summaryrefslogtreecommitdiffstats
path: root/chart2/source/view/axes/ScaleAutomatism.cxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
commit940b4d1848e8c70ab7642901a68594e8016caffc (patch)
treeeb72f344ee6c3d9b80a7ecc079ea79e9fba8676d /chart2/source/view/axes/ScaleAutomatism.cxx
parentInitial commit. (diff)
downloadlibreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.tar.xz
libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.zip
Adding upstream version 1:7.0.4.upstream/1%7.0.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'chart2/source/view/axes/ScaleAutomatism.cxx')
-rw-r--r--chart2/source/view/axes/ScaleAutomatism.cxx990
1 files changed, 990 insertions, 0 deletions
diff --git a/chart2/source/view/axes/ScaleAutomatism.cxx b/chart2/source/view/axes/ScaleAutomatism.cxx
new file mode 100644
index 000000000..10fc3ccd4
--- /dev/null
+++ b/chart2/source/view/axes/ScaleAutomatism.cxx
@@ -0,0 +1,990 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <ScaleAutomatism.hxx>
+#include "Tickmarks_Equidistant.hxx"
+#include <DateHelper.hxx>
+#include "DateScaling.hxx"
+#include <AxisHelper.hxx>
+#include <com/sun/star/chart/TimeUnit.hpp>
+#include <com/sun/star/chart2/AxisType.hpp>
+
+#include <rtl/math.hxx>
+#include <limits>
+
+namespace chart
+{
+using namespace ::com::sun::star;
+using namespace ::com::sun::star::chart2;
+using ::com::sun::star::chart::TimeUnit::DAY;
+using ::com::sun::star::chart::TimeUnit::MONTH;
+using ::com::sun::star::chart::TimeUnit::YEAR;
+
+const sal_Int32 MAXIMUM_MANUAL_INCREMENT_COUNT = 500;
+const sal_Int32 MAXIMUM_SUB_INCREMENT_COUNT = 100;
+
+static sal_Int32 lcl_getMaximumAutoIncrementCount( sal_Int32 nAxisType )
+{
+ sal_Int32 nMaximumAutoIncrementCount = 10;
+ if( nAxisType==AxisType::DATE )
+ nMaximumAutoIncrementCount = MAXIMUM_MANUAL_INCREMENT_COUNT;
+ return nMaximumAutoIncrementCount;
+}
+
+namespace
+{
+
+void lcl_ensureMaximumSubIncrementCount( sal_Int32& rnSubIntervalCount )
+{
+ if( rnSubIntervalCount > MAXIMUM_SUB_INCREMENT_COUNT )
+ rnSubIntervalCount = MAXIMUM_SUB_INCREMENT_COUNT;
+}
+
+}//end anonymous namespace
+
+ExplicitScaleData::ExplicitScaleData()
+ : Minimum(0.0)
+ , Maximum(10.0)
+ , Origin(0.0)
+ , Orientation(css::chart2::AxisOrientation_MATHEMATICAL)
+ , Scaling()
+ , AxisType(css::chart2::AxisType::REALNUMBER)
+ , ShiftedCategoryPosition(false)
+ , TimeResolution(css::chart::TimeUnit::DAY)
+ , NullDate(30,12,1899)
+{
+}
+
+ExplicitSubIncrement::ExplicitSubIncrement()
+ : IntervalCount(2)
+ , PostEquidistant(true)
+{
+}
+
+ExplicitIncrementData::ExplicitIncrementData()
+ : MajorTimeInterval(1,css::chart::TimeUnit::DAY)
+ , MinorTimeInterval(1,css::chart::TimeUnit::DAY)
+ , Distance(1.0)
+ , PostEquidistant(true)
+ , BaseValue(0.0)
+ , SubIncrements()
+{
+}
+
+ScaleAutomatism::ScaleAutomatism( const ScaleData& rSourceScale, const Date& rNullDate )
+ : m_aSourceScale( rSourceScale )
+ , m_fValueMinimum( 0.0 )
+ , m_fValueMaximum( 0.0 )
+ , m_nMaximumAutoMainIncrementCount( lcl_getMaximumAutoIncrementCount( rSourceScale.AxisType ) )
+ , m_bExpandBorderToIncrementRhythm( false )
+ , m_bExpandIfValuesCloseToBorder( false )
+ , m_bExpandWideValuesToZero( false )
+ , m_bExpandNarrowValuesTowardZero( false )
+ , m_nTimeResolution(css::chart::TimeUnit::DAY)
+ , m_aNullDate(rNullDate)
+{
+ resetValueRange();
+
+ double fExplicitOrigin = 0.0;
+ if( m_aSourceScale.Origin >>= fExplicitOrigin )
+ expandValueRange( fExplicitOrigin, fExplicitOrigin);
+}
+
+void ScaleAutomatism::resetValueRange( )
+{
+ ::rtl::math::setNan( &m_fValueMinimum );
+ ::rtl::math::setNan( &m_fValueMaximum );
+}
+
+void ScaleAutomatism::expandValueRange( double fMinimum, double fMaximum )
+{
+ // if m_fValueMinimum and m_fValueMaximum == 0, it means that they were not determined.
+ // m_fValueMinimum == 0 makes impossible to determine real minimum,
+ // so they need to be reset tdf#96807
+ if( (m_fValueMinimum == 0.0) && (m_fValueMaximum == 0.0) )
+ resetValueRange();
+ if( (fMinimum < m_fValueMinimum) || std::isnan( m_fValueMinimum ) )
+ m_fValueMinimum = fMinimum;
+ if( (fMaximum > m_fValueMaximum) || std::isnan( m_fValueMaximum ) )
+ m_fValueMaximum = fMaximum;
+}
+
+void ScaleAutomatism::setAutoScalingOptions(
+ bool bExpandBorderToIncrementRhythm,
+ bool bExpandIfValuesCloseToBorder,
+ bool bExpandWideValuesToZero,
+ bool bExpandNarrowValuesTowardZero )
+{
+ // if called multiple times, enable an option, if it is set in at least one call
+ m_bExpandBorderToIncrementRhythm |= bExpandBorderToIncrementRhythm;
+ m_bExpandIfValuesCloseToBorder |= bExpandIfValuesCloseToBorder;
+ m_bExpandWideValuesToZero |= bExpandWideValuesToZero;
+ m_bExpandNarrowValuesTowardZero |= bExpandNarrowValuesTowardZero;
+
+ if( m_aSourceScale.AxisType==AxisType::PERCENT )
+ m_bExpandIfValuesCloseToBorder = false;
+}
+
+void ScaleAutomatism::setMaximumAutoMainIncrementCount( sal_Int32 nMaximumAutoMainIncrementCount )
+{
+ if( nMaximumAutoMainIncrementCount < 2 )
+ m_nMaximumAutoMainIncrementCount = 2; //#i82006
+ else if( nMaximumAutoMainIncrementCount > lcl_getMaximumAutoIncrementCount( m_aSourceScale.AxisType ) )
+ m_nMaximumAutoMainIncrementCount = lcl_getMaximumAutoIncrementCount( m_aSourceScale.AxisType );
+ else
+ m_nMaximumAutoMainIncrementCount = nMaximumAutoMainIncrementCount;
+}
+
+void ScaleAutomatism::setAutomaticTimeResolution( sal_Int32 nTimeResolution )
+{
+ m_nTimeResolution = nTimeResolution;
+}
+
+void ScaleAutomatism::calculateExplicitScaleAndIncrement(
+ ExplicitScaleData& rExplicitScale, ExplicitIncrementData& rExplicitIncrement ) const
+{
+ // fill explicit scale
+ rExplicitScale.Orientation = m_aSourceScale.Orientation;
+ rExplicitScale.Scaling = m_aSourceScale.Scaling;
+ rExplicitScale.AxisType = m_aSourceScale.AxisType;
+ rExplicitScale.NullDate = m_aNullDate;
+
+ bool bAutoMinimum = !(m_aSourceScale.Minimum >>= rExplicitScale.Minimum);
+ bool bAutoMaximum = !(m_aSourceScale.Maximum >>= rExplicitScale.Maximum);
+ bool bAutoOrigin = !(m_aSourceScale.Origin >>= rExplicitScale.Origin);
+
+ // automatic scale minimum
+ if( bAutoMinimum )
+ {
+ if( m_aSourceScale.AxisType==AxisType::PERCENT )
+ rExplicitScale.Minimum = 0.0;
+ else if( std::isnan( m_fValueMinimum ) )
+ {
+ if( m_aSourceScale.AxisType==AxisType::DATE )
+ rExplicitScale.Minimum = 36526.0; //1.1.2000
+ else
+ rExplicitScale.Minimum = 0.0; //@todo get Minimum from scaling or from plotter????
+ }
+ else
+ rExplicitScale.Minimum = m_fValueMinimum;
+ }
+
+ // automatic scale maximum
+ if( bAutoMaximum )
+ {
+ if( m_aSourceScale.AxisType==AxisType::PERCENT )
+ rExplicitScale.Maximum = 1.0;
+ else if( std::isnan( m_fValueMaximum ) )
+ {
+ if( m_aSourceScale.AxisType==AxisType::DATE )
+ rExplicitScale.Maximum = 40179.0; //1.1.2010
+ else
+ rExplicitScale.Maximum = 10.0; //@todo get Maximum from scaling or from plotter????
+ }
+ else
+ rExplicitScale.Maximum = m_fValueMaximum;
+ }
+
+ //fill explicit increment
+
+ rExplicitScale.ShiftedCategoryPosition = m_aSourceScale.ShiftedCategoryPosition;
+ bool bIsLogarithm = false;
+
+ //minimum and maximum of the ExplicitScaleData may be changed if allowed
+ if( m_aSourceScale.AxisType==AxisType::DATE )
+ calculateExplicitIncrementAndScaleForDateTimeAxis( rExplicitScale, rExplicitIncrement, bAutoMinimum, bAutoMaximum );
+ else if( m_aSourceScale.AxisType==AxisType::CATEGORY || m_aSourceScale.AxisType==AxisType::SERIES )
+ calculateExplicitIncrementAndScaleForCategory( rExplicitScale, rExplicitIncrement, bAutoMinimum, bAutoMaximum );
+ else
+ {
+ bIsLogarithm = AxisHelper::isLogarithmic( rExplicitScale.Scaling );
+ if( bIsLogarithm )
+ calculateExplicitIncrementAndScaleForLogarithmic( rExplicitScale, rExplicitIncrement, bAutoMinimum, bAutoMaximum );
+ else
+ calculateExplicitIncrementAndScaleForLinear( rExplicitScale, rExplicitIncrement, bAutoMinimum, bAutoMaximum );
+ }
+
+ // automatic origin
+ if( bAutoOrigin )
+ {
+ // #i71415# automatic origin for logarithmic axis
+ double fDefaulOrigin = bIsLogarithm ? 1.0 : 0.0;
+
+ if( fDefaulOrigin < rExplicitScale.Minimum )
+ fDefaulOrigin = rExplicitScale.Minimum;
+ else if( fDefaulOrigin > rExplicitScale.Maximum )
+ fDefaulOrigin = rExplicitScale.Maximum;
+
+ rExplicitScale.Origin = fDefaulOrigin;
+ }
+}
+
+void ScaleAutomatism::calculateExplicitIncrementAndScaleForCategory(
+ ExplicitScaleData& rExplicitScale,
+ ExplicitIncrementData& rExplicitIncrement,
+ bool bAutoMinimum, bool bAutoMaximum ) const
+{
+ // no scaling for categories
+ rExplicitScale.Scaling.clear();
+
+ if( rExplicitScale.ShiftedCategoryPosition )
+ rExplicitScale.Maximum += 1.0;
+
+ // ensure that at least one category is visible
+ if( rExplicitScale.Maximum <= rExplicitScale.Minimum )
+ rExplicitScale.Maximum = rExplicitScale.Minimum + 1.0;
+
+ // default increment settings
+ rExplicitIncrement.PostEquidistant = true; // does not matter anyhow
+ rExplicitIncrement.Distance = 1.0; // category axis always have a main increment of 1
+ rExplicitIncrement.BaseValue = 0.0; // category axis always have a base of 0
+
+ // automatic minimum and maximum
+ if( bAutoMinimum && m_bExpandBorderToIncrementRhythm )
+ rExplicitScale.Minimum = EquidistantTickFactory::getMinimumAtIncrement( rExplicitScale.Minimum, rExplicitIncrement );
+ if( bAutoMaximum && m_bExpandBorderToIncrementRhythm )
+ rExplicitScale.Maximum = EquidistantTickFactory::getMaximumAtIncrement( rExplicitScale.Maximum, rExplicitIncrement );
+
+ //prevent performance killover
+ double fDistanceCount = ::rtl::math::approxFloor( (rExplicitScale.Maximum-rExplicitScale.Minimum) / rExplicitIncrement.Distance );
+ if( static_cast< sal_Int32 >( fDistanceCount ) > MAXIMUM_MANUAL_INCREMENT_COUNT )
+ {
+ double fMinimumFloor = ::rtl::math::approxFloor( rExplicitScale.Minimum );
+ double fMaximumCeil = ::rtl::math::approxCeil( rExplicitScale.Maximum );
+ rExplicitIncrement.Distance = ::rtl::math::approxCeil( (fMaximumCeil - fMinimumFloor) / MAXIMUM_MANUAL_INCREMENT_COUNT );
+ }
+
+ //fill explicit sub increment
+ sal_Int32 nSubCount = m_aSourceScale.IncrementData.SubIncrements.getLength();
+ for( sal_Int32 nN=0; nN<nSubCount; nN++ )
+ {
+ ExplicitSubIncrement aExplicitSubIncrement;
+ const SubIncrement& rSubIncrement= m_aSourceScale.IncrementData.SubIncrements[nN];
+ if(!(rSubIncrement.IntervalCount>>=aExplicitSubIncrement.IntervalCount))
+ {
+ //scaling dependent
+ //@todo autocalculate IntervalCount dependent on MainIncrement and scaling
+ aExplicitSubIncrement.IntervalCount = 2;
+ }
+ lcl_ensureMaximumSubIncrementCount( aExplicitSubIncrement.IntervalCount );
+ if(!(rSubIncrement.PostEquidistant>>=aExplicitSubIncrement.PostEquidistant))
+ {
+ //scaling dependent
+ aExplicitSubIncrement.PostEquidistant = false;
+ }
+ rExplicitIncrement.SubIncrements.push_back(aExplicitSubIncrement);
+ }
+}
+
+void ScaleAutomatism::calculateExplicitIncrementAndScaleForLogarithmic(
+ ExplicitScaleData& rExplicitScale,
+ ExplicitIncrementData& rExplicitIncrement,
+ bool bAutoMinimum, bool bAutoMaximum ) const
+{
+ // *** STEP 1: initialize the range data ***
+
+ const double fInputMinimum = rExplicitScale.Minimum;
+ const double fInputMaximum = rExplicitScale.Maximum;
+
+ double fSourceMinimum = rExplicitScale.Minimum;
+ double fSourceMaximum = rExplicitScale.Maximum;
+
+ // set automatic PostEquidistant to true (maybe scaling dependent?)
+ // Note: scaling with PostEquidistant==false is untested and needs review
+ if( !(m_aSourceScale.IncrementData.PostEquidistant >>= rExplicitIncrement.PostEquidistant) )
+ rExplicitIncrement.PostEquidistant = true;
+
+ /* All following scaling code will operate on the logarithms of the source
+ values. In the last step, the original values will be restored. */
+ uno::Reference< XScaling > xScaling = rExplicitScale.Scaling;
+ if( !xScaling.is() )
+ xScaling.set( AxisHelper::createLogarithmicScaling() );
+ uno::Reference< XScaling > xInverseScaling = xScaling->getInverseScaling();
+
+ fSourceMinimum = xScaling->doScaling( fSourceMinimum );
+ if( !std::isfinite( fSourceMinimum ) )
+ fSourceMinimum = 0.0;
+ else if( ::rtl::math::approxEqual( fSourceMinimum, ::rtl::math::approxFloor( fSourceMinimum ) ) )
+ fSourceMinimum = ::rtl::math::approxFloor( fSourceMinimum );
+
+ fSourceMaximum = xScaling->doScaling( fSourceMaximum );
+ if( !std::isfinite( fSourceMaximum ) )
+ fSourceMaximum = 0.0;
+ else if( ::rtl::math::approxEqual( fSourceMaximum, ::rtl::math::approxFloor( fSourceMaximum ) ) )
+ fSourceMaximum = ::rtl::math::approxFloor( fSourceMaximum );
+
+ /* If range is invalid (minimum greater than maximum), change one of the
+ variable limits to validate the range. In this step, a zero-sized range
+ is still allowed. */
+ if( fSourceMinimum > fSourceMaximum )
+ {
+ // force changing the maximum, if both limits are fixed
+ if( bAutoMaximum || !bAutoMinimum )
+ fSourceMaximum = fSourceMinimum;
+ else
+ fSourceMinimum = fSourceMaximum;
+ }
+
+ /* If maximum is less than 0 (and therefore minimum too), minimum and
+ maximum will be negated and swapped to make the following algorithms
+ easier. Example: Both ranges [2,5] and [-5,-2] will be processed as
+ [2,5], and the latter will be swapped back later. The range [0,0] is
+ explicitly excluded from swapping (this would result in [-1,0] instead
+ of the expected [0,1]). */
+ bool bSwapAndNegateRange = (fSourceMinimum < 0.0) && (fSourceMaximum <= 0.0);
+ if( bSwapAndNegateRange )
+ {
+ double fTempValue = fSourceMinimum;
+ fSourceMinimum = -fSourceMaximum;
+ fSourceMaximum = -fTempValue;
+ std::swap( bAutoMinimum, bAutoMaximum );
+ }
+
+ // *** STEP 2: find temporary (unrounded) axis minimum and maximum ***
+
+ double fTempMinimum = fSourceMinimum;
+ double fTempMaximum = fSourceMaximum;
+
+ /* If minimum is variable and greater than 0 (and therefore maximum too),
+ means all original values are greater than 1 (or all values are less
+ than 1, and the range has been swapped above), then: */
+ if( bAutoMinimum && (fTempMinimum > 0.0) )
+ {
+ double fMinimumFloor = ::rtl::math::approxFloor( fTempMinimum );
+ double fMaximumFloor = ::rtl::math::approxFloor( fTempMaximum );
+ // handle the exact value B^(n+1) to be in the range [B^n,B^(n+1)]
+ if( ::rtl::math::approxEqual( fTempMaximum, fMaximumFloor ) )
+ fMaximumFloor -= 1.0;
+
+ if( fMinimumFloor == fMaximumFloor )
+ {
+ /* if minimum and maximum are in one increment interval, expand
+ minimum toward 0 to make the 'shorter' data points visible. */
+ if( m_bExpandNarrowValuesTowardZero )
+ fTempMinimum -= 1.0;
+ }
+ }
+
+ /* If range is still zero-sized (e.g. when minimum is fixed), set minimum
+ to 0, which makes the axis start/stop at the value 1. */
+ if( fTempMinimum == fTempMaximum )
+ {
+ if( bAutoMinimum && (fTempMaximum > 0.0) )
+ fTempMinimum = 0.0;
+ else
+ fTempMaximum += 1.0; // always add one interval, even if maximum is fixed
+ }
+
+ // *** STEP 3: calculate main interval size ***
+
+ // base value (anchor position of the intervals), already scaled
+ if( !(m_aSourceScale.IncrementData.BaseValue >>= rExplicitIncrement.BaseValue) )
+ {
+ //scaling dependent
+ //@maybe todo is this default also plotter dependent ??
+ if( !bAutoMinimum )
+ rExplicitIncrement.BaseValue = fTempMinimum;
+ else if( !bAutoMaximum )
+ rExplicitIncrement.BaseValue = fTempMaximum;
+ else
+ rExplicitIncrement.BaseValue = 0.0;
+ }
+
+ // calculate automatic interval
+ bool bAutoDistance = !(m_aSourceScale.IncrementData.Distance >>= rExplicitIncrement.Distance);
+ if( bAutoDistance )
+ rExplicitIncrement.Distance = 0.0;
+
+ /* Restrict number of allowed intervals with user-defined distance to
+ MAXIMUM_MANUAL_INCREMENT_COUNT. */
+ sal_Int32 nMaxMainIncrementCount = bAutoDistance ?
+ m_nMaximumAutoMainIncrementCount : MAXIMUM_MANUAL_INCREMENT_COUNT;
+
+ // repeat calculation until number of intervals are valid
+ bool bNeedIteration = true;
+ bool bHasCalculatedDistance = false;
+ while( bNeedIteration )
+ {
+ if( bAutoDistance )
+ {
+ // first iteration: calculate interval size from axis limits
+ if( !bHasCalculatedDistance )
+ {
+ double fMinimumFloor = ::rtl::math::approxFloor( fTempMinimum );
+ double fMaximumCeil = ::rtl::math::approxCeil( fTempMaximum );
+ rExplicitIncrement.Distance = ::rtl::math::approxCeil( (fMaximumCeil - fMinimumFloor) / nMaxMainIncrementCount );
+ }
+ else
+ {
+ // following iterations: increase distance
+ rExplicitIncrement.Distance += 1.0;
+ }
+
+ // for next iteration: distance calculated -> use else path to increase
+ bHasCalculatedDistance = true;
+ }
+
+ // *** STEP 4: additional space above or below the data points ***
+
+ double fAxisMinimum = fTempMinimum;
+ double fAxisMaximum = fTempMaximum;
+
+ // round to entire multiples of the distance and add additional space
+ if( bAutoMinimum && m_bExpandBorderToIncrementRhythm )
+ {
+ fAxisMinimum = EquidistantTickFactory::getMinimumAtIncrement( fAxisMinimum, rExplicitIncrement );
+
+ //ensure valid values after scaling #i100995#
+ if( !bAutoDistance )
+ {
+ double fCheck = xInverseScaling->doScaling( fAxisMinimum );
+ if( !std::isfinite( fCheck ) || fCheck <= 0 )
+ {
+ bAutoDistance = true;
+ bHasCalculatedDistance = false;
+ continue;
+ }
+ }
+ }
+ if( bAutoMaximum && m_bExpandBorderToIncrementRhythm )
+ {
+ fAxisMaximum = EquidistantTickFactory::getMaximumAtIncrement( fAxisMaximum, rExplicitIncrement );
+
+ //ensure valid values after scaling #i100995#
+ if( !bAutoDistance )
+ {
+ double fCheck = xInverseScaling->doScaling( fAxisMaximum );
+ if( !std::isfinite( fCheck ) || fCheck <= 0 )
+ {
+ bAutoDistance = true;
+ bHasCalculatedDistance = false;
+ continue;
+ }
+ }
+ }
+
+ // set the resulting limits (swap back to negative range if needed)
+ if( bSwapAndNegateRange )
+ {
+ rExplicitScale.Minimum = -fAxisMaximum;
+ rExplicitScale.Maximum = -fAxisMinimum;
+ }
+ else
+ {
+ rExplicitScale.Minimum = fAxisMinimum;
+ rExplicitScale.Maximum = fAxisMaximum;
+ }
+
+ /* If the number of intervals is too high (e.g. due to invalid fixed
+ distance or due to added space above or below data points),
+ calculate again with increased distance. */
+ double fDistanceCount = ::rtl::math::approxFloor( (fAxisMaximum - fAxisMinimum) / rExplicitIncrement.Distance );
+ bNeedIteration = static_cast< sal_Int32 >( fDistanceCount ) > nMaxMainIncrementCount;
+ // if manual distance is invalid, trigger automatic calculation
+ if( bNeedIteration )
+ bAutoDistance = true;
+
+ // convert limits back to logarithmic scale
+ rExplicitScale.Minimum = xInverseScaling->doScaling( rExplicitScale.Minimum );
+ rExplicitScale.Maximum = xInverseScaling->doScaling( rExplicitScale.Maximum );
+
+ //ensure valid values after scaling #i100995#
+ if( !std::isfinite( rExplicitScale.Minimum ) || rExplicitScale.Minimum <= 0)
+ {
+ rExplicitScale.Minimum = fInputMinimum;
+ if( !std::isfinite( rExplicitScale.Minimum ) || rExplicitScale.Minimum <= 0 )
+ rExplicitScale.Minimum = 1.0;
+ }
+ if( !std::isfinite( rExplicitScale.Maximum) || rExplicitScale.Maximum <= 0 )
+ {
+ rExplicitScale.Maximum= fInputMaximum;
+ if( !std::isfinite( rExplicitScale.Maximum) || rExplicitScale.Maximum <= 0 )
+ rExplicitScale.Maximum = 10.0;
+ }
+ if( rExplicitScale.Maximum < rExplicitScale.Minimum )
+ std::swap( rExplicitScale.Maximum, rExplicitScale.Minimum );
+ }
+
+ //fill explicit sub increment
+ sal_Int32 nSubCount = m_aSourceScale.IncrementData.SubIncrements.getLength();
+ for( sal_Int32 nN=0; nN<nSubCount; nN++ )
+ {
+ ExplicitSubIncrement aExplicitSubIncrement;
+ const SubIncrement& rSubIncrement = m_aSourceScale.IncrementData.SubIncrements[nN];
+ if(!(rSubIncrement.IntervalCount>>=aExplicitSubIncrement.IntervalCount))
+ {
+ //scaling dependent
+ //@todo autocalculate IntervalCount dependent on MainIncrement and scaling
+ aExplicitSubIncrement.IntervalCount = 9;
+ }
+ lcl_ensureMaximumSubIncrementCount( aExplicitSubIncrement.IntervalCount );
+ if(!(rSubIncrement.PostEquidistant>>=aExplicitSubIncrement.PostEquidistant))
+ {
+ //scaling dependent
+ aExplicitSubIncrement.PostEquidistant = false;
+ }
+ rExplicitIncrement.SubIncrements.push_back(aExplicitSubIncrement);
+ }
+}
+
+void ScaleAutomatism::calculateExplicitIncrementAndScaleForDateTimeAxis(
+ ExplicitScaleData& rExplicitScale,
+ ExplicitIncrementData& rExplicitIncrement,
+ bool bAutoMinimum, bool bAutoMaximum ) const
+{
+ Date aMinDate(m_aNullDate); aMinDate.AddDays(::rtl::math::approxFloor(rExplicitScale.Minimum));
+ Date aMaxDate(m_aNullDate); aMaxDate.AddDays(::rtl::math::approxFloor(rExplicitScale.Maximum));
+ rExplicitIncrement.PostEquidistant = false;
+
+ if( aMinDate > aMaxDate )
+ {
+ std::swap(aMinDate,aMaxDate);
+ }
+
+ if( !(m_aSourceScale.TimeIncrement.TimeResolution >>= rExplicitScale.TimeResolution) )
+ rExplicitScale.TimeResolution = m_nTimeResolution;
+
+ rExplicitScale.Scaling = new DateScaling(m_aNullDate,rExplicitScale.TimeResolution,false);
+
+ // choose min and max suitable to time resolution
+ switch( rExplicitScale.TimeResolution )
+ {
+ case DAY:
+ if( rExplicitScale.ShiftedCategoryPosition )
+ ++aMaxDate; //for explicit scales we need one interval more (maximum excluded)
+ break;
+ case MONTH:
+ aMinDate.SetDay(1);
+ aMaxDate.SetDay(1);
+ if( rExplicitScale.ShiftedCategoryPosition )
+ aMaxDate = DateHelper::GetDateSomeMonthsAway(aMaxDate,1);//for explicit scales we need one interval more (maximum excluded)
+ if( DateHelper::IsLessThanOneMonthAway( aMinDate, aMaxDate ) )
+ {
+ if( bAutoMaximum || !bAutoMinimum )
+ aMaxDate = DateHelper::GetDateSomeMonthsAway(aMinDate,1);
+ else
+ aMinDate = DateHelper::GetDateSomeMonthsAway(aMaxDate,-1);
+ }
+ break;
+ case YEAR:
+ aMinDate.SetDay(1);
+ aMinDate.SetMonth(1);
+ aMaxDate.SetDay(1);
+ aMaxDate.SetMonth(1);
+ if( rExplicitScale.ShiftedCategoryPosition )
+ aMaxDate = DateHelper::GetDateSomeYearsAway(aMaxDate,1);//for explicit scales we need one interval more (maximum excluded)
+ if( DateHelper::IsLessThanOneYearAway( aMinDate, aMaxDate ) )
+ {
+ if( bAutoMaximum || !bAutoMinimum )
+ aMaxDate = DateHelper::GetDateSomeYearsAway(aMinDate,1);
+ else
+ aMinDate = DateHelper::GetDateSomeYearsAway(aMaxDate,-1);
+ }
+ break;
+ }
+
+ // set the resulting limits (swap back to negative range if needed)
+ rExplicitScale.Minimum = aMinDate - m_aNullDate;
+ rExplicitScale.Maximum = aMaxDate - m_aNullDate;
+
+ bool bAutoMajor = !(m_aSourceScale.TimeIncrement.MajorTimeInterval >>= rExplicitIncrement.MajorTimeInterval);
+ bool bAutoMinor = !(m_aSourceScale.TimeIncrement.MinorTimeInterval >>= rExplicitIncrement.MinorTimeInterval);
+
+ sal_Int32 nMaxMainIncrementCount = bAutoMajor ?
+ m_nMaximumAutoMainIncrementCount : MAXIMUM_MANUAL_INCREMENT_COUNT;
+ if( nMaxMainIncrementCount > 1 )
+ nMaxMainIncrementCount--;
+
+ //choose major time interval:
+ long nDayCount = aMaxDate - aMinDate;
+ long nMainIncrementCount = 1;
+ if( !bAutoMajor )
+ {
+ long nIntervalDayCount = rExplicitIncrement.MajorTimeInterval.Number;
+ if( rExplicitIncrement.MajorTimeInterval.TimeUnit < rExplicitScale.TimeResolution )
+ rExplicitIncrement.MajorTimeInterval.TimeUnit = rExplicitScale.TimeResolution;
+ switch( rExplicitIncrement.MajorTimeInterval.TimeUnit )
+ {
+ case DAY:
+ break;
+ case MONTH:
+ nIntervalDayCount*=31;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ break;
+ case YEAR:
+ nIntervalDayCount*=365;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ break;
+ }
+ nMainIncrementCount = nDayCount/nIntervalDayCount;
+ if( nMainIncrementCount > nMaxMainIncrementCount )
+ bAutoMajor = true;
+ }
+ if( bAutoMajor )
+ {
+ long nNumer = 1;
+ long nIntervalDays = nDayCount / nMaxMainIncrementCount;
+ double nDaysPerInterval = 1.0;
+ if( nIntervalDays>365 || rExplicitScale.TimeResolution==YEAR )
+ {
+ rExplicitIncrement.MajorTimeInterval.TimeUnit = YEAR;
+ nDaysPerInterval = 365.0;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ }
+ else if( nIntervalDays>31 || rExplicitScale.TimeResolution==MONTH )
+ {
+ rExplicitIncrement.MajorTimeInterval.TimeUnit = MONTH;
+ nDaysPerInterval = 31.0;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ }
+ else
+ {
+ rExplicitIncrement.MajorTimeInterval.TimeUnit = DAY;
+ nDaysPerInterval = 1.0;
+ }
+
+ nNumer = static_cast<sal_Int32>( rtl::math::approxCeil( nIntervalDays/nDaysPerInterval ) );
+ if(nNumer<=0)
+ nNumer=1;
+ if( rExplicitIncrement.MajorTimeInterval.TimeUnit == DAY )
+ {
+ if( nNumer>2 && nNumer<7 )
+ nNumer=7;
+ else if( nNumer>7 )
+ {
+ rExplicitIncrement.MajorTimeInterval.TimeUnit = MONTH;
+ nDaysPerInterval = 31.0;
+ nNumer = static_cast<sal_Int32>( rtl::math::approxCeil( nIntervalDays/nDaysPerInterval ) );
+ if(nNumer<=0)
+ nNumer=1;
+ }
+ }
+ rExplicitIncrement.MajorTimeInterval.Number = nNumer;
+ nMainIncrementCount = static_cast<long>(nDayCount/(nNumer*nDaysPerInterval));
+ }
+
+ //choose minor time interval:
+ if( !bAutoMinor )
+ {
+ if( rExplicitIncrement.MinorTimeInterval.TimeUnit > rExplicitIncrement.MajorTimeInterval.TimeUnit )
+ rExplicitIncrement.MinorTimeInterval.TimeUnit = rExplicitIncrement.MajorTimeInterval.TimeUnit;
+ long nIntervalDayCount = rExplicitIncrement.MinorTimeInterval.Number;
+ switch( rExplicitIncrement.MinorTimeInterval.TimeUnit )
+ {
+ case DAY:
+ break;
+ case MONTH:
+ nIntervalDayCount*=31;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ break;
+ case YEAR:
+ nIntervalDayCount*=365;//todo: maybe different for other calendars... get localized calendar according to set number format at axis ...
+ break;
+ }
+ if( nDayCount/nIntervalDayCount > nMaxMainIncrementCount )
+ bAutoMinor = true;
+ }
+ if( !bAutoMinor )
+ return;
+
+ rExplicitIncrement.MinorTimeInterval.TimeUnit = rExplicitIncrement.MajorTimeInterval.TimeUnit;
+ rExplicitIncrement.MinorTimeInterval.Number = 1;
+ if( nMainIncrementCount > 100 )
+ rExplicitIncrement.MinorTimeInterval.Number = rExplicitIncrement.MajorTimeInterval.Number;
+ else
+ {
+ if( rExplicitIncrement.MajorTimeInterval.Number >= 2 )
+ {
+ if( !(rExplicitIncrement.MajorTimeInterval.Number%2) )
+ rExplicitIncrement.MinorTimeInterval.Number = rExplicitIncrement.MajorTimeInterval.Number/2;
+ else if( !(rExplicitIncrement.MajorTimeInterval.Number%3) )
+ rExplicitIncrement.MinorTimeInterval.Number = rExplicitIncrement.MajorTimeInterval.Number/3;
+ else if( !(rExplicitIncrement.MajorTimeInterval.Number%5) )
+ rExplicitIncrement.MinorTimeInterval.Number = rExplicitIncrement.MajorTimeInterval.Number/5;
+ else if( rExplicitIncrement.MajorTimeInterval.Number > 50 )
+ rExplicitIncrement.MinorTimeInterval.Number = rExplicitIncrement.MajorTimeInterval.Number;
+ }
+ else
+ {
+ switch( rExplicitIncrement.MajorTimeInterval.TimeUnit )
+ {
+ case DAY:
+ break;
+ case MONTH:
+ if( rExplicitScale.TimeResolution == DAY )
+ rExplicitIncrement.MinorTimeInterval.TimeUnit = DAY;
+ break;
+ case YEAR:
+ if( rExplicitScale.TimeResolution <= MONTH )
+ rExplicitIncrement.MinorTimeInterval.TimeUnit = MONTH;
+ break;
+ }
+ }
+ }
+
+}
+
+void ScaleAutomatism::calculateExplicitIncrementAndScaleForLinear(
+ ExplicitScaleData& rExplicitScale,
+ ExplicitIncrementData& rExplicitIncrement,
+ bool bAutoMinimum, bool bAutoMaximum ) const
+{
+ // *** STEP 1: initialize the range data ***
+
+ double fSourceMinimum = rExplicitScale.Minimum;
+ double fSourceMaximum = rExplicitScale.Maximum;
+
+ // set automatic PostEquidistant to true (maybe scaling dependent?)
+ if( !(m_aSourceScale.IncrementData.PostEquidistant >>= rExplicitIncrement.PostEquidistant) )
+ rExplicitIncrement.PostEquidistant = true;
+
+ /* If range is invalid (minimum greater than maximum), change one of the
+ variable limits to validate the range. In this step, a zero-sized range
+ is still allowed. */
+ if( fSourceMinimum > fSourceMaximum )
+ {
+ // force changing the maximum, if both limits are fixed
+ if( bAutoMaximum || !bAutoMinimum )
+ fSourceMaximum = fSourceMinimum;
+ else
+ fSourceMinimum = fSourceMaximum;
+ }
+
+ /* If maximum is zero or negative (and therefore minimum too), minimum and
+ maximum will be negated and swapped to make the following algorithms
+ easier. Example: Both ranges [2,5] and [-5,-2] will be processed as
+ [2,5], and the latter will be swapped back later. The range [0,0] is
+ explicitly excluded from swapping (this would result in [-1,0] instead
+ of the expected [0,1]). */
+ bool bSwapAndNegateRange = (fSourceMinimum < 0.0) && (fSourceMaximum <= 0.0);
+ if( bSwapAndNegateRange )
+ {
+ double fTempValue = fSourceMinimum;
+ fSourceMinimum = -fSourceMaximum;
+ fSourceMaximum = -fTempValue;
+ std::swap( bAutoMinimum, bAutoMaximum );
+ }
+
+ // *** STEP 2: find temporary (unrounded) axis minimum and maximum ***
+
+ double fTempMinimum = fSourceMinimum;
+ double fTempMaximum = fSourceMaximum;
+
+ /* If minimum is variable and greater than 0 (and therefore maximum too),
+ means all values are positive (or all values are negative, and the
+ range has been swapped above), then: */
+ if( bAutoMinimum && (fTempMinimum > 0.0) )
+ {
+ /* If minimum equals maximum, or if minimum is less than 5/6 of
+ maximum, set minimum to 0. */
+ if( (fTempMinimum == fTempMaximum) || (fTempMinimum / fTempMaximum < 5.0 / 6.0) )
+ {
+ if( m_bExpandWideValuesToZero )
+ fTempMinimum = 0.0;
+ }
+ /* Else (minimum is greater than or equal to 5/6 of maximum), add half
+ of the visible range (expand minimum toward 0) to make the
+ 'shorter' data points visible. */
+ else
+ {
+ if( m_bExpandNarrowValuesTowardZero )
+ fTempMinimum -= (fTempMaximum - fTempMinimum) / 2.0;
+ }
+ }
+
+ /* If range is still zero-sized (e.g. when minimum is fixed), add some
+ space to a variable limit. */
+ if( fTempMinimum == fTempMaximum )
+ {
+ if( bAutoMaximum || !bAutoMinimum )
+ {
+ // change 0 to 1, otherwise double the value
+ if( fTempMaximum == 0.0 )
+ fTempMaximum = 1.0;
+ else
+ fTempMaximum *= 2.0;
+ }
+ else
+ {
+ // change 0 to -1, otherwise halve the value
+ if( fTempMinimum == 0.0 )
+ fTempMinimum = -1.0;
+ else
+ fTempMinimum /= 2.0;
+ }
+ }
+
+ // *** STEP 3: calculate main interval size ***
+
+ // base value (anchor position of the intervals)
+ if( !(m_aSourceScale.IncrementData.BaseValue >>= rExplicitIncrement.BaseValue) )
+ {
+ if( !bAutoMinimum )
+ rExplicitIncrement.BaseValue = fTempMinimum;
+ else if( !bAutoMaximum )
+ rExplicitIncrement.BaseValue = fTempMaximum;
+ else
+ rExplicitIncrement.BaseValue = 0.0;
+ }
+
+ // calculate automatic interval
+ bool bAutoDistance = !(m_aSourceScale.IncrementData.Distance >>= rExplicitIncrement.Distance);
+ /* Restrict number of allowed intervals with user-defined distance to
+ MAXIMUM_MANUAL_INCREMENT_COUNT. */
+ sal_Int32 nMaxMainIncrementCount = bAutoDistance ?
+ m_nMaximumAutoMainIncrementCount : MAXIMUM_MANUAL_INCREMENT_COUNT;
+
+ double fDistanceMagnitude = 0.0;
+ double fDistanceNormalized = 0.0;
+ bool bHasNormalizedDistance = false;
+
+ // repeat calculation until number of intervals are valid
+ bool bNeedIteration = true;
+ while( bNeedIteration )
+ {
+ if( bAutoDistance )
+ {
+ // first iteration: calculate interval size from axis limits
+ if( !bHasNormalizedDistance )
+ {
+ // raw size of an interval
+ double fDistance = (fTempMaximum - fTempMinimum) / nMaxMainIncrementCount;
+
+ // if distance of is less than 1e-307, do not do anything
+ if( fDistance <= 1.0e-307 )
+ {
+ fDistanceNormalized = 1.0;
+ fDistanceMagnitude = 1.0e-307;
+ }
+ else if ( !std::isfinite(fDistance) )
+ {
+ // fdo#43703: Handle values bigger than limits correctly
+ fDistanceNormalized = 1.0;
+ fDistanceMagnitude = std::numeric_limits<double>::max();
+ }
+ else
+ {
+ // distance magnitude (a power of 10)
+ int nExponent = static_cast< int >( ::rtl::math::approxFloor( log10( fDistance ) ) );
+ fDistanceMagnitude = ::rtl::math::pow10Exp( 1.0, nExponent );
+
+ // stick normalized distance to a few predefined values
+ fDistanceNormalized = fDistance / fDistanceMagnitude;
+ if( fDistanceNormalized <= 1.0 )
+ fDistanceNormalized = 1.0;
+ else if( fDistanceNormalized <= 2.0 )
+ fDistanceNormalized = 2.0;
+ else if( fDistanceNormalized <= 5.0 )
+ fDistanceNormalized = 5.0;
+ else
+ {
+ fDistanceNormalized = 1.0;
+ fDistanceMagnitude *= 10;
+ }
+ }
+ // for next iteration: distance is normalized -> use else path to increase distance
+ bHasNormalizedDistance = true;
+ }
+ // following iterations: increase distance, use only allowed values
+ else
+ {
+ if( fDistanceNormalized == 1.0 )
+ fDistanceNormalized = 2.0;
+ else if( fDistanceNormalized == 2.0 )
+ fDistanceNormalized = 5.0;
+ else
+ {
+ fDistanceNormalized = 1.0;
+ fDistanceMagnitude *= 10;
+ }
+ }
+
+ // set the resulting distance
+ rExplicitIncrement.Distance = fDistanceNormalized * fDistanceMagnitude;
+ }
+
+ // *** STEP 4: additional space above or below the data points ***
+
+ double fAxisMinimum = fTempMinimum;
+ double fAxisMaximum = fTempMaximum;
+
+ // round to entire multiples of the distance and add additional space
+ if( bAutoMinimum )
+ {
+ // round to entire multiples of the distance, based on the base value
+ if( m_bExpandBorderToIncrementRhythm )
+ fAxisMinimum = EquidistantTickFactory::getMinimumAtIncrement( fAxisMinimum, rExplicitIncrement );
+ // additional space, if source minimum is to near at axis minimum
+ if( m_bExpandIfValuesCloseToBorder )
+ if( (fAxisMinimum != 0.0) && ((fAxisMaximum - fSourceMinimum) / (fAxisMaximum - fAxisMinimum) > 20.0 / 21.0) )
+ fAxisMinimum -= rExplicitIncrement.Distance;
+ }
+ if( bAutoMaximum )
+ {
+ // round to entire multiples of the distance, based on the base value
+ if( m_bExpandBorderToIncrementRhythm )
+ fAxisMaximum = EquidistantTickFactory::getMaximumAtIncrement( fAxisMaximum, rExplicitIncrement );
+ // additional space, if source maximum is to near at axis maximum
+ if( m_bExpandIfValuesCloseToBorder )
+ if( (fAxisMaximum != 0.0) && ((fSourceMaximum - fAxisMinimum) / (fAxisMaximum - fAxisMinimum) > 20.0 / 21.0) )
+ fAxisMaximum += rExplicitIncrement.Distance;
+ }
+
+ // set the resulting limits (swap back to negative range if needed)
+ if( bSwapAndNegateRange )
+ {
+ rExplicitScale.Minimum = -fAxisMaximum;
+ rExplicitScale.Maximum = -fAxisMinimum;
+ }
+ else
+ {
+ rExplicitScale.Minimum = fAxisMinimum;
+ rExplicitScale.Maximum = fAxisMaximum;
+ }
+
+ /* If the number of intervals is too high (e.g. due to invalid fixed
+ distance or due to added space above or below data points),
+ calculate again with increased distance. */
+ double fDistanceCount = ::rtl::math::approxFloor( (fAxisMaximum - fAxisMinimum) / rExplicitIncrement.Distance );
+ bNeedIteration = static_cast< sal_Int32 >( fDistanceCount ) > nMaxMainIncrementCount;
+ // if manual distance is invalid, trigger automatic calculation
+ if( bNeedIteration )
+ bAutoDistance = true;
+ }
+
+ //fill explicit sub increment
+ sal_Int32 nSubCount = m_aSourceScale.IncrementData.SubIncrements.getLength();
+ for( sal_Int32 nN=0; nN<nSubCount; nN++ )
+ {
+ ExplicitSubIncrement aExplicitSubIncrement;
+ const SubIncrement& rSubIncrement= m_aSourceScale.IncrementData.SubIncrements[nN];
+ if(!(rSubIncrement.IntervalCount>>=aExplicitSubIncrement.IntervalCount))
+ {
+ //scaling dependent
+ //@todo autocalculate IntervalCount dependent on MainIncrement and scaling
+ aExplicitSubIncrement.IntervalCount = 2;
+ }
+ lcl_ensureMaximumSubIncrementCount( aExplicitSubIncrement.IntervalCount );
+ if(!(rSubIncrement.PostEquidistant>>=aExplicitSubIncrement.PostEquidistant))
+ {
+ //scaling dependent
+ aExplicitSubIncrement.PostEquidistant = false;
+ }
+ rExplicitIncrement.SubIncrements.push_back(aExplicitSubIncrement);
+ }
+}
+
+} //namespace chart
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */