summaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/kref.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/core-api/kref.rst
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/core-api/kref.rst')
-rw-r--r--Documentation/core-api/kref.rst323
1 files changed, 323 insertions, 0 deletions
diff --git a/Documentation/core-api/kref.rst b/Documentation/core-api/kref.rst
new file mode 100644
index 000000000..c61eea6f1
--- /dev/null
+++ b/Documentation/core-api/kref.rst
@@ -0,0 +1,323 @@
+===================================================
+Adding reference counters (krefs) to kernel objects
+===================================================
+
+:Author: Corey Minyard <minyard@acm.org>
+:Author: Thomas Hellstrom <thellstrom@vmware.com>
+
+A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
+presentation on krefs, which can be found at:
+
+ - http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
+ - http://www.kroah.com/linux/talks/ols_2004_kref_talk/
+
+Introduction
+============
+
+krefs allow you to add reference counters to your objects. If you
+have objects that are used in multiple places and passed around, and
+you don't have refcounts, your code is almost certainly broken. If
+you want refcounts, krefs are the way to go.
+
+To use a kref, add one to your data structures like::
+
+ struct my_data
+ {
+ .
+ .
+ struct kref refcount;
+ .
+ .
+ };
+
+The kref can occur anywhere within the data structure.
+
+Initialization
+==============
+
+You must initialize the kref after you allocate it. To do this, call
+kref_init as so::
+
+ struct my_data *data;
+
+ data = kmalloc(sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+ kref_init(&data->refcount);
+
+This sets the refcount in the kref to 1.
+
+Kref rules
+==========
+
+Once you have an initialized kref, you must follow the following
+rules:
+
+1) If you make a non-temporary copy of a pointer, especially if
+ it can be passed to another thread of execution, you must
+ increment the refcount with kref_get() before passing it off::
+
+ kref_get(&data->refcount);
+
+ If you already have a valid pointer to a kref-ed structure (the
+ refcount cannot go to zero) you may do this without a lock.
+
+2) When you are done with a pointer, you must call kref_put()::
+
+ kref_put(&data->refcount, data_release);
+
+ If this is the last reference to the pointer, the release
+ routine will be called. If the code never tries to get
+ a valid pointer to a kref-ed structure without already
+ holding a valid pointer, it is safe to do this without
+ a lock.
+
+3) If the code attempts to gain a reference to a kref-ed structure
+ without already holding a valid pointer, it must serialize access
+ where a kref_put() cannot occur during the kref_get(), and the
+ structure must remain valid during the kref_get().
+
+For example, if you allocate some data and then pass it to another
+thread to process::
+
+ void data_release(struct kref *ref)
+ {
+ struct my_data *data = container_of(ref, struct my_data, refcount);
+ kfree(data);
+ }
+
+ void more_data_handling(void *cb_data)
+ {
+ struct my_data *data = cb_data;
+ .
+ . do stuff with data here
+ .
+ kref_put(&data->refcount, data_release);
+ }
+
+ int my_data_handler(void)
+ {
+ int rv = 0;
+ struct my_data *data;
+ struct task_struct *task;
+ data = kmalloc(sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+ kref_init(&data->refcount);
+
+ kref_get(&data->refcount);
+ task = kthread_run(more_data_handling, data, "more_data_handling");
+ if (task == ERR_PTR(-ENOMEM)) {
+ rv = -ENOMEM;
+ kref_put(&data->refcount, data_release);
+ goto out;
+ }
+
+ .
+ . do stuff with data here
+ .
+ out:
+ kref_put(&data->refcount, data_release);
+ return rv;
+ }
+
+This way, it doesn't matter what order the two threads handle the
+data, the kref_put() handles knowing when the data is not referenced
+any more and releasing it. The kref_get() does not require a lock,
+since we already have a valid pointer that we own a refcount for. The
+put needs no lock because nothing tries to get the data without
+already holding a pointer.
+
+In the above example, kref_put() will be called 2 times in both success
+and error paths. This is necessary because the reference count got
+incremented 2 times by kref_init() and kref_get().
+
+Note that the "before" in rule 1 is very important. You should never
+do something like::
+
+ task = kthread_run(more_data_handling, data, "more_data_handling");
+ if (task == ERR_PTR(-ENOMEM)) {
+ rv = -ENOMEM;
+ goto out;
+ } else
+ /* BAD BAD BAD - get is after the handoff */
+ kref_get(&data->refcount);
+
+Don't assume you know what you are doing and use the above construct.
+First of all, you may not know what you are doing. Second, you may
+know what you are doing (there are some situations where locking is
+involved where the above may be legal) but someone else who doesn't
+know what they are doing may change the code or copy the code. It's
+bad style. Don't do it.
+
+There are some situations where you can optimize the gets and puts.
+For instance, if you are done with an object and enqueuing it for
+something else or passing it off to something else, there is no reason
+to do a get then a put::
+
+ /* Silly extra get and put */
+ kref_get(&obj->ref);
+ enqueue(obj);
+ kref_put(&obj->ref, obj_cleanup);
+
+Just do the enqueue. A comment about this is always welcome::
+
+ enqueue(obj);
+ /* We are done with obj, so we pass our refcount off
+ to the queue. DON'T TOUCH obj AFTER HERE! */
+
+The last rule (rule 3) is the nastiest one to handle. Say, for
+instance, you have a list of items that are each kref-ed, and you wish
+to get the first one. You can't just pull the first item off the list
+and kref_get() it. That violates rule 3 because you are not already
+holding a valid pointer. You must add a mutex (or some other lock).
+For instance::
+
+ static DEFINE_MUTEX(mutex);
+ static LIST_HEAD(q);
+ struct my_data
+ {
+ struct kref refcount;
+ struct list_head link;
+ };
+
+ static struct my_data *get_entry()
+ {
+ struct my_data *entry = NULL;
+ mutex_lock(&mutex);
+ if (!list_empty(&q)) {
+ entry = container_of(q.next, struct my_data, link);
+ kref_get(&entry->refcount);
+ }
+ mutex_unlock(&mutex);
+ return entry;
+ }
+
+ static void release_entry(struct kref *ref)
+ {
+ struct my_data *entry = container_of(ref, struct my_data, refcount);
+
+ list_del(&entry->link);
+ kfree(entry);
+ }
+
+ static void put_entry(struct my_data *entry)
+ {
+ mutex_lock(&mutex);
+ kref_put(&entry->refcount, release_entry);
+ mutex_unlock(&mutex);
+ }
+
+The kref_put() return value is useful if you do not want to hold the
+lock during the whole release operation. Say you didn't want to call
+kfree() with the lock held in the example above (since it is kind of
+pointless to do so). You could use kref_put() as follows::
+
+ static void release_entry(struct kref *ref)
+ {
+ /* All work is done after the return from kref_put(). */
+ }
+
+ static void put_entry(struct my_data *entry)
+ {
+ mutex_lock(&mutex);
+ if (kref_put(&entry->refcount, release_entry)) {
+ list_del(&entry->link);
+ mutex_unlock(&mutex);
+ kfree(entry);
+ } else
+ mutex_unlock(&mutex);
+ }
+
+This is really more useful if you have to call other routines as part
+of the free operations that could take a long time or might claim the
+same lock. Note that doing everything in the release routine is still
+preferred as it is a little neater.
+
+The above example could also be optimized using kref_get_unless_zero() in
+the following way::
+
+ static struct my_data *get_entry()
+ {
+ struct my_data *entry = NULL;
+ mutex_lock(&mutex);
+ if (!list_empty(&q)) {
+ entry = container_of(q.next, struct my_data, link);
+ if (!kref_get_unless_zero(&entry->refcount))
+ entry = NULL;
+ }
+ mutex_unlock(&mutex);
+ return entry;
+ }
+
+ static void release_entry(struct kref *ref)
+ {
+ struct my_data *entry = container_of(ref, struct my_data, refcount);
+
+ mutex_lock(&mutex);
+ list_del(&entry->link);
+ mutex_unlock(&mutex);
+ kfree(entry);
+ }
+
+ static void put_entry(struct my_data *entry)
+ {
+ kref_put(&entry->refcount, release_entry);
+ }
+
+Which is useful to remove the mutex lock around kref_put() in put_entry(), but
+it's important that kref_get_unless_zero is enclosed in the same critical
+section that finds the entry in the lookup table,
+otherwise kref_get_unless_zero may reference already freed memory.
+Note that it is illegal to use kref_get_unless_zero without checking its
+return value. If you are sure (by already having a valid pointer) that
+kref_get_unless_zero() will return true, then use kref_get() instead.
+
+Krefs and RCU
+=============
+
+The function kref_get_unless_zero also makes it possible to use rcu
+locking for lookups in the above example::
+
+ struct my_data
+ {
+ struct rcu_head rhead;
+ .
+ struct kref refcount;
+ .
+ .
+ };
+
+ static struct my_data *get_entry_rcu()
+ {
+ struct my_data *entry = NULL;
+ rcu_read_lock();
+ if (!list_empty(&q)) {
+ entry = container_of(q.next, struct my_data, link);
+ if (!kref_get_unless_zero(&entry->refcount))
+ entry = NULL;
+ }
+ rcu_read_unlock();
+ return entry;
+ }
+
+ static void release_entry_rcu(struct kref *ref)
+ {
+ struct my_data *entry = container_of(ref, struct my_data, refcount);
+
+ mutex_lock(&mutex);
+ list_del_rcu(&entry->link);
+ mutex_unlock(&mutex);
+ kfree_rcu(entry, rhead);
+ }
+
+ static void put_entry(struct my_data *entry)
+ {
+ kref_put(&entry->refcount, release_entry_rcu);
+ }
+
+But note that the struct kref member needs to remain in valid memory for a
+rcu grace period after release_entry_rcu was called. That can be accomplished
+by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
+before using kfree, but note that synchronize_rcu() may sleep for a
+substantial amount of time.