1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2011 Vincent Nivoliers and contributors
#
# Contributors
# ~suv, <suv-sf@users.sf.net>
# - Voronoi Diagram algorithm and C code by Steven Fortune, 1987, http://ect.bell-labs.com/who/sjf/
# - Python translation to file voronoi.py by Bill Simons, 2005, http://www.oxfish.com/
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
"""
Create Voronoi diagram from seeds (midpoints of selected objects)
"""
import random
import inkex
from inkex import Group, Rectangle, PathElement, Vector2d as Point
import voronoi
class Voronoi(inkex.EffectExtension):
"""Extension to create a Voronoi diagram."""
def add_arguments(self, pars):
pars.add_argument('--tab')
pars.add_argument(
'--diagram-type',
default='Voronoi', dest='diagramType',
choices=['Voronoi', 'Delaunay', 'Both'],
help='Defines the type of the diagram')
pars.add_argument(
'--clip-box', choices=['Page', 'Automatic from seeds'],
default='Page', dest='clip_box',
help='Defines the bounding box of the Voronoi diagram')
pars.add_argument(
'--show-clip-box', type=inkex.Boolean,
default=False, dest='showClipBox',
help='Set this to true to write the bounding box')
pars.add_argument(
'--delaunay-fill-options', default="delaunay-no-fill",
dest='delaunayFillOptions',
help='Set the Delaunay triangles color options')
def dot(self, x, y):
"""Clipping a line by a bounding box"""
return x[0] * y[0] + x[1] * y[1]
def intersect_line_segment(self, line, vt1, vt2):
"""Get the line intersection of the two verticies"""
sc1 = self.dot(line, vt1) - line[2]
sc2 = self.dot(line, vt2) - line[2]
if sc1 * sc2 > 0:
return 0, 0, False
tmp = self.dot(line, vt1) - self.dot(line, vt2)
if tmp == 0:
return 0, 0, False
und = (line[2] - self.dot(line, vt2)) / tmp
vt0 = 1 - und
return und * vt1[0] + vt0 * vt2[0], \
und * vt1[1] + vt0 * vt2[1], \
True
def clip_edge(self, vertices, lines, edge, bbox):
# bounding box corners
bbc = [
(bbox[0], bbox[2]),
(bbox[1], bbox[2]),
(bbox[1], bbox[3]),
(bbox[0], bbox[3]),
]
# record intersections of the line with bounding box edges
if edge[0] >= len(lines):
return []
line = (lines[edge[0]])
interpoints = []
for i in range(4):
pnt = self.intersect_line_segment(line, bbc[i], bbc[(i + 1) % 4])
if pnt[2]:
interpoints.append(pnt)
# if the edge has no intersection, return empty intersection
if len(interpoints) < 2:
return []
if len(interpoints) > 2: # happens when the edge crosses the corner of the box
interpoints = list(set(interpoints)) # remove doubles
# points of the edge
vt1 = vertices[edge[1]]
interpoints.append((vt1[0], vt1[1], False))
vt2 = vertices[edge[2]]
interpoints.append((vt2[0], vt2[1], False))
# sorting the points in the widest range to get them in order on the line
minx = interpoints[0][0]
miny = interpoints[0][1]
maxx = interpoints[0][0]
maxy = interpoints[0][1]
for point in interpoints:
minx = min(point[0], minx)
maxx = max(point[0], maxx)
miny = min(point[1], miny)
maxy = max(point[1], maxy)
if (maxx - minx) > (maxy - miny):
interpoints.sort()
else:
interpoints.sort(key=lambda pt: pt[1])
start = []
inside = False # true when the part of the line studied is in the clip box
start_write = False # true when the part of the line is in the edge segment
for point in interpoints:
if point[2]: # The point is a bounding box intersection
if inside:
if start_write:
return [[start[0], start[1]], [point[0], point[1]]]
return []
else:
if start_write:
start = point
inside = not inside
else: # The point is a segment endpoint
if start_write:
if inside:
# a vertex ends the line inside the bounding box
return [[start[0], start[1]], [point[0], point[1]]]
return []
else:
if inside:
start = point
start_write = not start_write
def effect(self):
# Check that elements have been selected
if not self.svg.selected:
inkex.errormsg(_("Please select objects!"))
return
linestyle = {
'stroke': '#000000',
'stroke-width': str(self.svg.unittouu('1px')),
'fill': 'none',
'stroke-linecap': 'round',
'stroke-linejoin': 'round'
}
facestyle = {
'stroke': '#000000',
'stroke-width': str(self.svg.unittouu('1px')),
'fill': 'none',
'stroke-linecap': 'round',
'stroke-linejoin': 'round'
}
parent_group = self.svg.selection.first().getparent()
trans = parent_group.composed_transform()
invtrans = None
if trans:
invtrans = -trans
# Recovery of the selected objects
pts = []
nodes = []
seeds = []
fills = []
for node in self.svg.selected.values():
nodes.append(node)
bbox = node.bounding_box()
if bbox:
center_x, center_y = bbox.center
point = [center_x, center_y]
if trans:
point = trans.apply_to_point(point)
pts.append(Point(*point))
if self.options.delaunayFillOptions != "delaunay-no-fill":
fills.append(node.style.get('fill', 'none'))
seeds.append(Point(center_x, center_y))
# Creation of groups to store the result
if self.options.diagramType != 'Delaunay':
# Voronoi
group_voronoi = parent_group.add(Group())
group_voronoi.set('inkscape:label', 'Voronoi')
if invtrans:
group_voronoi.transform *= invtrans
if self.options.diagramType != 'Voronoi':
# Delaunay
group_delaunay = parent_group.add(Group())
group_delaunay.set('inkscape:label', 'Delaunay')
# Clipping box handling
if self.options.diagramType != 'Delaunay':
# Clipping bounding box creation
group_bbox = sum([node.bounding_box() for node in nodes], None)
# Clipbox is the box to which the Voronoi diagram is restricted
if self.options.clip_box == 'Page':
svg = self.document.getroot()
width = self.svg.unittouu(svg.get('width'))
height = self.svg.unittouu(svg.get('height'))
clip_box = (0, width, 0, height)
else:
clip_box = (2 * group_bbox[0] - group_bbox[1],
2 * group_bbox[1] - group_bbox[0],
2 * group_bbox[2] - group_bbox[3],
2 * group_bbox[3] - group_bbox[2])
# Safebox adds points so that no Voronoi edge in clip_box is infinite
safe_box = (2 * clip_box[0] - clip_box[1],
2 * clip_box[1] - clip_box[0],
2 * clip_box[2] - clip_box[3],
2 * clip_box[3] - clip_box[2])
pts.append(Point(safe_box[0], safe_box[2]))
pts.append(Point(safe_box[1], safe_box[2]))
pts.append(Point(safe_box[1], safe_box[3]))
pts.append(Point(safe_box[0], safe_box[3]))
if self.options.showClipBox:
# Add the clip box to the drawing
rect = group_voronoi.add(Rectangle())
rect.set('x', str(clip_box[0]))
rect.set('y', str(clip_box[2]))
rect.set('width', str(clip_box[1] - clip_box[0]))
rect.set('height', str(clip_box[3] - clip_box[2]))
rect.style = linestyle
# Voronoi diagram generation
if self.options.diagramType != 'Delaunay':
vertices, lines, edges = voronoi.computeVoronoiDiagram(pts)
for edge in edges:
vindex1, vindex2 = edge[1:]
if (vindex1 < 0) or (vindex2 < 0):
continue # infinite lines have no need to be handled in the clipped box
else:
segment = self.clip_edge(vertices, lines, edge, clip_box)
# segment = [vertices[vindex1],vertices[vindex2]] # deactivate clipping
if len(segment) > 1:
x1, y1 = segment[0]
x2, y2 = segment[1]
cmds = [['M', [x1, y1]], ['L', [x2, y2]]]
path = group_voronoi.add(PathElement())
path.set('d', str(inkex.Path(cmds)))
path.style = linestyle
if self.options.diagramType != 'Voronoi':
triangles = voronoi.computeDelaunayTriangulation(seeds)
i = 0
if self.options.delaunayFillOptions == "delaunay-fill":
random.seed("inkscape")
for triangle in triangles:
pt1 = seeds[triangle[0]]
pt2 = seeds[triangle[1]]
pt3 = seeds[triangle[2]]
cmds = [['M', [pt1.x, pt1.y]],
['L', [pt2.x, pt2.y]],
['L', [pt3.x, pt3.y]],
['Z', []]]
if self.options.delaunayFillOptions == "delaunay-fill" \
or self.options.delaunayFillOptions == "delaunay-fill-random":
facestyle = {
'stroke': fills[triangle[random.randrange(0, 2)]],
'stroke-width': str(self.svg.unittouu('0.005px')),
'fill': fills[triangle[random.randrange(0, 2)]],
'stroke-linecap': 'round',
'stroke-linejoin': 'round'
}
path = group_delaunay.add(PathElement())
path.set('d', str(inkex.Path(cmds)))
path.style = facestyle
i += 1
if __name__ == "__main__":
Voronoi().run()
|