diff options
Diffstat (limited to 'helpcontent2/source/text/scalc/01/func_forecastetspimult.xhp')
-rw-r--r-- | helpcontent2/source/text/scalc/01/func_forecastetspimult.xhp | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/helpcontent2/source/text/scalc/01/func_forecastetspimult.xhp b/helpcontent2/source/text/scalc/01/func_forecastetspimult.xhp new file mode 100644 index 000000000..002f8fefa --- /dev/null +++ b/helpcontent2/source/text/scalc/01/func_forecastetspimult.xhp @@ -0,0 +1,66 @@ +<?xml version="1.0" encoding="UTF-8"?> +<helpdocument version="1.0"> +<!-- + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + --> + +<meta> + <topic id="textscalc01func_forecastetspimultxml"> + <title id="tit" xml-lang="en-US">FORECAST.ETS.PI.MULT</title> + <filename>/text/scalc/01/func_forecastetspimult.xhp</filename> + </topic> +</meta> + +<body> +<section id="forecastetspimult"> +<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FORECAST_ETS_PIM" id="bm_id0603201617144585" localize="false"/> +<bookmark xml-lang="en-US" branch="index" id="bm_id976559765597655"> +<bookmark_value>FORECAST.ETS.PI.MULT function</bookmark_value> +</bookmark> + +<paragraph id="hd_id0603201617134175" role="heading" level="1" xml-lang="en-US"><link href="text/scalc/01/func_forecastetspimult.xhp">FORECAST.ETS.PI.MULT function</link></paragraph> + +<paragraph id="par_id0603201617141750" role="paragraph" xml-lang="en-US"><ahelp hid="HID_FUNC_FORECAST_ETS_PIM">Calculates the prediction interval(s) for multiplicative forecast based on the historical data using ETS or EDS algorithms.</ahelp>. EDS is used when argument <emph>period_length</emph> is 0, otherwise ETS is used.</paragraph> +<embed href="text/scalc/01/exponsmooth_embd.xhp#intro"/> +<paragraph id="par_id0603201610005998" role="paragraph" xml-lang="en-US">FORECAST.ETS.PI.MULT calculates with the model</paragraph> +<embed href="text/scalc/01/exponsmooth_embd.xhp#etsmult"/> +<embed href="text/scalc/00/avail_release.xhp#5.2"/> +<embed href="text/scalc/01/common_func.xhp#sectionsyntax"/> +<paragraph id="par_id0603201610010044" role="code" xml-lang="en-US">FORECAST.ETS.PI.MULT(target, values, timeline, [confidence_level], [period_length], [data_completion], [aggregation])</paragraph> +<embed href="text/scalc/01/exponsmooth_embd.xhp#target"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#values"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#timeline"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#confidence"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#numsampperiod"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#datacompletion"/> +<embed href="text/scalc/01/exponsmooth_embd.xhp#aggregation"/> +<paragraph id="par_id0403201618595126" role="paragraph" xml-lang="en-US">For example, with a 90% Confidence level, a 90% prediction interval will be computed (90% of future points are to fall within this radius from forecast). </paragraph> +<paragraph id="par_id0403201618595143" role="note" xml-lang="en-US">Note on prediction intervals: there is no exact mathematical way to calculate this for forecasts, there are various approximations. Prediction intervals tend to be increasingly 'over-optimistic' when increasing distance of the forecast-X from the observation data set.</paragraph> +<paragraph id="par_id0403201618595150" role="paragraph" xml-lang="en-US">For ETS, Calc uses an approximation based on 1000 calculations with random variations within the standard deviation of the observation data set (the historical values).</paragraph> + +<embed href="text/scalc/01/exponsmooth_embd.xhp#exampledata"/> + <paragraph id="hd_id04032016185123" role="code" xml-lang="en-US">=FORECAST.ETS.PI.MULT(DATE(2014;1;1);Values;Timeline;0.9;1;TRUE();1)</paragraph> + <paragraph id="hd_id04032016112394554" role="paragraph" xml-lang="en-US">Returns 20.1040952101013, the prediction interval for multiplicative forecast for January 2014 based on <emph>Values</emph> and <emph>Timeline</emph> named ranges above, confidence level of 90% (=0.9) with one sample per period, no missing data, and AVERAGE as aggregation.</paragraph> + <paragraph id="hd_id04032123185123" role="code" xml-lang="en-US">=FORECAST.ETS.PI.MULT(DATE(2014;1;1);Values;Timeline;0.8;4;TRUE();7)</paragraph> + <paragraph id="hd_id040312316112394554" role="paragraph" xml-lang="en-US">Returns 27.5285874381574, the prediction interval for multiplicative forecast for January 2014 based on <emph>Values</emph> and <emph>Timeline</emph> named ranges above, with confidence level of 0.8, period length of 4, no missing data, and SUM as aggregation.</paragraph> +</section> +<section id="relatedtopics"> +<paragraph id="par_id0603201619261276" role="paragraph" xml-lang="en-US">See also: + <link href="text/scalc/01/func_forecastetsadd.xhp">FORECAST.ETS.ADD</link>, + <link href="text/scalc/01/func_forecastetsmult.xhp">FORECAST.ETS.MULT</link>, + <link href="text/scalc/01/func_forecastetsstatadd.xhp">FORECAST.ETS.STAT.ADD</link>, + <link href="text/scalc/01/func_forecastetsstatmult.xhp">FORECAST.ETS.STAT.MULT</link>, + <link href="text/scalc/01/func_forecastetspiadd.xhp">FORECAST.ETS.PI.ADD</link>, + <link href="text/scalc/01/func_forecastetsseason.xhp">FORECAST.ETS.SEASONALITY</link>, + <link href="text/scalc/01/04060185.xhp#forecast">FORECAST</link>, + <link href="text/scalc/01/04060185.xhp#forecastlinear">FORECAST.LINEAR</link> + </paragraph> +</section> +</body> + +</helpdocument> |