summaryrefslogtreecommitdiffstats
path: root/include/rtl/math.hxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
commit940b4d1848e8c70ab7642901a68594e8016caffc (patch)
treeeb72f344ee6c3d9b80a7ecc079ea79e9fba8676d /include/rtl/math.hxx
parentInitial commit. (diff)
downloadlibreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.tar.xz
libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.zip
Adding upstream version 1:7.0.4.upstream/1%7.0.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/rtl/math.hxx')
-rw-r--r--include/rtl/math.hxx469
1 files changed, 469 insertions, 0 deletions
diff --git a/include/rtl/math.hxx b/include/rtl/math.hxx
new file mode 100644
index 000000000..a965c7b38
--- /dev/null
+++ b/include/rtl/math.hxx
@@ -0,0 +1,469 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#ifndef INCLUDED_RTL_MATH_HXX
+#define INCLUDED_RTL_MATH_HXX
+
+#include "rtl/math.h"
+#include "rtl/strbuf.hxx"
+#include "rtl/string.hxx"
+#include "rtl/ustring.hxx"
+#include "rtl/ustrbuf.hxx"
+#include "sal/mathconf.h"
+#include "sal/types.h"
+
+#include <cstddef>
+#include <math.h>
+
+namespace rtl {
+
+namespace math {
+
+/** A wrapper around rtl_math_doubleToString.
+ */
+inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Char cDecSeparator,
+ sal_Int32 const * pGroups,
+ sal_Char cGroupSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl::OString aResult;
+ rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
+ cDecSeparator, pGroups, cGroupSeparator,
+ bEraseTrailingDecZeros);
+ return aResult;
+}
+
+/** A wrapper around rtl_math_doubleToString, with no grouping.
+ */
+inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Char cDecSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl::OString aResult;
+ rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
+ cDecSeparator, NULL, 0, bEraseTrailingDecZeros);
+ return aResult;
+}
+
+/** A wrapper around rtl_math_doubleToString that appends to an
+ rtl::OStringBuffer.
+
+ @since LibreOffice 5.4
+*/
+inline void doubleToStringBuffer(
+ rtl::OStringBuffer& rBuffer, double fValue, rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces, sal_Char cDecSeparator, sal_Int32 const * pGroups,
+ sal_Char cGroupSeparator, bool bEraseTrailingDecZeros = false)
+{
+ rtl_String ** pData;
+ sal_Int32 * pCapacity;
+ rBuffer.accessInternals(&pData, &pCapacity);
+ rtl_math_doubleToString(
+ pData, pCapacity, rBuffer.getLength(), fValue, eFormat, nDecPlaces,
+ cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
+}
+
+/** A wrapper around rtl_math_doubleToString that appends to an
+ rtl::OStringBuffer, with no grouping.
+
+ @since LibreOffice 5.4
+*/
+inline void doubleToStringBuffer(
+ rtl::OStringBuffer& rBuffer, double fValue, rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces, sal_Char cDecSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl_String ** pData;
+ sal_Int32 * pCapacity;
+ rBuffer.accessInternals(&pData, &pCapacity);
+ rtl_math_doubleToString(
+ pData, pCapacity, rBuffer.getLength(), fValue, eFormat, nDecPlaces,
+ cDecSeparator, NULL, 0, bEraseTrailingDecZeros);
+}
+
+/** A wrapper around rtl_math_doubleToUString.
+ */
+inline rtl::OUString doubleToUString(double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Unicode cDecSeparator,
+ sal_Int32 const * pGroups,
+ sal_Unicode cGroupSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl::OUString aResult;
+ rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
+ cDecSeparator, pGroups, cGroupSeparator,
+ bEraseTrailingDecZeros);
+ return aResult;
+}
+
+/** A wrapper around rtl_math_doubleToUString, with no grouping.
+ */
+inline rtl::OUString doubleToUString(double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Unicode cDecSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl::OUString aResult;
+ rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
+ cDecSeparator, NULL, 0, bEraseTrailingDecZeros);
+ return aResult;
+}
+
+/** A wrapper around rtl_math_doubleToUString that appends to an
+ rtl::OUStringBuffer.
+ */
+inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Unicode cDecSeparator,
+ sal_Int32 const * pGroups,
+ sal_Unicode cGroupSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl_uString ** pData;
+ sal_Int32 * pCapacity;
+ rBuffer.accessInternals( &pData, &pCapacity );
+ rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
+ eFormat, nDecPlaces, cDecSeparator, pGroups,
+ cGroupSeparator, bEraseTrailingDecZeros);
+}
+
+/** A wrapper around rtl_math_doubleToUString that appends to an
+ rtl::OUStringBuffer, with no grouping.
+ */
+inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
+ rtl_math_StringFormat eFormat,
+ sal_Int32 nDecPlaces,
+ sal_Unicode cDecSeparator,
+ bool bEraseTrailingDecZeros = false)
+{
+ rtl_uString ** pData;
+ sal_Int32 * pCapacity;
+ rBuffer.accessInternals( &pData, &pCapacity );
+ rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
+ eFormat, nDecPlaces, cDecSeparator, NULL, 0,
+ bEraseTrailingDecZeros);
+}
+
+/** A wrapper around rtl_math_stringToDouble.
+ */
+inline double stringToDouble(rtl::OString const & rString,
+ sal_Char cDecSeparator, sal_Char cGroupSeparator,
+ rtl_math_ConversionStatus * pStatus = NULL,
+ sal_Int32 * pParsedEnd = NULL)
+{
+ sal_Char const * pBegin = rString.getStr();
+ sal_Char const * pEnd;
+ double fResult = rtl_math_stringToDouble(pBegin,
+ pBegin + rString.getLength(),
+ cDecSeparator, cGroupSeparator,
+ pStatus, &pEnd);
+ if (pParsedEnd != NULL)
+ *pParsedEnd = static_cast<sal_Int32>(pEnd - pBegin);
+ return fResult;
+}
+
+/** A wrapper around rtl_math_uStringToDouble.
+ */
+inline double stringToDouble(rtl::OUString const & rString,
+ sal_Unicode cDecSeparator,
+ sal_Unicode cGroupSeparator,
+ rtl_math_ConversionStatus * pStatus = NULL,
+ sal_Int32 * pParsedEnd = NULL)
+{
+ sal_Unicode const * pBegin = rString.getStr();
+ sal_Unicode const * pEnd;
+ double fResult = rtl_math_uStringToDouble(pBegin,
+ pBegin + rString.getLength(),
+ cDecSeparator, cGroupSeparator,
+ pStatus, &pEnd);
+ if (pParsedEnd != NULL)
+ *pParsedEnd = static_cast<sal_Int32>(pEnd - pBegin);
+ return fResult;
+}
+
+/** A wrapper around rtl_math_round.
+ */
+inline double round(
+ double fValue, int nDecPlaces = 0,
+ rtl_math_RoundingMode eMode = rtl_math_RoundingMode_Corrected)
+{
+ return rtl_math_round(fValue, nDecPlaces, eMode);
+}
+
+/** A wrapper around rtl_math_pow10Exp.
+ */
+inline double pow10Exp(double fValue, int nExp)
+{
+ return rtl_math_pow10Exp(fValue, nExp);
+}
+
+/** A wrapper around rtl_math_approxValue.
+ */
+inline double approxValue(double fValue)
+{
+ return rtl_math_approxValue(fValue);
+}
+
+/** A wrapper around rtl_math_expm1.
+ */
+inline double expm1(double fValue)
+{
+ return rtl_math_expm1(fValue);
+}
+
+/** A wrapper around rtl_math_log1p.
+ */
+inline double log1p(double fValue)
+{
+ return rtl_math_log1p(fValue);
+}
+
+/** A wrapper around rtl_math_atanh.
+ */
+inline double atanh(double fValue)
+{
+ return rtl_math_atanh(fValue);
+}
+
+/** A wrapper around rtl_math_erf.
+ */
+inline double erf(double fValue)
+{
+ return rtl_math_erf(fValue);
+}
+
+/** A wrapper around rtl_math_erfc.
+ */
+inline double erfc(double fValue)
+{
+ return rtl_math_erfc(fValue);
+}
+
+/** A wrapper around rtl_math_asinh.
+ */
+inline double asinh(double fValue)
+{
+ return rtl_math_asinh(fValue);
+}
+
+/** A wrapper around rtl_math_acosh.
+ */
+inline double acosh(double fValue)
+{
+ return rtl_math_acosh(fValue);
+}
+
+/** A wrapper around rtl_math_approxEqual.
+ */
+inline bool approxEqual(double a, double b)
+{
+ return rtl_math_approxEqual( a, b );
+}
+
+/** Test equality of two values with an accuracy defined by nPrec
+
+ @attention
+ approxEqual( value!=0.0, 0.0 ) _never_ yields true.
+ */
+inline bool approxEqual(double a, double b, sal_Int16 nPrec)
+{
+ if ( a == b )
+ return true;
+ double x = a - b;
+ return (x < 0.0 ? -x : x)
+ < ((a < 0.0 ? -a : a) * (1.0 / (pow(2.0, nPrec))));
+}
+
+/** Add two values.
+
+ If signs differ and the absolute values are equal according to approxEqual()
+ the method returns 0.0 instead of calculating the sum.
+
+ If you wanted to sum up multiple values it would be convenient not to call
+ approxAdd() for each value but instead remember the first value not equal to
+ 0.0, add all other values using normal + operator, and with the result and
+ the remembered value call approxAdd().
+ */
+inline double approxAdd(double a, double b)
+{
+ if ( ((a < 0.0 && b > 0.0) || (b < 0.0 && a > 0.0))
+ && approxEqual( a, -b ) )
+ return 0.0;
+ return a + b;
+}
+
+/** Subtract two values (a-b).
+
+ If signs are identical and the values are equal according to approxEqual()
+ the method returns 0.0 instead of calculating the subtraction.
+ */
+inline double approxSub(double a, double b)
+{
+ if ( ((a < 0.0 && b < 0.0) || (a > 0.0 && b > 0.0)) && approxEqual( a, b ) )
+ return 0.0;
+ return a - b;
+}
+
+/** floor() method taking approxValue() into account.
+
+ Use for expected integer values being calculated by double functions.
+ */
+inline double approxFloor(double a)
+{
+ return floor( approxValue( a ));
+}
+
+/** ceil() method taking approxValue() into account.
+
+ Use for expected integer values being calculated by double functions.
+ */
+inline double approxCeil(double a)
+{
+ return ceil( approxValue( a ));
+}
+
+/** Tests whether a value is neither INF nor NAN.
+ */
+inline bool isFinite(double d)
+{
+ return SAL_MATH_FINITE(d);
+}
+
+/** If a value represents +INF or -INF.
+
+ The sign bit may be queried with isSignBitSet().
+
+ If isFinite(d)==false and isInf(d)==false then NAN.
+ */
+inline bool isInf(double d)
+{
+ // exponent==0x7ff fraction==0
+ return !SAL_MATH_FINITE(d) &&
+ (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi == 0)
+ && (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
+ == 0);
+}
+
+/** Test on any QNAN or SNAN.
+ */
+inline bool isNan(double d)
+{
+ // exponent==0x7ff fraction!=0
+ return !SAL_MATH_FINITE(d) && (
+ (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi != 0)
+ || (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
+ != 0) );
+}
+
+/** If the sign bit is set.
+ */
+inline bool isSignBitSet(double d)
+{
+ return reinterpret_cast< sal_math_Double * >(&d)->inf_parts.sign != 0;
+}
+
+/** Set to +INF if bNegative==false or -INF if bNegative==true.
+ */
+inline void setInf(double * pd, bool bNegative)
+{
+ union
+ {
+ double sd;
+ sal_math_Double md;
+ };
+ md.w32_parts.msw = bNegative ? 0xFFF00000 : 0x7FF00000;
+ md.w32_parts.lsw = 0;
+ *pd = sd;
+}
+
+/** Set a QNAN.
+ */
+inline void setNan(double * pd)
+{
+ union
+ {
+ double sd;
+ sal_math_Double md;
+ };
+ md.w32_parts.msw = 0x7FFFFFFF;
+ md.w32_parts.lsw = 0xFFFFFFFF;
+ *pd = sd;
+}
+
+/** If a value is a valid argument for sin(), cos(), tan().
+
+ IEEE 754 specifies that absolute values up to 2^64 (=1.844e19) for the
+ radian must be supported by trigonometric functions. Unfortunately, at
+ least on x86 architectures, the FPU doesn't generate an error pattern for
+ values >2^64 but produces erroneous results instead and sets only the
+ "invalid operation" (IM) flag in the status word :-( Thus the application
+ has to handle it itself.
+ */
+inline bool isValidArcArg(double d)
+{
+ return fabs(d)
+ <= (static_cast< double >(static_cast< unsigned long >(0x80000000))
+ * static_cast< double >(static_cast< unsigned long >(0x80000000))
+ * 2);
+}
+
+/** Safe sin(), returns NAN if not valid.
+ */
+inline double sin(double d)
+{
+ if ( isValidArcArg( d ) )
+ return ::sin( d );
+ setNan( &d );
+ return d;
+}
+
+/** Safe cos(), returns NAN if not valid.
+ */
+inline double cos(double d)
+{
+ if ( isValidArcArg( d ) )
+ return ::cos( d );
+ setNan( &d );
+ return d;
+}
+
+/** Safe tan(), returns NAN if not valid.
+ */
+inline double tan(double d)
+{
+ if ( isValidArcArg( d ) )
+ return ::tan( d );
+ setNan( &d );
+ return d;
+}
+
+}
+
+}
+
+#endif // INCLUDED_RTL_MATH_HXX
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */