning in
            Note that bisect(n1,n2) and bisect(n2,n1) give opposite sinBis2 results
            If sinturn is less than the user's requested angle tolerance, I return 0
            """
            (nx1, ny1) = nxy1
            (nx2, ny2) = nxy2
            cosBis = math.sqrt(max(0, (1.0 + nx1 * nx2 - ny1 * ny2) / 2.0))
            # We can get correct sign of the sin, assuming cos is positive
            if (abs(ny1 - ny2) < ENGRAVING_TOLERANCE) or (abs(cosBis) < ENGRAVING_TOLERANCE):
                if abs(nx1 - nx2) < ENGRAVING_TOLERANCE:
                    return nx1, ny1, 0.0
                sinBis = math.copysign(1, ny1)
            else:
                sinBis = cosBis * (nx2 - nx1) / (ny1 - ny2)
            # We can correct signs by noting that the dot product
            # of bisector and either normal must be >0
            costurn = cosBis * nx1 + sinBis * ny1
            if costurn == 0:
                return ny1 * 100, -nx1 * 100, 1  # Path doubles back on itself
            sinturn = sinBis * nx1 - cosBis * ny1
            if costurn < 0:
                sinturn = -sinturn
            if 0 < sinturn * 114.6 < (180 - self.options.engraving_sharp_angle_tollerance):
                sinturn = 0  # set to zero if less than the user wants to see.
            return cosBis / costurn, sinBis / costurn, sinturn
            # end bisect

        def get_radius_to_line(xy1, n_xy1, n_xy2, xy2, n_xy23, xy3, n_xy3):
            """LT find biggest circle we can engrave here, if constrained by line 2-3

            Parameters:
                x1,y1,nx1,ny1 coordinates and normal of the line we're currently engraving
                nx2,ny2 angle bisector at point 2
                x2,y2 coordinates of first point of line 2-3
                nx23,ny23 normal to the line 2-3
                x3,y3 coordinates of the other end
                nx3,ny3 angle bisector at point 3
            Returns:
                radius or self.options.engraving_max_dist if line doesn't limit radius
            This function can be used in three ways:
            - With nx1=ny1=0 it finds circle centred at x1,y1
            - with nx1,ny1 normalised, it finds circle tangential at x1,y1
            - with nx1,ny1 scaled by 1/cos(a) it finds circle centred on an angle bisector
                 where a is the angle between the bisector and the previous/next normals

            If the centre of the circle tangential to the line 2-3 is outside the
            angle bisectors at its ends, ignore this line.

            Note that it handles corners in the conventional manner of letter cutting
            by mitering, not rounding.
            Algorithm uses dot products of normals to find radius
            and hence coordinates of centre
            """
            (x1, y1) = xy1
            (nx1, ny1) = n_xy1
            (nx2, ny2) = n_xy2
            (x2, y2) = xy2
            (nx23, ny23) = n_xy23
            (x3, y3) = xy3
            (nx3, ny3) = n_xy3
            global max_dist

            # Start by converting coordinates to be relative to x1,y1
            x2, y2 = x2 - x1, y2 - y1
            x3, y3 = x3 - x1, y3 - y1

            # The logic uses vector arithmetic.
            # The dot product of two vectors gives the product of their lengths
            # multiplied by the cos of the angle between them.
            # So, the perpendicular distance from x1y1 to the line 2-3
            # is equal to the dot product of its normal and x2y2 or x3y3
            # It is also equal to the projection of x1y1-xcyc on the line's normal
            # plus the radius. But, as the normal faces inside the path we must negate it.

            # Make sure the line in question is facing x1,y1 and vice versa
            dist = -x2 * nx23 - y2 * ny23
            if dist < 0:
                return max_dist
            denom = 1. - nx23 * nx1 - ny23 * ny1
            if denom < ENGRAVING_TOLERANCE:
                return max_dist

            # radius and centre are:
            r = dist / denom
            cx = r * nx1
            cy = r * ny1
            # if c is not between the angle bisectors at the ends of the line, ignore
            # Use vector cross products. Not sure if I need the .0001 safety margins:
            if (x2 - cx) * ny2 > (y2 - cy) * nx2 + 0.0001:
                return max_dist
            if (x3 - cx) * ny3 < (y3 - cy) * nx3 - 0.0001:
                return max_dist
            return min(r, max_dist)
            # end of get_radius_to_line

        def get_radius_to_point(xy1, n_xy, xy2):
            """LT find biggest circle we can engrave here, constrained by point x2,y2

            This function can be used in three ways:
            - With nx=ny=0 it finds circle centred at x1,y1
            - with nx,ny normalised, it finds circle tangential at x1,y1
            - with nx,ny scaled by 1/cos(a) it finds circle centred on an angle bisector
                 where a is the angle between the bisector and the previous/next normals

            Note that I wrote this to replace find_cutter_centre. It is far less
            sophisticated but, I hope, far faster.
            It turns out that finding a circle touching a point is harder than a circle
            touching a line.
            """
            (x1, y1) = xy1
            (nx, ny) = n_xy
            (x2, y2) = xy2
            global max_dist

            # Start by converting coordinates to be relative to x1,y1
            x2 = x2 - x1
            y2 = y2 - y1
            denom = nx ** 2 + ny ** 2 - 1
            if denom <= ENGRAVING_TOLERANCE:  # Not a corner bisector
                if denom == -1:  # Find circle centre x1,y1
                    return math.sqrt(x2 ** 2 + y2 ** 2)
                # if x2,y2 not in front of the normal...
                if x2 * nx + y2 * ny <= 0:
                    return max_dist
                return (x2 ** 2 + y2 ** 2) / (2 * (x2 * nx + y2 * ny))
            # It is a corner bisector, so..
            discriminator = (x2 * nx + y2 * ny) ** 2 - denom * (x2 ** 2 + y2 ** 2)
            if discriminator < 0:
                return max_dist  # this part irrelevant
            r = (x2 * nx + y2 * ny - math.sqrt(discriminator)) / denom
            return min(r, max_dist)
            # end of get_radius_to_point

        def bez_divide(a, b, c, d):
            """LT recursively divide a Bezier.

            Divides until difference between each
            part and a straight line is less than some limit
            Note that, as simple as this code is, it is mathematically correct.
            Parameters:
                a,b,c and d are each a list of x,y real values
                Bezier end points a and d, control points b and c
            Returns:
                a list of Beziers.
                    Each Bezier is a list with four members,
                        each a list holding a coordinate pair
                Note that the final point of one member is the same as
                the first point of the next, and the control points
                there are smooth and symmetrical. I use this fact later.
            """
            bx = b[0] - a[0]
            by = b[1] - a[1]
            cx = c[0] - a[0]
            cy = c[1] - a[1]
            dx = d[0] - a[0]
            dy = d[1] - a[1]
            limit = 8 * math.hypot(dx, dy) / self.options.engraving_newton_iterations
            # LT This is the only limit we get from the user currently
            if abs(dx * by - bx * dy) < limit and abs(dx * cy - cx * dy) < limit:
                return [[a, b, c, d]]
            abx = (a[0] + b[0]) / 2.0
            aby = (a[1] + b[1]) / 2.0
            bcx = (b[0] + c[0]) / 2.0
            bcy = (b[1] + c[1]) / 2.0
            cdx = (c[0] + d[0]) / 2.0
            cdy = (c[1] + d[1]) / 2.0
            abcx = (abx + bcx) / 2.0
            abcy = (aby + bcy) / 2.0
            bcdx = (bcx + cdx) / 2.0
            bcdy = (bcy + cdy) / 2.0
            m = [(abcx + bcdx) / 2.0, (abcy + bcdy) / 2.0]
            return bez_divide(a, [abx, aby], [abcx, abcy], m) + bez_divide(m, [bcdx, bcdy], [cdx, cdy], d)
            # end of bez_divide

        def get_biggest(nxy1, nxy2):
            """LT Find biggest circle we can draw inside path at point x1,y1 normal nx,ny

            Parameters:
                point - either on a line or at a reflex corner
                normal - normalised to 1 if on a line, to 1/cos(a) at a corner
            Returns:
                tuple (j,i,r)
                ..where j and i are indices of limiting segment, r is radius
            """
            (x1, y1) = nxy1
            (nx, ny) = nxy2
            global max_dist
            global nlLT
            global i
            global j

            n1 = nlLT[j][i - 1]  # current node
            jjmin = -1
            iimin = -1
            r = max_dist
            # set limits within which to look for lines
            xmin = x1 + r * nx - r
            xmax = x1 + r * nx + r
            ymin = y1 + r * ny - r
            ymax = y1 + r * ny + r
            for jj in xrange(0, len(nlLT)):  # for every subpath of this object
                for ii in xrange(0, len(nlLT[jj])):  # for every point and line
                    if nlLT[jj][ii - 1][2]:  # if a point
                        if jj == j:  # except this one
                            if abs(ii - i) < 3 or abs(ii - i) > len(nlLT[j]) - 3:
                                continue
                        t1 = get_radius_to_point((x1, y1), (nx, ny), nlLT[jj][ii - 1][0])
                    else:  # doing a line
                        if jj == j:  # except this one
                            if abs(ii - i) < 2 or abs(ii - i) == len(nlLT[j]) - 1:
                                continue
                            if abs(ii - i) == 2 and nlLT[j][(ii + i) / 2 - 1][3] <= 0:
                                continue
                            if (abs(ii - i) == len(nlLT[j]) - 2) and nlLT[j][-1][3] <= 0:
                                continue
                        nx2, ny2 = nlLT[jj][ii - 2][1]
                        x2, y2 = nlLT[jj][ii - 1][0]
                        nx23, ny23 = nlLT[jj][ii - 1][1]
                        x3, y3 = nlLT[jj][ii][0]
                        nx3, ny3 = nlLT[jj][ii][1]
                        if nlLT[jj][ii - 2][3] > 0:  # acute, so use normal, not bisector
                            nx2 = nx23
                            ny2 = ny23
                        if nlLT[jj][ii][3] > 0:  # acute, so use normal, not bisector
                            nx3 = nx23
                            ny3 = ny23
                        x23min = min(x2, x3)
                        x23max = max(x2, x3)
                        y23min = min(y2, y3)
                        y23max = max(y2, y3)
                        # see if line in range
                        if n1[2] == False and (x23max < xmin or x23min > xmax or y23max < ymin or y23min > ymax):
                            continue
                        t1 = get_radius_to_line((x1, y1), (nx, ny), (nx2, ny2), (x2, y2), (nx23, ny23), (x3, y3), (nx3, ny3))
                    if 0 <= t1 < r:
                        r = t1
                        iimin = ii
                        jjmin = jj
                        xmin = x1 + r * nx - r
                        xmax = x1 + r * nx + r
                        ymin = y1 + r * ny - r
                        ymax = y1 + r * ny + r
                # next ii
            # next jj
            return jjmin, iimin, r
            # end of get_biggest

        def line_divide(xy0, j0, i0, xy1, j1, i1, n_xy, length):
            """LT recursively divide a line as much as necessary

            NOTE: This function is not currently used
            By noting which other path segment is touched by the circles at each end,
            we can see if anything is to be gained by a further subdivision, since
            if they touch the same bit of path we can move linearly between them.
            Also, we can handle points correctly.
            Parameters:
                end points and indices of limiting path, normal, length
            Returns:
                list of toolpath points
                    each a list of 3 reals: x, y coordinates, radius

            """
            (x0, y0) = xy0
            (x1, y1) = xy1
            (nx, ny) = n_xy
            global nlLT
            global i
            global j
            global lmin
            x2 = (x0 + x1) / 2
            y2 = (y0 + y1) / 2
            j2, i2, r2 = get_biggest((x2, y2), (nx, ny))
            if length < lmin:
                return [[x2, y2, r2]]
            if j2 == j0 and i2 == i0:  # Same as left end. Don't subdivide this part any more
                return [[x2, y2, r2], line_divide((x2, y2), j2, i2, (x1, y1), j1, i1, (nx, ny), length / 2)]
            if j2 == j1 and i2 == i1:  # Same as right end. Don't subdivide this part any more
                return [line_divide((x0, y0), j0, i0, (x2, y2), j2, i2, (nx, ny), length / 2), [x2, y2, r2]]
            return [line_divide((x0, y0), j0, i0, (x2, y2), j2, i2, (nx, ny), length / 2), line_divide((x2, y2), j2, i2, (x1, y1), j1, i1, (nx, ny), length / 2)]
            # end of line_divide()

        def save_point(xy, w, i, j, ii, jj):
            """LT Save this point and delete previous one if linear

            The point is, we generate tons of points but many may be in a straight 3D line.
            There is no benefit in saving the intermediate points.
            """
            (x, y) = xy
            global wl
            global cspm
            x = round(x, 4)  # round to 4 decimals
            y = round(y, 4)  # round to 4 decimals
            w = round(w, 4)  # round to 4 decimals
            if len(cspm) > 1:
                xy1a, xy1, xy1b, i1, j1, ii1, jj1 = cspm[-1]
                w1 = wl[-1]
                if i == i1 and j == j1 and ii == ii1 and jj == jj1:  # one match
                    xy1a, xy2, xy1b, i1, j1, ii1, jj1 = cspm[-2]
                    w2 = wl[-2]
                    if i == i1 and j == j1 and ii == ii1 and jj == jj1:  # two matches. Now test linearity
                        length1 = math.hypot(xy1[0] - x, xy1[1] - y)
                        length2 = math.hypot(xy2[0] - x, xy2[1] - y)
                        length12 = math.hypot(xy2[0] - xy1[0], xy2[1] - xy1[1])
                        # get the xy distance of point 1 from the line 0-2
                        if length2 > length1 and length2 > length12:  # point 1 between them
                            xydist = abs((xy2[0] - x) * (xy1[1] - y) - (xy1[0] - x) * (xy2[1] - y)) / length2
                            if xydist < ENGRAVING_TOLERANCE:  # so far so good
                                wdist = w2 + (w - w2) * length1 / length2 - w1
                                if abs(wdist) < ENGRAVING_TOLERANCE:
                                    cspm.pop()
                                    wl.pop()
            cspm += [[[x, y], [x, y], [x, y], i, j, ii, jj]]
            wl += [w]
            # end of save_point

        def draw_point(xy0, xy, w, t):
            """LT Draw this point as a circle with a 1px dot in the middle (x,y)
            and a 3D line from (x0,y0) down to x,y. 3D line thickness should be t/2

            Note that points that are subsequently erased as being unneeded do get
            displayed, but this helps the user see the total area covered.
            """
            (x0, y0) = xy0
            (x, y) = xy
            global gcode_3Dleft
            global gcode_3Dright
            if self.options.engraving_draw_calculation_paths:
                elem = engraving_group.add(PathElement.arc((x, y), 1))
                elem.set('gcodetools', "Engraving calculation toolpath")
                elem.style = "fill:#ff00ff; fill-opacity:0.46; stroke:#000000; stroke-width:0.1;"

                # Don't draw zero radius circles
                if w:
                    elem = engraving_group.add(PathElement.arc((x, y), w))
                    elem.set('gcodetools', "Engraving calculation paths")
                    elem.style = "fill:none; fill-opacity:0.46; stroke:#000000; stroke-width:0.1;"

                    # Find slope direction for shading
                    s = math.atan2(y - y0, x - x0)  # -pi to pi
                    # convert to 2 hex digits as a shade of red
                    s2 = "#{0:x}0000".format(int(101 * (1.5 - math.sin(s + 0.5))))
                    style = "stroke:{}; stroke-opacity:1;stroke-width:{};fill:none".format(s2, t/2)
                    right = gcode_3Dleft.add(PathElement(style=style, gcodetools="Gcode G1R"))
                    right.path = "M {:f},{:f} L {:f},{:f}".format(
                        x0 - eye_dist, y0, x - eye_dist - 0.14 * w, y)
                    left = gcode_3Dright.add(PathElement(style=style, gcodetools="Gcode G1L"))
                    left.path = "M {:f},{:f} L {:f},{:f}".format(
                        x0 + eye_dist, y0, x + eye_dist + 0.14 * r, y)

        # end of subfunction definitions. engraving() starts here:
        gcode = ''
        r = 0  # theoretical and tool-radius-limited radii in pixels
        w = 0
        wmax = 0
        cspe = []
        we = []
        if not self.selected_paths:
            self.error("Please select at least one path to engrave and run again.")
            return
        if not self.check_dir():
            return
        # Find what units the user uses
        unit = " mm"
        if self.options.unit == "G20 (All units in inches)":
            unit = " inches"
        elif self.options.unit != "G21 (All units in mm)":
            self.error("Unknown unit selected. mm assumed")
        print_("engraving_max_dist mm/inch", self.options.engraving_max_dist)

        # LT See if we can use this parameter for line and Bezier subdivision:
        bitlen = 20 / self.options.engraving_newton_iterations

        for layer in self.layers:
            if layer in self.selected_paths and layer in self.orientation_points:
                # Calculate scale in pixels per user unit (mm or inch)
                p1 = self.orientation_points[layer][0][0]
                p2 = self.orientation_points[layer][0][1]
                ol = math.hypot(p1[0][0] - p2[0][0], p1[0][1] - p2[0][1])
                oluu = math.hypot(p1[1][0] - p2[1][0], p1[1][1] - p2[1][1])
                print_("Orientation2 p1 p2 ol oluu", p1, p2, ol, oluu)
                orientation_scale = ol / oluu

                self.set_tool(layer)
                shape = self.tools[layer][0]['shape']
                if re.search('w', shape):
                    toolshape = eval('lambda w: ' + shape.strip('"'))
                else:
                    self.error("Tool '{}' has no shape. 45 degree cone assumed!".format(self.tools[layer][0]['name']))
                    toolshape = lambda w: w
                # Get tool radius in pixels
                toolr = self.tools[layer][0]['diameter'] * orientation_scale / 2
                print_("tool radius in pixels=", toolr)
                # max dist from path to engrave in user's units
                max_distuu = min(self.tools[layer][0]['diameter'] / 2, self.options.engraving_max_dist)
                max_dist = max_distuu * orientation_scale
                print_("max_dist pixels", max_dist)

                engraving_group = self.selected_paths[layer][0].getparent().add(Group())
                if self.options.engraving_draw_calculation_paths and (self.my3Dlayer is None):
                    self.svg.add(Layer.new("3D"))
                # Create groups for left and right eyes
                if self.options.engraving_draw_calculation_paths:
                    gcode_3Dleft = self.my3Dlayer.add(Group(gcodetools="Gcode 3D L"))
                    gcode_3Dright = self.my3Dlayer.add(Group(gcodetools="Gcode 3D R"))

                for node in self.selected_paths[layer]:
                    if isinstance(node, inkex.PathElement):
                        cspi = node.path.to_superpath()
                        # LT: Create my own list. n1LT[j] is for subpath j
                        nlLT = []
                        for j in xrange(len(cspi)):  # LT For each subpath...
                            # Remove zero length segments, assume closed path
                            i = 0  # LT was from i=1
                            while i < len(cspi[j]):
                                if abs(cspi[j][i - 1][1][0] - cspi[j][i][1][0]) < ENGRAVING_TOLERANCE and abs(cspi[j][i - 1][1][1] - cspi[j][i][1][1]) < ENGRAVING_TOLERANCE:
                                    cspi[j][i - 1][2] = cspi[j][i][2]
                                    del cspi[j][i]
                                else:
                                    i += 1
                        for csp in cspi:  # LT6a For each subpath...
                            # Create copies in 3D layer
                            print_("csp is zz ", csp)
                            cspl = []
                            cspr = []
                            # create list containing lines and points, starting with a point
                            # line members: [x,y],[nx,ny],False,i
                            # x,y is start of line. Normal on engraved side.
                            # Normal is normalised (unit length)
                            # Note that Y axis increases down the page
                            # corner members: [x,y],[nx,ny],True,sin(halfangle)
                            # if halfangle>0: radius 0 here. normal is bisector
                            # if halfangle<0. reflex angle. normal is bisector
                            # corner normals are divided by cos(halfangle)
                            # so that they will engrave correctly
                            print_("csp is", csp)
                            nlLT.append([])
                            for i in range(0, len(csp)):  # LT for each point
                                sp0 = csp[i - 2]
                                sp1 = csp[i - 1]
                                sp2 = csp[i]
                                if self.options.engraving_draw_calculation_paths:
                                    # Copy it to 3D layer objects
                                    spl = []
                                    spr = []
                                    for j in range(0, 3):
                                        pl = [sp2[j][0] - eye_dist, sp2[j][1]]
                                        pr = [sp2[j][0] + eye_dist, sp2[j][1]]
                                        spl += [pl]
                                        spr += [pr]
                                    cspl += [spl]
                                    cspr += [spr]
                                # LT find angle between this and previous segment
                                x0, y0 = sp1[1]
                                nx1, ny1 = csp_normalized_normal(sp1, sp2, 0)
                                # I don't trust this function, so test result
                                if abs(1 - math.hypot(nx1, ny1)) > 0.00001:
                                    print_("csp_normalised_normal error t=0", nx1, ny1, sp1, sp2)
                                    self.error("csp_normalised_normal error. See log.")

                                nx0, ny0 = csp_normalized_normal(sp0, sp1, 1)
                                if abs(1 - math.hypot(nx0, ny0)) > 0.00001:
                                    print_("csp_normalised_normal error t=1", nx0, ny0, sp1, sp2)
                                    self.error("csp_normalised_normal error. See log.")
                                bx, by, s = bisect((nx0, ny0), (nx1, ny1))
                                # record x,y,normal,ifCorner, sin(angle-turned/2)
                                nlLT[-1] += [[[x0, y0], [bx, by], True, s]]

                                # LT now do the line
                                if sp1[1] == sp1[2] and sp2[0] == sp2[1]:  # straightline
                                    nlLT[-1] += [[sp1[1], [nx1, ny1], False, i]]
                                else:  # Bezier. First, recursively cut it up:
                                    nn = bez_divide(sp1[1], sp1[2], sp2[0], sp2[1])
                                    first = True  # Flag entry to divided Bezier
                                    for bLT in nn:  # save as two line segments
                                        for seg in range(3):
                                            if seg > 0 or first:
                                                nx1 = bLT[seg][1] - bLT[seg + 1][1]
                                                ny1 = bLT[seg + 1][0] - bLT[seg][0]
                                                l1 = math.hypot(nx1, ny1)
                                                if l1 < ENGRAVING_TOLERANCE:
                                                    continue
                                                nx1 = nx1 / l1  # normalise them
                                                ny1 = ny1 / l1
                                                nlLT[-1] += [[bLT[seg], [nx1, ny1], False, i]]
                                                first = False
                                            if seg < 2:  # get outgoing bisector
                                                nx0 = nx1
                                                ny0 = ny1
                                                nx1 = bLT[seg + 1][1] - bLT[seg + 2][1]
                                                ny1 = bLT[seg + 2][0] - bLT[seg + 1][0]
                                                l1 = math.hypot(nx1, ny1)
                                                if l1 < ENGRAVING_TOLERANCE:
                                                    continue
                                                nx1 = nx1 / l1  # normalise them
                                                ny1 = ny1 / l1
                                                # bisect
                                                bx, by, s = bisect((nx0, ny0), (nx1, ny1))
                                                nlLT[-1] += [[bLT[seg + 1], [bx, by], True, 0.]]
                            # LT for each segment - ends here.
                            print_(("engraving_draw_calculation_paths=", self.options.engraving_draw_calculation_paths))
                            if self.options.engraving_draw_calculation_paths:
                                # Copy complete paths to 3D layer
                                cspl += [cspl[0]]  # Close paths
                                cspr += [cspr[0]]  # Close paths
                                style = "stroke:#808080; stroke-opacity:1; stroke-width:0.6; fill:none"
                                elem = gcode_3Dleft.add(PathElement(style=style, gcodetools="G1L outline"))
                                elem.path = CubicSuperPath([cspl])
                                elem = gcode_3Dright.add(Pathelement(style=style, gcodetools="G1R outline"))
                                elem.path = CubicSuperPath([cspr])

                                for p in nlLT[-1]:  # For last sub-path
                                    if p[2]:
                                        elem = engraving_group.add(PathElement(gcodetools="Engraving normals"))
                                        elem.path = "M {:f},{:f} L {:f},{:f}".format(p[0][0], p[0][1],
                                            p[0][0] + p[1][0] * 10, p[0][1] + p[1][1] * 10)
                                        elem.style = "stroke:#f000af; stroke-opacity:0.46; stroke-width:0.1; fill:none"
                                    else:
                                        elem = engraving_group.add(PathElement(gcodetools="Engraving bisectors"))
                                        elem.path = "M {:f},{:f} L {:f},{:f}".format(p[0][0], p[0][1],
                                            p[0][0] + p[1][0] * 10, p[0][1] + p[1][1] * 10)
                                        elem.style = "stroke:#0000ff; stroke-opacity:0.46; stroke-width:0.1; fill:none"

                        # LT6a build nlLT[j] for each subpath - ends here
                        # Calculate offset points
                        reflex = False
                        for j in xrange(len(nlLT)):  # LT6b for each subpath
                            cspm = []  # Will be my output. List of csps.
                            wl = []  # Will be my w output list
                            w = r = 0  # LT initial, as first point is an angle
                            for i in xrange(len(nlLT[j])):  # LT for each node
                                # LT Note: Python enables wrapping of array indices
                                # backwards to -1, -2, but not forwards. Hence:
                                n0 = nlLT[j][i - 2]  # previous node
                                n1 = nlLT[j][i - 1]  # current node
                                n2 = nlLT[j][i]  # next node
                                # if n1[2] == True and n1[3]==0 : # A straight angle
                                # continue
                                x1a, y1a = n1[0]  # this point/start of this line
                                nx, ny = n1[1]
                                x1b, y1b = n2[0]  # next point/end of this line
                                if n1[2]:  # We're at a corner
                                    bits = 1
                                    bit0 = 0
                                    # lastr=r #Remember r from last line
                                    lastw = w  # Remember w from last line
                                    w = max_dist
                                    if n1[3] > 0:  # acute. Limit radius
                                        len1 = math.hypot((n0[0][0] - n1[0][0]), (n0[0][1] - n1[0][1]))
                                        if i < (len(nlLT[j]) - 1):
                                            len2 = math.hypot((nlLT[j][i + 1][0][0] - n1[0][0]), (nlLT[j][i + 1][0][1] - n1[0][1]))
                                        else:
                                            len2 = math.hypot((nlLT[j][0][0][0] - n1[0][0]), (nlLT[j][0][0][1] - n1[0][1]))
                                        # set initial r value, not to be exceeded
                                        w = math.sqrt(min(len1, len2)) / n1[3]
                                else:  # line. Cut it up if long.
                                    if n0[3] > 0 and not self.options.engraving_draw_calculation_paths:
                                        bit0 = r * n0[3]  # after acute corner
                                    else:
                                        bit0 = 0.0
                                    length = math.hypot((x1b - x1a), (y1a - y1b))
                                    bit0 = (min(length, bit0))
                                    bits = int((length - bit0) / bitlen)
                                    # split excess evenly at both ends
                                    bit0 += (length - bit0 - bitlen * bits) / 2
                                for b in xrange(bits):  # divide line into bits
                                    x1 = x1a + ny * (b * bitlen + bit0)
                                    y1 = y1a - nx * (b * bitlen + bit0)
                                    jjmin, iimin, w = get_biggest((x1, y1), (nx, ny))
                                    print_("i,j,jjmin,iimin,w", i, j, jjmin, iimin, w)
                                    wmax = max(wmax, w)
                                    if reflex:  # just after a reflex corner
                                        reflex = False
                                        if w < lastw:  # need to adjust it
                                            draw_point((x1, y1), (n0[0][0] + n0[1][0] * w, n0[0][1] + n0[1][1] * w), w, (lastw - w) / 2)
                                            save_point((n0[0][0] + n0[1][0] * w, n0[0][1] + n0[1][1] * w), w, i, j, iimin, jjmin)
                                    if n1[2]:  # We're at a corner
                                        if n1[3] > 0:  # acute
                                            save_point((x1 + nx * w, y1 + ny * w), w, i, j, iimin, jjmin)
                                            draw_point((x1, y1), (x1, y1), 0, 0)
                                            save_point((x1, y1), 0, i, j, iimin, jjmin)
                                        elif n1[3] < 0:  # reflex
                                            if w > lastw:
                                                draw_point((x1, y1), (x1 + nx * lastw, y1 + ny * lastw), w, (w - lastw) / 2)
                                                wmax = max(wmax, w)
                                                save_point((x1 + nx * w, y1 + ny * w), w, i, j, iimin, jjmin)
                                    elif b > 0 and n2[3] > 0 and not self.options.engraving_draw_calculation_paths:  # acute corner coming up
                                        if jjmin == j and iimin == i + 2:
                                            break
                                    draw_point((x1, y1), (x1 + nx * w, y1 + ny * w), w, bitlen)
                                    save_point((x1 + nx * w, y1 + ny * w), w, i, j, iimin, jjmin)

                                # LT end of for each bit of this line
                                if n1[2] == True and n1[3] < 0:  # reflex angle
                                    reflex = True
                                lastw = w  # remember this w
                            # LT next i
                            cspm += [cspm[0]]
                            print_("cspm", cspm)
                            wl += [wl[0]]
                            print_("wl", wl)
                            # Note: Original csp_points was a list, each element
                            # being 4 points, with the first being the same as the
                            # last of the previous set.
                            # Each point is a list of [cx,cy,r,w]
                            # I have flattened it to a flat list of points.

                            if self.options.engraving_draw_calculation_paths:
                                node = engraving_group.add(PathElement(
                                    gcodetools="Engraving calculation paths",
                                    style=MARKER_STYLE["biarc_style_i"]['biarc1']))
                                node.path = CubicSuperPath([cspm])
                                for i in xrange(len(cspm)):
                                    elem = engraving_group.add(PathElement.arc(cspm[i][1], wl[i]))
                                    elem.set('gcodetools', "Engraving calculation paths")
                                    elem.style = "fill:none;fill-opacity:0.46;stroke:#000000;stroke-width:0.1;"
                            cspe += [cspm]
                            wluu = []  # width list in user units: mm/inches
                            for w in wl:
                                wluu += [w / orientation_scale]
                            print_("wl in pixels", wl)
                            print_("wl in user units", wluu)
                            # LT previously, we was in pixels so gave wrong depth
                            we += [wluu]
                        # LT6b For each subpath - ends here
                    # LT5 if it is a path - ends here
                # LT4 for each selected object in this layer - ends here

                if cspe:
                    curve = self.parse_curve(cspe, layer, we, toolshape)  # convert to lines
                    self.draw_curve(curve, layer, engraving_group)
                    gcode += self.generate_gcode(curve, layer, self.options.Zsurface)

            # LT3 for layers loop ends here
        if gcode != '':
            self.header += "(Tool diameter should be at least " + str(2 * wmax / orientation_scale) + unit + ")\n"
            self.header += "(Depth, as a function of radius w, must be " + self.tools[layer][0]['shape'] + ")\n"
            self.header += "(Rapid feeds use safe Z=" + str(self.options.Zsafe) + unit + ")\n"
            self.header += "(Material surface at Z=" + str(self.options.Zsurface) + unit + ")\n"
            self.export_gcode(gcode)
        else:
            self.error("No need to engrave sharp angles.")

    ################################################################################
    #
    # Orientation
    #
    ################################################################################
    def tab_orientation(self, layer=None):
        self.get_info()

        if layer is None:
            layer = self.svg.get_current_layer() if self.svg.get_current_layer() is not None else self.document.getroot()

        transform = self.get_transforms(layer)
        if transform:
            transform = self.reverse_transform(transform)
            transform = str(Transform(transform))

        if self.options.orientation_points_count == "graffiti":
            print_(self.graffiti_reference_points)
            print_("Inserting graffiti points")
            if layer in self.graffiti_reference_points:
                graffiti_reference_points_count = len(self.graffiti_reference_points[layer])
            else:
                graffiti_reference_points_count = 0
            axis = ["X", "Y", "Z", "A"][graffiti_reference_points_count % 4]
            attr = {'gcodetools': "Gcodetools graffiti reference point"}
            if transform:
                attr["transform"] = transform
            group = layer.add(Group(**attr))
            elem = group.add(PathElement(style="stroke:none;fill:#00ff00;"))
            elem.set('gcodetools', "Gcodetools graffiti reference point arrow")
            elem.path = 'm {},{} 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,'\
                '-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.8125000000'\
                '01 z z'.format(graffiti_reference_points_count * 100, 0)

            draw_text(axis, graffiti_reference_points_count * 100 + 10, -10, group=g, gcodetools_tag="Gcodetools graffiti reference point text")

        elif self.options.orientation_points_count == "in-out reference point":
            draw_pointer(group=self.svg.get_current_layer(), x=self.svg.namedview.center, figure="arrow", pointer_type="In-out reference point", text="In-out point")

        else:
            print_("Inserting orientation points")

            if layer in self.orientation_points:
                self.error("Active layer already has orientation points! Remove them or select another layer!", "error")

            attr = {"gcodetools": "Gcodetools orientation group"}
            if transform:
                attr["transform"] = transform

            orientation_group = layer.add(Group(**attr))
            doc_height = self.svg.unittouu(self.document.getroot().get('height'))
            if self.document.getroot().get('height') == "100%":
                doc_height = 1052.3622047
                print_("Overriding height from 100 percents to {}".format(doc_height))
            if self.options.unit == "G21 (All units in mm)":
                points = [[0., 0., self.options.Zsurface], [100., 0., self.options.Zdepth], [0., 100., 0.]]
            elif self.options.unit == "G20 (All units in inches)":
                points = [[0., 0., self.options.Zsurface], [5., 0., self.options.Zdepth], [0., 5., 0.]]
            if self.options.orientation_points_count == "2":
                points = points[:2]
            for i in points:
                name = "Gcodetools orientation point ({} points)".format(
                    self.options.orientation_points_count)
                grp = orientation_group.add(Group(gcodetools=name))
                elem = grp.add(PathElement(style="stroke:none;fill:#000000;"))
                elem.set('gcodetools', "Gcodetools orientation point arrow")
                elem.path = 'm {},{} 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,'\
                    '-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.812500000'\
                    '001 z'.format(i[0], -i[1] + doc_height)

                draw_text("({}; {}; {})".format(i[0], i[1], i[2]), (i[0] + 10), (-i[1] - 10 + doc_height), group=grp, gcodetools_tag="Gcodetools orientation point text")

    ################################################################################
    #
    # Tools library
    #
    ################################################################################
    def tab_tools_library(self, layer=None):
        self.get_info()

        if self.options.tools_library_type == "check":
            return self.check_tools_and_op()

        # Add a tool to the drawing
        if layer is None:
            layer = self.svg.get_current_layer() if self.svg.get_current_layer() is not None else self.document.getroot()
        if layer in self.tools:
            self.error("Active layer already has a tool! Remove it or select another layer!", "error")

        if self.options.tools_library_type == "cylinder cutter":
            tool = {
                "name": "Cylindrical cutter",
                "id": "Cylindrical cutter 0001",
                "diameter": 10,
                "penetration angle": 90,
                "feed": "400",
                "penetration feed": "100",
                "depth step": "1",
                "tool change gcode": " "
            }
        elif self.options.tools_library_type == "lathe cutter":
            tool = {
                "name": "Lathe cutter",
                "id": "Lathe cutter 0001",
                "diameter": 10,
                "penetration angle": 90,
                "feed": "400",
                "passing feed": "800",
                "fine feed": "100",
                "penetration feed": "100",
                "depth step": "1",
                "tool change gcode": " "
            }
        elif self.options.tools_library_type == "cone cutter":
            tool = {
                "name": "Cone cutter",
                "id": "Cone cutter 0001",
                "diameter": 10,
                "shape": "w",
                "feed": "400",
                "penetration feed": "100",
                "depth step": "1",
                "tool change gcode": " "
            }
        elif self.options.tools_library_type == "tangent knife":
            tool = {
                "name": "Tangent knife",
                "id": "Tangent knife 0001",
                "feed": "400",
                "penetration feed": "100",
                "depth step": "100",
                "4th axis meaning": "tangent knife",
                "4th axis scale": 1.,
                "4th axis offset": 0,
                "tool change gcode": " "
            }

        elif self.options.tools_library_type == "plasma cutter":
            tool = {
                "name": "Plasma cutter",
                "id": "Plasma cutter 0001",
                "diameter": 10,
                "penetration feed": 100,
                "feed": 400,
                "gcode before path": """G31 Z-100 F500 (find metal)
G92 Z0 (zero z)
G00 Z10 F500 (going up)
M03 (turn on plasma)
G04 P0.2 (pause)
G01 Z1 (going to cutting z)\n""",
                "gcode after path": "M05 (turn off plasma)\n",
            }
        elif self.options.tools_library_type == "graffiti":
            tool = {
                "name": "Graffiti",
                "id": "Graffiti 0001",
                "diameter": 10,
                "penetration feed": 100,
                "feed": 400,
                "gcode before path": """M03 S1(Turn spray on)\n """,
                "gcode after path": "M05 (Turn spray off)\n ",
                "tool change gcode": "(Add G00 here to change sprayer if needed)\n",

            }

        else:
            tool = self.default_tool

        tool_num = sum([len(self.tools[i]) for i in self.tools])
        colors = ["00ff00", "0000ff", "ff0000", "fefe00", "00fefe", "fe00fe", "fe7e00", "7efe00", "00fe7e", "007efe", "7e00fe", "fe007e"]

        tools_group = layer.add(Group(gcodetools="Gcodetools tool definition"))
        bg = tools_group.add(PathElement(gcodetools="Gcodetools tool background"))
        bg.style = "fill-opacity:0.5;stroke:#444444;"
        bg.style['fill'] = colors[tool_num % len(colors)]

        y = 0
        keys = []
        for key in self.tools_field_order:
            if key in tool:
                keys += [key]
        for key in tool:
            if key not in keys:
                keys += [key]
        for key in keys:
            g = tools_group.add(Group(gcodetools="Gcodetools tool parameter"))
            draw_text(key, 0, y, group=g, gcodetools_tag="Gcodetools tool definition field name", font_size=10 if key != 'name' else 20)
            param = tool[key]
            if type(param) == str and re.match("^\\s*$", param):
                param = "(None)"
            draw_text(param, 150, y, group=g, gcodetools_tag="Gcodetools tool definition field value", font_size=10 if key != 'name' else 20)
            v = str(param).split("\n")
            y += 15 * len(v) if key != 'name' else 20 * len(v)

        bg.set('d', "m -20,-20 l 400,0 0,{:f} -400,0 z ".format(y + 50))
        tools_group.transform.add_translate(*self.svg.namedview.center)
        tools_group.transform.add_translate(-150, 0)

    ################################################################################
    #
    # Check tools and OP assignment
    #
    ################################################################################
    def check_tools_and_op(self):
        if len(self.svg.selected) <= 0:
            self.error("Selection is empty! Will compute whole drawing.")
            paths = self.paths
        else:
            paths = self.selected_paths
        #    Set group
        parent = self.selected_paths.keys()[0] if len(self.selected_paths.keys()) > 0 else self.layers[0]
        group = parent.add(Group())
        trans_ = [[1, 0.3, 0], [0, 0.5, 0]]

        self.set_markers()

        bounds = [float('inf'), float('inf'), float('-inf'), float('-inf')]
        tools_bounds = {}
        for layer in self.layers:
            if layer in paths:
                self.set_tool(layer)
                tool = self.tools[layer][0]
                tools_bounds[layer] = tools_bounds[layer] if layer in tools_bounds else [float("inf"), float("-inf")]
                for path in paths[layer]:
                    group.insert(0, PathElement(**path.attrib))
                    new = group.getchildren()[0]
                    new.style = Style(
                        stroke='#000044', stroke_width=1,
                        marker_mid='url(#CheckToolsAndOPMarker)',
                        fill=tool["style"].get('fill', '#00ff00'),
                        fill_opacity=tool["style"].get('fill-opacity', 0.5))

                    trans = trans_ * self.get_transforms(path)
                    csp = path.path.transform(trans).to_superpath()

                    path_bounds = csp_simple_bound(csp)
                    trans = str(Transform(trans))
                    bounds = [min(bounds[0], path_bounds[0]), min(bounds[1], path_bounds[1]), max(bounds[2], path_bounds[2]), max(bounds[3], path_bounds[3])]
                    tools_bounds[layer] = [min(tools_bounds[layer][0], path_bounds[1]), max(tools_bounds[layer][1], path_bounds[3])]

                    new.set("transform", trans)
                    trans_[1][2] += 20
                trans_[1][2] += 100

        for layer in self.layers:
            if layer in self.tools:
                if layer in tools_bounds:
                    tool = self.tools[layer][0]
                    g = copy.deepcopy(tool["self_group"])
                    g.attrib["gcodetools"] = "Check tools and OP assignment"
                    trans = [[1, 0.3, bounds[2]], [0, 0.5, tools_bounds[layer][0]]]
                    g.set("transform", str(Transform(trans)))
                    group.insert(0, g)

    ################################################################################
    # TODO Launch browser on help tab
    ################################################################################
    def tab_help(self):
        self.error("Tutorials, manuals and support can be found at\n"
                   " English support forum:\n"
                   "    http://www.cnc-club.ru/gcodetools\n"
                   "and Russian support forum:\n"
                   "    http://www.cnc-club.ru/gcodetoolsru")
        return

    def tab_about(self):
        return self.tab_help()

    def tab_preferences(self):
        return self.tab_help()

    ################################################################################
    # Lathe
    ################################################################################
    def generate_lathe_gcode(self, subpath, layer, feed_type):
        if len(subpath) < 2:
            return ""
        feed = " F {:f}".format(self.tool[feed_type])
        x = self.options.lathe_x_axis_remap
        z = self.options.lathe_z_axis_remap
        flip_angle = -1 if x.lower() + z.lower() in ["xz", "yx", "zy"] else 1
        alias = {"X": "I", "Y": "J", "Z": "K", "x": "i", "y": "j", "z": "k"}
        i_ = alias[x]
        k_ = alias[z]
        c = [[subpath[0][1], "move", 0, 0, 0]]
        for sp1, sp2 in zip(subpath, subpath[1:]):
            c += biarc(sp1, sp2, 0, 0)
        for i in range(1, len(c)):  # Just in case check end point of each segment
            c[i - 1][4] = c[i][0][:]
        c += [[subpath[-1][1], "end", 0, 0, 0]]
        self.draw_curve(c, layer, style=MARKER_STYLE["biarc_style_lathe_{}".format(feed_type)])

        gcode = ("G01 {} {:f} {} {:f}".format(x, c[0][4][0], z, c[0][4][1])) + feed + "\n"  # Just in case move to the start...
        for s in c:
            if s[1] == 'line':
                gcode += ("G01 {} {:f} {} {:f}".format(x, s[4][0], z, s[4][1])) + feed + "\n"
            elif s[1] == 'arc':
                r = [(s[2][0] - s[0][0]), (s[2][1] - s[0][1])]
                if (r[0] ** 2 + r[1] ** 2) > self.options.min_arc_radius ** 2:
                    r1 = (P(s[0]) - P(s[2]))
                    r2 = (P(s[4]) - P(s[2]))
                    if abs(r1.mag() - r2.mag()) < 0.001:
                        gcode += ("G02" if s[3] * flip_angle < 0 else "G03") + (" {} {:f} {} {:f} {} {:f} {} {:f}".format(x, s[4][0], z, s[4][1], i_, (s[2][0] - s[0][0]), k_, (s[2][1] - s[0][1]))) + feed + "\n"
                    else:
                        r = (r1.mag() + r2.mag()) / 2
                        gcode += ("G02" if s[3] * flip_angle < 0 else "G03") + (" {} {:f} {} {:f}".format(x, s[4][0], z, s[4][1])) + " R{:f}".format(r) + feed + "\n"
        return gcode

    def tab_lathe(self):
        self.get_info_plus()
        if not self.check_dir():
            return
        x = self.options.lathe_x_axis_remap
        z = self.options.lathe_z_axis_remap
        x = re.sub("^\\s*([XYZxyz])\\s*$", r"\1", x)
        z = re.sub("^\\s*([XYZxyz])\\s*$", r"\1", z)
        if x not in ["X", "Y", "Z", "x", "y", "z"] or z not in ["X", "Y", "Z", "x", "y", "z"]:
            self.error("Lathe X and Z axis remap should be 'X', 'Y' or 'Z'. Exiting...")
            return
        if x.lower() == z.lower():
            self.error("Lathe X and Z axis remap should be the same. Exiting...")
            return
        if x.lower() + z.lower() in ["xy", "yx"]:
            gcode_plane_selection = "G17 (Using XY plane)\n"
        if x.lower() + z.lower() in ["xz", "zx"]:
            gcode_plane_selection = "G18 (Using XZ plane)\n"
        if x.lower() + z.lower() in ["zy", "yz"]:
            gcode_plane_selection = "G19 (Using YZ plane)\n"
        self.options.lathe_x_axis_remap = x
        self.options.lathe_z_axis_remap = z

        paths = self.selected_paths
        self.tool = []
        gcode = ""
        for layer in self.layers:
            if layer in paths:
                self.set_tool(layer)
                if self.tool != self.tools[layer][0]:
                    self.tool = self.tools[layer][0]
                    self.tool["passing feed"] = float(self.tool["passing feed"] if "passing feed" in self.tool else self.tool["feed"])
                    self.tool["feed"] = float(self.tool["feed"])
                    self.tool["fine feed"] = float(self.tool["fine feed"] if "fine feed" in self.tool else self.tool["feed"])
                    gcode += ("(Change tool to {})\n".format(re.sub("\"'\\(\\)\\\\", " ", self.tool["name"]))) + self.tool["tool change gcode"] + "\n"

                for path in paths[layer]:
                    csp = self.transform_csp(path.path.to_superpath(), layer)

                    for subpath in csp:
                        # Offset the path if fine cut is defined.
                        fine_cut = subpath[:]
                        if self.options.lathe_fine_cut_width > 0:
                            r = self.options.lathe_fine_cut_width
                            if self.options.lathe_create_fine_cut_using == "Move path":
                                subpath = [[[i2[0], i2[1] + r] for i2 in i1] for i1 in subpath]
                            else:
                                # Close the path to make offset correct
                                bound = csp_simple_bound([subpath])
                                minx, miny, maxx, maxy = csp_true_bounds([subpath])
                                offsetted_subpath = csp_subpath_line_to(subpath[:], [[subpath[-1][1][0], miny[1] - r * 10], [subpath[0][1][0], miny[1] - r * 10], [subpath[0][1][0], subpath[0][1][1]]])
                                left = subpath[-1][1][0]
                                right = subpath[0][1][0]
                                if left > right:
                                    left, right = right, left
                                offsetted_subpath = csp_offset([offsetted_subpath], r if not csp_subpath_ccw(offsetted_subpath) else -r)
                                offsetted_subpath = csp_clip_by_line(offsetted_subpath, [left, 10], [left, 0])
                                offsetted_subpath = csp_clip_by_line(offsetted_subpath, [right, 0], [right, 10])
                                offsetted_subpath = csp_clip_by_line(offsetted_subpath, [0, miny[1] - r], [10, miny[1] - r])
                                # Join offsetted_subpath together
                                # Hope there won't be any circles
                                subpath = csp_join_subpaths(offsetted_subpath)[0]

                        # Create solid object from path and lathe_width
                        bound = csp_simple_bound([subpath])
                        top_start = [subpath[0][1][0], self.options.lathe_width + self.options.Zsafe + self.options.lathe_fine_cut_width]
                        top_end = [subpath[-1][1][0], self.options.lathe_width + self.options.Zsafe + self.options.lathe_fine_cut_width]

                        gcode += ("G01 {} {:f} F {:f} \n".format(z, top_start[1], self.tool["passing feed"]))
                        gcode += ("G01 {} {:f} {} {:f} F {:f} \n".format(x, top_start[0], z, top_start[1], self.tool["passing feed"]))

                        subpath = csp_concat_subpaths(csp_subpath_line_to([], [top_start, subpath[0][1]]), subpath)
                        subpath = csp_subpath_line_to(subpath, [top_end, top_start])

                        width = max(0, self.options.lathe_width - max(0, bound[1]))
                        step = self.tool['depth step']
                        steps = int(math.ceil(width / step))
                        for i in range(steps + 1):
                            current_width = self.options.lathe_width - step * i
                            intersections = []
                            for j in range(1, len(subpath)):
                                sp1 = subpath[j - 1]
                                sp2 = subpath[j]
                                intersections += [[j, k] for k in csp_line_intersection([bound[0] - 10, current_width], [bound[2] + 10, current_width], sp1, sp2)]
                                intersections += [[j, k] for k in csp_line_intersection([bound[0] - 10, current_width + step], [bound[2] + 10, current_width + step], sp1, sp2)]
                            parts = csp_subpath_split_by_points(subpath, intersections)
                            for part in parts:
                                minx, miny, maxx, maxy = csp_true_bounds([part])
                                y = (maxy[1] + miny[1]) / 2
                                if y > current_width + step:
                                    gcode += self.generate_lathe_gcode(part, layer, "passing feed")
                                elif current_width <= y <= current_width + step:
                                    gcode += self.generate_lathe_gcode(part, layer, "feed")
                                else:
                                    # full step cut
                                    part = csp_subpath_line_to([], [part[0][1], part[-1][1]])
                                    gcode += self.generate_lathe_gcode(part, layer, "feed")

                        top_start = [fine_cut[0][1][0], self.options.lathe_width + self.options.Zsafe + self.options.lathe_fine_cut_width]
                        top_end = [fine_cut[-1][1][0], self.options.lathe_width + self.options.Zsafe + self.options.lathe_fine_cut_width]
                        gcode += "\n(Fine cutting start)\n(Calculating fine cut using {})\n".format(self.options.lathe_create_fine_cut_using)
                        for i in range(int(self.options.lathe_fine_cut_count)):
                            width = self.options.lathe_fine_cut_width * (1 - float(i + 1) / self.options.lathe_fine_cut_count)
                            if width == 0:
                                current_pass = fine_cut
                            else:
                                if self.options.lathe_create_fine_cut_using == "Move path":
                                    current_pass = [[[i2[0], i2[1] + width] for i2 in i1] for i1 in fine_cut]
                                else:
                                    minx, miny, maxx, maxy = csp_true_bounds([fine_cut])
                                    offsetted_subpath = csp_subpath_line_to(fine_cut[:], [[fine_cut[-1][1][0], miny[1] - r * 10], [fine_cut[0][1][0], miny[1] - r * 10], [fine_cut[0][1][0], fine_cut[0][1][1]]])
                                    left = fine_cut[-1][1][0]
                                    right = fine_cut[0][1][0]
                                    if left > right:
                                        left, right = right, left
                                    offsetted_subpath = csp_offset([offsetted_subpath], width if not csp_subpath_ccw(offsetted_subpath) else -width)
                                    offsetted_subpath = csp_clip_by_line(offsetted_subpath, [left, 10], [left, 0])
                                    offsetted_subpath = csp_clip_by_line(offsetted_subpath, [right, 0], [right, 10])
                                    offsetted_subpath = csp_clip_by_line(offsetted_subpath, [0, miny[1] - r], [10, miny[1] - r])
                                    current_pass = csp_join_subpaths(offsetted_subpath)[0]

                            gcode += "\n(Fine cut {:d}-th cicle start)\n".format(i + 1)
                            gcode += ("G01 {} {:f} {} {:f} F {:f} \n".format(x, top_start[0], z, top_start[1], self.tool["passing feed"]))
                            gcode += ("G01 {} {:f} {} {:f} F {:f} \n".format(x, current_pass[0][1][0], z, current_pass[0][1][1] + self.options.lathe_fine_cut_width, self.tool["passing feed"]))
                            gcode += ("G01 {} {:f} {} {:f} F {:f} \n".format(x, current_pass[0][1][0], z, current_pass[0][1][1], self.tool["fine feed"]))

                            gcode += self.generate_lathe_gcode(current_pass, layer, "fine feed")
                            gcode += ("G01 {} {:f} F {:f} \n".format(z, top_start[1], self.tool["passing feed"]))
                            gcode += ("G01 {} {:f} {} {:f} F {:f} \n".format(x, top_start[0], z, top_start[1], self.tool["passing feed"]))

        self.export_gcode(gcode)

    ################################################################################
    #
    # Lathe modify path
    # Modifies path to fit current cutter. As for now straight rect cutter.
    #
    ################################################################################

    def tab_lathe_modify_path(self):
        self.get_info()
        if self.selected_paths == {} and self.options.auto_select_paths:
            paths = self.paths
            self.error("No paths are selected! Trying to work on all available paths.")
        else:
            paths = self.selected_paths

        for layer in self.layers:
            if layer in paths:
                width = self.options.lathe_rectangular_cutter_width
                for path in paths[layer]:
                    csp = self.transform_csp(path.path.to_superpath(), layer)
                    new_csp = []
                    for subpath in csp:
                        orientation = subpath[-1][1][0] > subpath[0][1][0]
                        new_subpath = []

                        # Split segment at x' and y' == 0
                        for sp1, sp2 in zip(subpath[:], subpath[1:]):
                            ax, ay, bx, by, cx, cy, dx, dy = csp_parameterize(sp1, sp2)
                            roots = cubic_solver_real(0, 3 * ax, 2 * bx, cx)
                            roots += cubic_solver_real(0, 3 * ay, 2 * by, cy)
                            new_subpath = csp_concat_subpaths(new_subpath, csp_seg_split(sp1, sp2, roots))
                        subpath = new_subpath
                        new_subpath = []
                        first_seg = True
                        for sp1, sp2 in zip(subpath[:], subpath[1:]):
                            n = csp_normalized_normal(sp1, sp2, 0)
                            a = math.atan2(n[0], n[1])
                            if a == 0 or a == math.pi:
                                n = csp_normalized_normal(sp1, sp2, 1)
                            a = math.atan2(n[0], n[1])
                            if a != 0 and a != math.pi:
                                o = 0 if 0 < a <= math.pi / 2 or -math.pi < a < -math.pi / 2 else 1
                                if not orientation:
                                    o = 1 - o

                                # Add first horizontal straight line if needed
                                if not first_seg and new_subpath == []:
                                    new_subpath = [[[subpath[0][i][0] - width * o, subpath[0][i][1]] for i in range(3)]]

                                new_subpath = csp_concat_subpaths(
                                        new_subpath,
                                        [
                                            [[sp1[i][0] - width * o, sp1[i][1]] for i in range(3)],
                                            [[sp2[i][0] - width * o, sp2[i][1]] for i in range(3)]
                                        ]
                                )
                            first_seg = False

                        # Add last horizontal straight line if needed
                        if a == 0 or a == math.pi:
                            new_subpath += [[[subpath[-1][i][0] - width * o, subpath[-1][i][1]] for i in range(3)]]

                    new_csp += [new_subpath]
                    self.draw_csp(new_csp, layer)

    ################################################################################
    # Graffiti function generates Gcode for graffiti drawer
    ################################################################################
    def tab_graffiti(self):
        self.get_info_plus()
        # Get reference points.

        def get_gcode_coordinates(point, layer):
            gcode = ''
            pos = []
            for ref_point in self.graffiti_reference_points[layer]:
                c = math.sqrt((point[0] - ref_point[0][0]) ** 2 + (point[1] - ref_point[0][1]) ** 2)
                gcode += " {} {:f}".format(ref_point[1], c)
                pos += [c]
            return pos, gcode

        def graffiti_preview_draw_point(x1, y1, color, radius=.5):
            self.graffiti_preview = self.graffiti_preview
            r, g, b, a_ = color
            for x in range(int(x1 - 1 - math.ceil(radius)), int(x1 + 1 + math.ceil(radius) + 1)):
                for y in range(int(y1 - 1 - math.ceil(radius)), int(y1 + 1 + math.ceil(radius) + 1)):
                    if x >= 0 and y >= 0 and y < len(self.graffiti_preview) and x * 4 < len(self.graffiti_preview[0]):
                        d = math.sqrt((x1 - x) ** 2 + (y1 - y) ** 2)
                        a = float(a_) * (max(0, (1 - (d - radius))) if d > radius else 1) / 256
                        self.graffiti_preview[y][x * 4] = int(r * a + (1 - a) * self.graffiti_preview[y][x * 4])
                        self.graffiti_preview[y][x * 4 + 1] = int(g * a + (1 - a) * self.graffiti_preview[y][x * 4 + 1])
                        self.graffiti_preview[y][x * 4 + 2] = int(g * b + (1 - a) * self.graffiti_preview[y][x * 4 + 2])
                        self.graffiti_preview[y][x * 4 + 3] = min(255, int(self.graffiti_preview[y][x * 4 + 3] + a * 256))

        def graffiti_preview_transform(x, y):
            tr = self.graffiti_preview_transform
            d = max(tr[2] - tr[0] + 2, tr[3] - tr[1] + 2)
            return [(x - tr[0] + 1) * self.options.graffiti_preview_size / d, self.options.graffiti_preview_size - (y - tr[1] + 1) * self.options.graffiti_preview_size / d]

        def draw_graffiti_segment(layer, start, end, feed, color=(0, 255, 0, 40), emmit=1000):
            # Emit = dots per second
            l = math.sqrt(sum([(start[i] - end[i]) ** 2 for i in range(len(start))]))
            time_ = l / feed
            c1 = self.graffiti_reference_points[layer][0][0]
            c2 = self.graffiti_reference_points[layer][1][0]
            d = math.sqrt((c1[0] - c2[0]) ** 2 + (c1[1] - c2[1]) ** 2)
            if d == 0:
                raise ValueError("Error! Reference points should not be the same!")
            for i in range(int(time_ * emmit + 1)):
                t = i / (time_ * emmit)
                r1 = start[0] * (1 - t) + end[0] * t
                r2 = start[1] * (1 - t) + end[1] * t
                a = (r1 ** 2 - r2 ** 2 + d ** 2) / (2 * d)
                h = math.sqrt(r1 ** 2 - a ** 2)
                xa = c1[0] + a * (c2[0] - c1[0]) / d
                ya = c1[1] + a * (c2[1] - c1[1]) / d

                x1 = xa + h * (c2[1] - c1[1]) / d
                x2 = xa - h * (c2[1] - c1[1]) / d
                y1 = ya - h * (c2[0] - c1[0]) / d
                y2 = ya + h * (c2[0] - c1[0]) / d

                x = x1 if y1 < y2 else x2
                y = min(y1, y2)
                x, y = graffiti_preview_transform(x, y)
                graffiti_preview_draw_point(x, y, color)

        def create_connector(p1, p2, t1, t2):
            P1 = P(p1)
            P2 = P(p2)
            N1 = P(rotate_ccw(t1))
            N2 = P(rotate_ccw(t2))
            r = self.options.graffiti_min_radius
            C1 = P1 + N1 * r
            C2 = P2 + N2 * r
            # Get closest possible centers of arcs, also we define that arcs are both ccw or both not.
            dc, N1, N2, m = (
                (
                    (((P2 - N1 * r) - (P1 - N2 * r)).l2(), -N1, -N2, 1)
                    if vectors_ccw(t1, t2) else
                    (((P2 + N1 * r) - (P1 + N2 * r)).l2(), N1, N2, -1)
                )
                if vectors_ccw((P1 - C1).to_list(), t1) == vectors_ccw((P2 - C2).to_list(), t2) else
                (
                    (((P2 + N1 * r) - (P1 - N2 * r)).l2(), N1, -N2, 1)
                    if vectors_ccw(t1, t2) else
                    (((P2 - N1 * r) - (P1 + N2 * r)).l2(), -N1, N2, 1)
                )
            )
            dc = math.sqrt(dc)
            C1 = P1 + N1 * r
            C2 = P2 + N2 * r
            Dc = C2 - C1

            if dc == 0:
                # can be joined by one arc
                return csp_from_arc(p1, p2, C1.to_list(), r, t1)

            cos = Dc.x / dc
            sin = Dc.y / dc

            p1_end = [C1.x - r * sin * m, C1.y + r * cos * m]
            p2_st = [C2.x - r * sin * m, C2.y + r * cos * m]
            if point_to_point_d2(p1, p1_end) < 0.0001 and point_to_point_d2(p2, p2_st) < 0.0001:
                return [[p1, p1, p1], [p2, p2, p2]]

            arc1 = csp_from_arc(p1, p1_end, C1.to_list(), r, t1)
            arc2 = csp_from_arc(p2_st, p2, C2.to_list(), r, [cos, sin])
            return csp_concat_subpaths(arc1, arc2)

        if not self.check_dir():
            return
        if self.selected_paths == {} and self.options.auto_select_paths:
            paths = self.paths
            self.error("No paths are selected! Trying to work on all available paths.")
        else:
            paths = self.selected_paths
        self.tool = []
        gcode = """(Header)
(Generated by gcodetools from Inkscape.)
(Using graffiti extension.)
(Header end.)"""

        minx = float("inf")
        miny = float("inf")
        maxx = float("-inf")
        maxy = float("-inf")
        # Get all reference points and path's bounds to make preview

        for layer in self.layers:
            if layer in paths:
                # Set reference points
                if layer not in self.graffiti_reference_points:
                    reference_points = None
                    for i in range(self.layers.index(layer), -1, -1):
                        if self.layers[i] in self.graffiti_reference_points:
                            reference_points = self.graffiti_reference_points[self.layers[i]]
                            self.graffiti_reference_points[layer] = self.graffiti_reference_points[self.layers[i]]
                            break
                    if reference_points is None:
                        self.error('There are no graffiti reference points for layer {}'.format(layer), "error")

                # Transform reference points
                for i in range(len(self.graffiti_reference_points[layer])):
                    self.graffiti_reference_points[layer][i][0] = self.transform(self.graffiti_reference_points[layer][i][0], layer)
                    point = self.graffiti_reference_points[layer][i]
                    gcode += "(Reference point {:f};{:f} for {} axis)\n".format(point[0][0], point[0][1], point[1])

                if self.options.graffiti_create_preview:
                    for point in self.graffiti_reference_points[layer]:
                        minx = min(minx, point[0][0])
                        miny = min(miny, point[0][1])
                        maxx = max(maxx, point[0][0])
                        maxy = max(maxy, point[0][1])
                    for path in paths[layer]:
                        csp = path.path.to_superpath()
                        csp = self.apply_transforms(path, csp)
                        csp = self.transform_csp(csp, layer)
                        bounds = csp_simple_bound(csp)
                        minx = min(minx, bounds[0])
                        miny = min(miny, bounds[1])
                        maxx = max(maxx, bounds[2])
                        maxy = max(maxy, bounds[3])

        if self.options.graffiti_create_preview:
            self.graffiti_preview = list([[255] * (4 * self.options.graffiti_preview_size) for _ in range(self.options.graffiti_preview_size)])
            self.graffiti_preview_transform = [minx, miny, maxx, maxy]

        for layer in self.layers:
            if layer in paths:

                r = re.match("\\s*\\(\\s*([0-9\\-,.]+)\\s*;\\s*([0-9\\-,.]+)\\s*\\)\\s*", self.options.graffiti_start_pos)
                if r:
                    start_point = [float(r.group(1)), float(r.group(2))]
                else:
                    start_point = [0., 0.]
                last_sp1 = [[start_point[0], start_point[1] - 10] for _ in range(3)]
                last_sp2 = [start_point for _ in range(3)]

                self.set_tool(layer)
                self.tool = self.tools[layer][0]
                # Change tool every layer. (Probably layer = color so it'll be
                # better to change it even if the tool has not been changed)
                gcode += ("(Change tool to {})\n".format(re.sub("\"'\\(\\)\\\\", " ", self.tool["name"]))) + self.tool["tool change gcode"] + "\n"

                subpaths = []
                for path in paths[layer]:
                    # Rebuild the paths to polyline.
                    csp = path.path.to_superpath()
                    csp = self.apply_transforms(path, csp)
                    csp = self.transform_csp(csp, layer)
                    subpaths += csp
                polylines = []
                while len(subpaths) > 0:
                    i = min([(point_to_point_d2(last_sp2[1], subpaths[i][0][1]), i) for i in range(len(subpaths))])[1]
                    subpath = subpaths[i][:]
                    del subpaths[i]
                    polylines += [
                        ['connector', create_connector(
                                last_sp2[1],
                                subpath[0][1],
                                csp_normalized_slope(last_sp1, last_sp2, 1.),
                                csp_normalized_slope(subpath[0], subpath[1], 0.),
                        )]
                    ]
                    polyline = []
                    spl = None

                    #  remove zerro length segments
                    i = 0
                    while i < len(subpath) - 1:
                        if cspseglength(subpath[i], subpath[i + 1]) < 0.00000001:
                            subpath[i][2] = subpath[i + 1][2]
                            del subpath[i + 1]
                        else:
                            i += 1

                    for sp1, sp2 in zip(subpath, subpath[1:]):
                        if spl is not None and abs(cross(csp_normalized_slope(spl, sp1, 1.), csp_normalized_slope(sp1, sp2, 0.))) > 0.1:  # TODO add coefficient into inx
                            # We've got sharp angle at sp1.
                            polyline += [sp1]
                            polylines += [['draw', polyline[:]]]
                            polylines += [
                                ['connector', create_connector(
                                        sp1[1],
                                        sp1[1],
                                        csp_normalized_slope(spl, sp1, 1.),
                                        csp_normalized_slope(sp1, sp2, 0.),
                                )]
                            ]
                            polyline = []
                        # max_segment_length
                        polyline += [sp1]
                        print_(polyline)
                        print_(sp1)

                        spl = sp1
                    polyline += [sp2]
                    polylines += [['draw', polyline[:]]]

                    last_sp1 = sp1
                    last_sp2 = sp2

                # Add return to start_point
                if not polylines:
                    continue
                polylines += [["connect1", [[polylines[-1][1][-1][1] for _ in range(3)], [start_point for _ in range(3)]]]]

                # Make polylines from polylines. They are still csp.
                for i in range(len(polylines)):
                    polyline = []
                    l = 0
                    print_("polylines", polylines)
                    print_(polylines[i])
                    for sp1, sp2 in zip(polylines[i][1], polylines[i][1][1:]):
                        print_(sp1, sp2)
                        l = cspseglength(sp1, sp2)
                        if l > 0.00000001:
                            polyline += [sp1[1]]
                            parts = int(math.ceil(l / self.options.graffiti_max_seg_length))
                            for j in range(1, parts):
                                polyline += [csp_at_length(sp1, sp2, float(j) / parts)]
                    if l > 0.00000001:
                        polyline += [sp2[1]]
                    print_(i)
                    polylines[i][1] = polyline

                t = 0
                last_state = None
                for polyline_ in polylines:
                    polyline = polyline_[1]
                    # Draw linearization
                    if self.options.graffiti_create_linearization_preview:
                        t += 1
                        csp = [[polyline[i], polyline[i], polyline[i]] for i in range(len(polyline))]
                        draw_csp(self.transform_csp([csp], layer, reverse=True))

                    # Export polyline to gcode
                    # we are making transform from XYZA coordinates to R1...Rn
                    # where R1...Rn are radius vectors from graffiti reference points
                    # to current (x,y) point. Also we need to assign custom feed rate
                    # for each segment. And we'll use only G01 gcode.
                    last_real_pos, g = get_gcode_coordinates(polyline[0], layer)
                    last_pos = polyline[0]
                    if polyline_[0] == "draw" and last_state != "draw":
                        gcode += self.tool['gcode before path'] + "\n"
                    for point in polyline:
                        real_pos, g = get_gcode_coordinates(point, layer)
                        real_l = sum([(real_pos[i] - last_real_pos[i]) ** 2 for i in range(len(last_real_pos))])
                        l = (last_pos[0] - point[0]) ** 2 + (last_pos[1] - point[1]) ** 2
                        if l != 0:
                            feed = self.tool['feed'] * math.sqrt(real_l / l)
                            gcode += "G01 " + g + " F {:f}\n".format(feed)
                            if self.options.graffiti_create_preview:
                                draw_graffiti_segment(layer, real_pos, last_real_pos, feed, color=(0, 0, 255, 200) if polyline_[0] == "draw" else (255, 0, 0, 200), emmit=self.options.graffiti_preview_emmit)
                            last_real_pos = real_pos
                            last_pos = point[:]
                    if polyline_[0] == "draw" and last_state != "draw":
                        gcode += self.tool['gcode after path'] + "\n"
                    last_state = polyline_[0]
        self.export_gcode(gcode, no_headers=True)
        if self.options.graffiti_create_preview:
            try:
                # Draw reference points
                for layer in self.graffiti_reference_points:
                    for point in self.graffiti_reference_points[layer]:
                        x, y = graffiti_preview_transform(point[0][0], point[0][1])
                        graffiti_preview_draw_point(x, y, (0, 255, 0, 255), radius=5)

                import png
                writer = png.Writer(width=self.options.graffiti_preview_size, height=self.options.graffiti_preview_size, size=None, greyscale=False, alpha=True, bitdepth=8, palette=None, transparent=None, background=None, gamma=None, compression=None, interlace=False, bytes_per_sample=None, planes=None, colormap=None, maxval=None, chunk_limit=1048576)
                with open(os.path.join(self.options.directory, self.options.file + ".png"), 'wb') as f:
                    writer.write(f, self.graffiti_preview)

            except:
                self.error("Png module have not been found!")

    def get_info_plus(self):
        """Like get_info(), but checks some of the values"""
        self.get_info()
        if self.orientation_points == {}:
            self.error("Orientation points have not been defined! A default set of orientation points has been automatically added.")
            self.tab_orientation(self.layers[min(1, len(self.layers) - 1)])
            self.get_info()
        if self.tools == {}:
            self.error("Cutting tool has not been defined! A default tool has been automatically added.")
            self.options.tools_library_type = "default"
            self.tab_tools_library(self.layers[min(1, len(self.layers) - 1)])
            self.get_info()

    ################################################################################
    #
    # Effect
    #
    # Main function of Gcodetools class
    #
    ################################################################################
    def effect(self):
        start_time = time.time()
        global options
        options = self.options
        options.self = self
        options.doc_root = self.document.getroot()

        # define print_ function
        global print_
        if self.options.log_create_log:
            try:
                if os.path.isfile(self.options.log_filename):
                    os.remove(self.options.log_filename)
                with open(self.options.log_filename, "a") as fhl:
                    fhl.write("""Gcodetools log file.
Started at {}.
{}
""".format(time.strftime("%d.%m.%Y %H:%M:%S"), options.log_filename))
            except:
                print_ = lambda *x: None
        else:
            print_ = lambda *x: None

        # This automatically calls any `tab_{tab_name_in_inx}` which in this
        # extension is A LOT of different functions. So see all method prefixed
        # with tab_ to find out what's supported here.
        self.options.active_tab()

        print_("------------------------------------------")
        print_("Done in {:f} seconds".format(time.time() - start_time))
        print_("End at {}.".format(time.strftime("%d.%m.%Y %H:%M:%S")))


    def tab_offset(self):
        self.get_info()
        if self.options.offset_just_get_distance:
            for layer in self.selected_paths:
                if len(self.selected_paths[layer]) == 2:
                    csp1 = self.selected_paths[layer][0].path.to_superpath()
                    csp2 = self.selected_paths[layer][1].path.to_superpath()
                    dist = csp_to_csp_distance(csp1, csp2)
                    print_(dist)
                    draw_pointer(list(csp_at_t(csp1[dist[1]][dist[2] - 1], csp1[dist[1]][dist[2]], dist[3]))
                                 + list(csp_at_t(csp2[dist[4]][dist[5] - 1], csp2[dist[4]][dist[5]], dist[6])), "red", "line", comment=math.sqrt(dist[0]))
            return
        if self.options.offset_step == 0:
            self.options.offset_step = self.options.offset_radius
        if self.options.offset_step * self.options.offset_radius < 0:
            self.options.offset_step *= -1
        time_ = time.time()
        offsets_count = 0
        for layer in self.selected_paths:
            for path in self.selected_paths[layer]:

                offset = self.options.offset_step / 2
                while abs(offset) <= abs(self.options.offset_radius):
                    offset_ = csp_offset(path.path.to_superpath(), offset)
                    offsets_count += 1
                    if offset_:
                        for iii in offset_:
                            draw_csp([iii], width=1)
                    else:
                        print_("------------Reached empty offset at radius {}".format(offset))
                        break
                    offset += self.options.offset_step
        print_()
        print_("-----------------------------------------------------------------------------------")
        print_("-----------------------------------------------------------------------------------")
        print_("-----------------------------------------------------------------------------------")
        print_()
        print_("Done in {}".format(time.time() - time_))
        print_("Total offsets count {}".format(offsets_count))


if __name__ == '__main__':
    Gcodetools().run()