diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:51:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:51:28 +0000 |
commit | 940b4d1848e8c70ab7642901a68594e8016caffc (patch) | |
tree | eb72f344ee6c3d9b80a7ecc079ea79e9fba8676d /include/rtl/math.hxx | |
parent | Initial commit. (diff) | |
download | libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.tar.xz libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.zip |
Adding upstream version 1:7.0.4.upstream/1%7.0.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/rtl/math.hxx')
-rw-r--r-- | include/rtl/math.hxx | 469 |
1 files changed, 469 insertions, 0 deletions
diff --git a/include/rtl/math.hxx b/include/rtl/math.hxx new file mode 100644 index 000000000..a965c7b38 --- /dev/null +++ b/include/rtl/math.hxx @@ -0,0 +1,469 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#ifndef INCLUDED_RTL_MATH_HXX +#define INCLUDED_RTL_MATH_HXX + +#include "rtl/math.h" +#include "rtl/strbuf.hxx" +#include "rtl/string.hxx" +#include "rtl/ustring.hxx" +#include "rtl/ustrbuf.hxx" +#include "sal/mathconf.h" +#include "sal/types.h" + +#include <cstddef> +#include <math.h> + +namespace rtl { + +namespace math { + +/** A wrapper around rtl_math_doubleToString. + */ +inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Char cDecSeparator, + sal_Int32 const * pGroups, + sal_Char cGroupSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl::OString aResult; + rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces, + cDecSeparator, pGroups, cGroupSeparator, + bEraseTrailingDecZeros); + return aResult; +} + +/** A wrapper around rtl_math_doubleToString, with no grouping. + */ +inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Char cDecSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl::OString aResult; + rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces, + cDecSeparator, NULL, 0, bEraseTrailingDecZeros); + return aResult; +} + +/** A wrapper around rtl_math_doubleToString that appends to an + rtl::OStringBuffer. + + @since LibreOffice 5.4 +*/ +inline void doubleToStringBuffer( + rtl::OStringBuffer& rBuffer, double fValue, rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, sal_Char cDecSeparator, sal_Int32 const * pGroups, + sal_Char cGroupSeparator, bool bEraseTrailingDecZeros = false) +{ + rtl_String ** pData; + sal_Int32 * pCapacity; + rBuffer.accessInternals(&pData, &pCapacity); + rtl_math_doubleToString( + pData, pCapacity, rBuffer.getLength(), fValue, eFormat, nDecPlaces, + cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros); +} + +/** A wrapper around rtl_math_doubleToString that appends to an + rtl::OStringBuffer, with no grouping. + + @since LibreOffice 5.4 +*/ +inline void doubleToStringBuffer( + rtl::OStringBuffer& rBuffer, double fValue, rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, sal_Char cDecSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl_String ** pData; + sal_Int32 * pCapacity; + rBuffer.accessInternals(&pData, &pCapacity); + rtl_math_doubleToString( + pData, pCapacity, rBuffer.getLength(), fValue, eFormat, nDecPlaces, + cDecSeparator, NULL, 0, bEraseTrailingDecZeros); +} + +/** A wrapper around rtl_math_doubleToUString. + */ +inline rtl::OUString doubleToUString(double fValue, + rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Unicode cDecSeparator, + sal_Int32 const * pGroups, + sal_Unicode cGroupSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl::OUString aResult; + rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces, + cDecSeparator, pGroups, cGroupSeparator, + bEraseTrailingDecZeros); + return aResult; +} + +/** A wrapper around rtl_math_doubleToUString, with no grouping. + */ +inline rtl::OUString doubleToUString(double fValue, + rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Unicode cDecSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl::OUString aResult; + rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces, + cDecSeparator, NULL, 0, bEraseTrailingDecZeros); + return aResult; +} + +/** A wrapper around rtl_math_doubleToUString that appends to an + rtl::OUStringBuffer. + */ +inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue, + rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Unicode cDecSeparator, + sal_Int32 const * pGroups, + sal_Unicode cGroupSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl_uString ** pData; + sal_Int32 * pCapacity; + rBuffer.accessInternals( &pData, &pCapacity ); + rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue, + eFormat, nDecPlaces, cDecSeparator, pGroups, + cGroupSeparator, bEraseTrailingDecZeros); +} + +/** A wrapper around rtl_math_doubleToUString that appends to an + rtl::OUStringBuffer, with no grouping. + */ +inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue, + rtl_math_StringFormat eFormat, + sal_Int32 nDecPlaces, + sal_Unicode cDecSeparator, + bool bEraseTrailingDecZeros = false) +{ + rtl_uString ** pData; + sal_Int32 * pCapacity; + rBuffer.accessInternals( &pData, &pCapacity ); + rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue, + eFormat, nDecPlaces, cDecSeparator, NULL, 0, + bEraseTrailingDecZeros); +} + +/** A wrapper around rtl_math_stringToDouble. + */ +inline double stringToDouble(rtl::OString const & rString, + sal_Char cDecSeparator, sal_Char cGroupSeparator, + rtl_math_ConversionStatus * pStatus = NULL, + sal_Int32 * pParsedEnd = NULL) +{ + sal_Char const * pBegin = rString.getStr(); + sal_Char const * pEnd; + double fResult = rtl_math_stringToDouble(pBegin, + pBegin + rString.getLength(), + cDecSeparator, cGroupSeparator, + pStatus, &pEnd); + if (pParsedEnd != NULL) + *pParsedEnd = static_cast<sal_Int32>(pEnd - pBegin); + return fResult; +} + +/** A wrapper around rtl_math_uStringToDouble. + */ +inline double stringToDouble(rtl::OUString const & rString, + sal_Unicode cDecSeparator, + sal_Unicode cGroupSeparator, + rtl_math_ConversionStatus * pStatus = NULL, + sal_Int32 * pParsedEnd = NULL) +{ + sal_Unicode const * pBegin = rString.getStr(); + sal_Unicode const * pEnd; + double fResult = rtl_math_uStringToDouble(pBegin, + pBegin + rString.getLength(), + cDecSeparator, cGroupSeparator, + pStatus, &pEnd); + if (pParsedEnd != NULL) + *pParsedEnd = static_cast<sal_Int32>(pEnd - pBegin); + return fResult; +} + +/** A wrapper around rtl_math_round. + */ +inline double round( + double fValue, int nDecPlaces = 0, + rtl_math_RoundingMode eMode = rtl_math_RoundingMode_Corrected) +{ + return rtl_math_round(fValue, nDecPlaces, eMode); +} + +/** A wrapper around rtl_math_pow10Exp. + */ +inline double pow10Exp(double fValue, int nExp) +{ + return rtl_math_pow10Exp(fValue, nExp); +} + +/** A wrapper around rtl_math_approxValue. + */ +inline double approxValue(double fValue) +{ + return rtl_math_approxValue(fValue); +} + +/** A wrapper around rtl_math_expm1. + */ +inline double expm1(double fValue) +{ + return rtl_math_expm1(fValue); +} + +/** A wrapper around rtl_math_log1p. + */ +inline double log1p(double fValue) +{ + return rtl_math_log1p(fValue); +} + +/** A wrapper around rtl_math_atanh. + */ +inline double atanh(double fValue) +{ + return rtl_math_atanh(fValue); +} + +/** A wrapper around rtl_math_erf. + */ +inline double erf(double fValue) +{ + return rtl_math_erf(fValue); +} + +/** A wrapper around rtl_math_erfc. + */ +inline double erfc(double fValue) +{ + return rtl_math_erfc(fValue); +} + +/** A wrapper around rtl_math_asinh. + */ +inline double asinh(double fValue) +{ + return rtl_math_asinh(fValue); +} + +/** A wrapper around rtl_math_acosh. + */ +inline double acosh(double fValue) +{ + return rtl_math_acosh(fValue); +} + +/** A wrapper around rtl_math_approxEqual. + */ +inline bool approxEqual(double a, double b) +{ + return rtl_math_approxEqual( a, b ); +} + +/** Test equality of two values with an accuracy defined by nPrec + + @attention + approxEqual( value!=0.0, 0.0 ) _never_ yields true. + */ +inline bool approxEqual(double a, double b, sal_Int16 nPrec) +{ + if ( a == b ) + return true; + double x = a - b; + return (x < 0.0 ? -x : x) + < ((a < 0.0 ? -a : a) * (1.0 / (pow(2.0, nPrec)))); +} + +/** Add two values. + + If signs differ and the absolute values are equal according to approxEqual() + the method returns 0.0 instead of calculating the sum. + + If you wanted to sum up multiple values it would be convenient not to call + approxAdd() for each value but instead remember the first value not equal to + 0.0, add all other values using normal + operator, and with the result and + the remembered value call approxAdd(). + */ +inline double approxAdd(double a, double b) +{ + if ( ((a < 0.0 && b > 0.0) || (b < 0.0 && a > 0.0)) + && approxEqual( a, -b ) ) + return 0.0; + return a + b; +} + +/** Subtract two values (a-b). + + If signs are identical and the values are equal according to approxEqual() + the method returns 0.0 instead of calculating the subtraction. + */ +inline double approxSub(double a, double b) +{ + if ( ((a < 0.0 && b < 0.0) || (a > 0.0 && b > 0.0)) && approxEqual( a, b ) ) + return 0.0; + return a - b; +} + +/** floor() method taking approxValue() into account. + + Use for expected integer values being calculated by double functions. + */ +inline double approxFloor(double a) +{ + return floor( approxValue( a )); +} + +/** ceil() method taking approxValue() into account. + + Use for expected integer values being calculated by double functions. + */ +inline double approxCeil(double a) +{ + return ceil( approxValue( a )); +} + +/** Tests whether a value is neither INF nor NAN. + */ +inline bool isFinite(double d) +{ + return SAL_MATH_FINITE(d); +} + +/** If a value represents +INF or -INF. + + The sign bit may be queried with isSignBitSet(). + + If isFinite(d)==false and isInf(d)==false then NAN. + */ +inline bool isInf(double d) +{ + // exponent==0x7ff fraction==0 + return !SAL_MATH_FINITE(d) && + (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi == 0) + && (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo + == 0); +} + +/** Test on any QNAN or SNAN. + */ +inline bool isNan(double d) +{ + // exponent==0x7ff fraction!=0 + return !SAL_MATH_FINITE(d) && ( + (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi != 0) + || (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo + != 0) ); +} + +/** If the sign bit is set. + */ +inline bool isSignBitSet(double d) +{ + return reinterpret_cast< sal_math_Double * >(&d)->inf_parts.sign != 0; +} + +/** Set to +INF if bNegative==false or -INF if bNegative==true. + */ +inline void setInf(double * pd, bool bNegative) +{ + union + { + double sd; + sal_math_Double md; + }; + md.w32_parts.msw = bNegative ? 0xFFF00000 : 0x7FF00000; + md.w32_parts.lsw = 0; + *pd = sd; +} + +/** Set a QNAN. + */ +inline void setNan(double * pd) +{ + union + { + double sd; + sal_math_Double md; + }; + md.w32_parts.msw = 0x7FFFFFFF; + md.w32_parts.lsw = 0xFFFFFFFF; + *pd = sd; +} + +/** If a value is a valid argument for sin(), cos(), tan(). + + IEEE 754 specifies that absolute values up to 2^64 (=1.844e19) for the + radian must be supported by trigonometric functions. Unfortunately, at + least on x86 architectures, the FPU doesn't generate an error pattern for + values >2^64 but produces erroneous results instead and sets only the + "invalid operation" (IM) flag in the status word :-( Thus the application + has to handle it itself. + */ +inline bool isValidArcArg(double d) +{ + return fabs(d) + <= (static_cast< double >(static_cast< unsigned long >(0x80000000)) + * static_cast< double >(static_cast< unsigned long >(0x80000000)) + * 2); +} + +/** Safe sin(), returns NAN if not valid. + */ +inline double sin(double d) +{ + if ( isValidArcArg( d ) ) + return ::sin( d ); + setNan( &d ); + return d; +} + +/** Safe cos(), returns NAN if not valid. + */ +inline double cos(double d) +{ + if ( isValidArcArg( d ) ) + return ::cos( d ); + setNan( &d ); + return d; +} + +/** Safe tan(), returns NAN if not valid. + */ +inline double tan(double d) +{ + if ( isValidArcArg( d ) ) + return ::tan( d ); + setNan( &d ); + return d; +} + +} + +} + +#endif // INCLUDED_RTL_MATH_HXX + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |