summaryrefslogtreecommitdiffstats
path: root/arch/parisc/mm
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /arch/parisc/mm
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/parisc/mm')
-rw-r--r--arch/parisc/mm/Makefile7
-rw-r--r--arch/parisc/mm/fault.c515
-rw-r--r--arch/parisc/mm/fixmap.c41
-rw-r--r--arch/parisc/mm/hugetlbpage.c193
-rw-r--r--arch/parisc/mm/init.c873
-rw-r--r--arch/parisc/mm/ioremap.c100
6 files changed, 1729 insertions, 0 deletions
diff --git a/arch/parisc/mm/Makefile b/arch/parisc/mm/Makefile
new file mode 100644
index 000000000..ffdb5c0a8
--- /dev/null
+++ b/arch/parisc/mm/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# Makefile for arch/parisc/mm
+#
+
+obj-y := init.o fault.o ioremap.o fixmap.o
+obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
diff --git a/arch/parisc/mm/fault.c b/arch/parisc/mm/fault.c
new file mode 100644
index 000000000..5faa3cff4
--- /dev/null
+++ b/arch/parisc/mm/fault.c
@@ -0,0 +1,515 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ *
+ * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
+ * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
+ * Copyright 1999 Hewlett Packard Co.
+ *
+ */
+
+#include <linux/mm.h>
+#include <linux/ptrace.h>
+#include <linux/sched.h>
+#include <linux/sched/debug.h>
+#include <linux/interrupt.h>
+#include <linux/extable.h>
+#include <linux/uaccess.h>
+#include <linux/hugetlb.h>
+#include <linux/perf_event.h>
+
+#include <asm/traps.h>
+
+/* Various important other fields */
+#define bit22set(x) (x & 0x00000200)
+#define bits23_25set(x) (x & 0x000001c0)
+#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
+ /* extended opcode is 0x6a */
+
+#define BITSSET 0x1c0 /* for identifying LDCW */
+
+
+int show_unhandled_signals = 1;
+
+/*
+ * parisc_acctyp(unsigned int inst) --
+ * Given a PA-RISC memory access instruction, determine if the
+ * the instruction would perform a memory read or memory write
+ * operation.
+ *
+ * This function assumes that the given instruction is a memory access
+ * instruction (i.e. you should really only call it if you know that
+ * the instruction has generated some sort of a memory access fault).
+ *
+ * Returns:
+ * VM_READ if read operation
+ * VM_WRITE if write operation
+ * VM_EXEC if execute operation
+ */
+static unsigned long
+parisc_acctyp(unsigned long code, unsigned int inst)
+{
+ if (code == 6 || code == 16)
+ return VM_EXEC;
+
+ switch (inst & 0xf0000000) {
+ case 0x40000000: /* load */
+ case 0x50000000: /* new load */
+ return VM_READ;
+
+ case 0x60000000: /* store */
+ case 0x70000000: /* new store */
+ return VM_WRITE;
+
+ case 0x20000000: /* coproc */
+ case 0x30000000: /* coproc2 */
+ if (bit22set(inst))
+ return VM_WRITE;
+ fallthrough;
+
+ case 0x0: /* indexed/memory management */
+ if (bit22set(inst)) {
+ /*
+ * Check for the 'Graphics Flush Read' instruction.
+ * It resembles an FDC instruction, except for bits
+ * 20 and 21. Any combination other than zero will
+ * utilize the block mover functionality on some
+ * older PA-RISC platforms. The case where a block
+ * move is performed from VM to graphics IO space
+ * should be treated as a READ.
+ *
+ * The significance of bits 20,21 in the FDC
+ * instruction is:
+ *
+ * 00 Flush data cache (normal instruction behavior)
+ * 01 Graphics flush write (IO space -> VM)
+ * 10 Graphics flush read (VM -> IO space)
+ * 11 Graphics flush read/write (VM <-> IO space)
+ */
+ if (isGraphicsFlushRead(inst))
+ return VM_READ;
+ return VM_WRITE;
+ } else {
+ /*
+ * Check for LDCWX and LDCWS (semaphore instructions).
+ * If bits 23 through 25 are all 1's it is one of
+ * the above two instructions and is a write.
+ *
+ * Note: With the limited bits we are looking at,
+ * this will also catch PROBEW and PROBEWI. However,
+ * these should never get in here because they don't
+ * generate exceptions of the type:
+ * Data TLB miss fault/data page fault
+ * Data memory protection trap
+ */
+ if (bits23_25set(inst) == BITSSET)
+ return VM_WRITE;
+ }
+ return VM_READ; /* Default */
+ }
+ return VM_READ; /* Default */
+}
+
+#undef bit22set
+#undef bits23_25set
+#undef isGraphicsFlushRead
+#undef BITSSET
+
+
+#if 0
+/* This is the treewalk to find a vma which is the highest that has
+ * a start < addr. We're using find_vma_prev instead right now, but
+ * we might want to use this at some point in the future. Probably
+ * not, but I want it committed to CVS so I don't lose it :-)
+ */
+ while (tree != vm_avl_empty) {
+ if (tree->vm_start > addr) {
+ tree = tree->vm_avl_left;
+ } else {
+ prev = tree;
+ if (prev->vm_next == NULL)
+ break;
+ if (prev->vm_next->vm_start > addr)
+ break;
+ tree = tree->vm_avl_right;
+ }
+ }
+#endif
+
+int fixup_exception(struct pt_regs *regs)
+{
+ const struct exception_table_entry *fix;
+
+ fix = search_exception_tables(regs->iaoq[0]);
+ if (fix) {
+ /*
+ * Fix up get_user() and put_user().
+ * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
+ * bit in the relative address of the fixup routine to indicate
+ * that %r8 should be loaded with -EFAULT to report a userspace
+ * access error.
+ */
+ if (fix->fixup & 1) {
+ regs->gr[8] = -EFAULT;
+
+ /* zero target register for get_user() */
+ if (parisc_acctyp(0, regs->iir) == VM_READ) {
+ int treg = regs->iir & 0x1f;
+ BUG_ON(treg == 0);
+ regs->gr[treg] = 0;
+ }
+ }
+
+ regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
+ regs->iaoq[0] &= ~3;
+ /*
+ * NOTE: In some cases the faulting instruction
+ * may be in the delay slot of a branch. We
+ * don't want to take the branch, so we don't
+ * increment iaoq[1], instead we set it to be
+ * iaoq[0]+4, and clear the B bit in the PSW
+ */
+ regs->iaoq[1] = regs->iaoq[0] + 4;
+ regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
+
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * parisc hardware trap list
+ *
+ * Documented in section 3 "Addressing and Access Control" of the
+ * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
+ * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
+ *
+ * For implementation see handle_interruption() in traps.c
+ */
+static const char * const trap_description[] = {
+ [1] "High-priority machine check (HPMC)",
+ [2] "Power failure interrupt",
+ [3] "Recovery counter trap",
+ [5] "Low-priority machine check",
+ [6] "Instruction TLB miss fault",
+ [7] "Instruction access rights / protection trap",
+ [8] "Illegal instruction trap",
+ [9] "Break instruction trap",
+ [10] "Privileged operation trap",
+ [11] "Privileged register trap",
+ [12] "Overflow trap",
+ [13] "Conditional trap",
+ [14] "FP Assist Exception trap",
+ [15] "Data TLB miss fault",
+ [16] "Non-access ITLB miss fault",
+ [17] "Non-access DTLB miss fault",
+ [18] "Data memory protection/unaligned access trap",
+ [19] "Data memory break trap",
+ [20] "TLB dirty bit trap",
+ [21] "Page reference trap",
+ [22] "Assist emulation trap",
+ [25] "Taken branch trap",
+ [26] "Data memory access rights trap",
+ [27] "Data memory protection ID trap",
+ [28] "Unaligned data reference trap",
+};
+
+const char *trap_name(unsigned long code)
+{
+ const char *t = NULL;
+
+ if (code < ARRAY_SIZE(trap_description))
+ t = trap_description[code];
+
+ return t ? t : "Unknown trap";
+}
+
+/*
+ * Print out info about fatal segfaults, if the show_unhandled_signals
+ * sysctl is set:
+ */
+static inline void
+show_signal_msg(struct pt_regs *regs, unsigned long code,
+ unsigned long address, struct task_struct *tsk,
+ struct vm_area_struct *vma)
+{
+ if (!unhandled_signal(tsk, SIGSEGV))
+ return;
+
+ if (!printk_ratelimit())
+ return;
+
+ pr_warn("\n");
+ pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
+ tsk->comm, code, address);
+ print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
+
+ pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
+ vma ? ',':'\n');
+
+ if (vma)
+ pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
+ vma->vm_start, vma->vm_end);
+
+ show_regs(regs);
+}
+
+void do_page_fault(struct pt_regs *regs, unsigned long code,
+ unsigned long address)
+{
+ struct vm_area_struct *vma, *prev_vma;
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ unsigned long acc_type;
+ vm_fault_t fault = 0;
+ unsigned int flags;
+
+ if (faulthandler_disabled())
+ goto no_context;
+
+ tsk = current;
+ mm = tsk->mm;
+ if (!mm)
+ goto no_context;
+
+ flags = FAULT_FLAG_DEFAULT;
+ if (user_mode(regs))
+ flags |= FAULT_FLAG_USER;
+
+ acc_type = parisc_acctyp(code, regs->iir);
+ if (acc_type & VM_WRITE)
+ flags |= FAULT_FLAG_WRITE;
+ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
+retry:
+ mmap_read_lock(mm);
+ vma = find_vma_prev(mm, address, &prev_vma);
+ if (!vma || address < vma->vm_start)
+ goto check_expansion;
+/*
+ * Ok, we have a good vm_area for this memory access. We still need to
+ * check the access permissions.
+ */
+
+good_area:
+
+ if ((vma->vm_flags & acc_type) != acc_type)
+ goto bad_area;
+
+ /*
+ * If for any reason at all we couldn't handle the fault, make
+ * sure we exit gracefully rather than endlessly redo the
+ * fault.
+ */
+
+ fault = handle_mm_fault(vma, address, flags, regs);
+
+ if (fault_signal_pending(fault, regs))
+ return;
+
+ if (unlikely(fault & VM_FAULT_ERROR)) {
+ /*
+ * We hit a shared mapping outside of the file, or some
+ * other thing happened to us that made us unable to
+ * handle the page fault gracefully.
+ */
+ if (fault & VM_FAULT_OOM)
+ goto out_of_memory;
+ else if (fault & VM_FAULT_SIGSEGV)
+ goto bad_area;
+ else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
+ VM_FAULT_HWPOISON_LARGE))
+ goto bad_area;
+ BUG();
+ }
+ if (flags & FAULT_FLAG_ALLOW_RETRY) {
+ if (fault & VM_FAULT_RETRY) {
+ /*
+ * No need to mmap_read_unlock(mm) as we would
+ * have already released it in __lock_page_or_retry
+ * in mm/filemap.c.
+ */
+ flags |= FAULT_FLAG_TRIED;
+ goto retry;
+ }
+ }
+ mmap_read_unlock(mm);
+ return;
+
+check_expansion:
+ vma = prev_vma;
+ if (vma && (expand_stack(vma, address) == 0))
+ goto good_area;
+
+/*
+ * Something tried to access memory that isn't in our memory map..
+ */
+bad_area:
+ mmap_read_unlock(mm);
+
+ if (user_mode(regs)) {
+ int signo, si_code;
+
+ switch (code) {
+ case 15: /* Data TLB miss fault/Data page fault */
+ /* send SIGSEGV when outside of vma */
+ if (!vma ||
+ address < vma->vm_start || address >= vma->vm_end) {
+ signo = SIGSEGV;
+ si_code = SEGV_MAPERR;
+ break;
+ }
+
+ /* send SIGSEGV for wrong permissions */
+ if ((vma->vm_flags & acc_type) != acc_type) {
+ signo = SIGSEGV;
+ si_code = SEGV_ACCERR;
+ break;
+ }
+
+ /* probably address is outside of mapped file */
+ fallthrough;
+ case 17: /* NA data TLB miss / page fault */
+ case 18: /* Unaligned access - PCXS only */
+ signo = SIGBUS;
+ si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
+ break;
+ case 16: /* Non-access instruction TLB miss fault */
+ case 26: /* PCXL: Data memory access rights trap */
+ default:
+ signo = SIGSEGV;
+ si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
+ break;
+ }
+#ifdef CONFIG_MEMORY_FAILURE
+ if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
+ unsigned int lsb = 0;
+ printk(KERN_ERR
+ "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
+ tsk->comm, tsk->pid, address);
+ /*
+ * Either small page or large page may be poisoned.
+ * In other words, VM_FAULT_HWPOISON_LARGE and
+ * VM_FAULT_HWPOISON are mutually exclusive.
+ */
+ if (fault & VM_FAULT_HWPOISON_LARGE)
+ lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
+ else if (fault & VM_FAULT_HWPOISON)
+ lsb = PAGE_SHIFT;
+
+ force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
+ lsb);
+ return;
+ }
+#endif
+ show_signal_msg(regs, code, address, tsk, vma);
+
+ force_sig_fault(signo, si_code, (void __user *) address);
+ return;
+ }
+
+no_context:
+
+ if (!user_mode(regs) && fixup_exception(regs)) {
+ return;
+ }
+
+ parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
+
+ out_of_memory:
+ mmap_read_unlock(mm);
+ if (!user_mode(regs))
+ goto no_context;
+ pagefault_out_of_memory();
+}
+
+/* Handle non-access data TLB miss faults.
+ *
+ * For probe instructions, accesses to userspace are considered allowed
+ * if they lie in a valid VMA and the access type matches. We are not
+ * allowed to handle MM faults here so there may be situations where an
+ * actual access would fail even though a probe was successful.
+ */
+int
+handle_nadtlb_fault(struct pt_regs *regs)
+{
+ unsigned long insn = regs->iir;
+ int breg, treg, xreg, val = 0;
+ struct vm_area_struct *vma, *prev_vma;
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ unsigned long address;
+ unsigned long acc_type;
+
+ switch (insn & 0x380) {
+ case 0x280:
+ /* FDC instruction */
+ fallthrough;
+ case 0x380:
+ /* PDC and FIC instructions */
+ if (printk_ratelimit()) {
+ pr_warn("BUG: nullifying cache flush/purge instruction\n");
+ show_regs(regs);
+ }
+ if (insn & 0x20) {
+ /* Base modification */
+ breg = (insn >> 21) & 0x1f;
+ xreg = (insn >> 16) & 0x1f;
+ if (breg && xreg)
+ regs->gr[breg] += regs->gr[xreg];
+ }
+ regs->gr[0] |= PSW_N;
+ return 1;
+
+ case 0x180:
+ /* PROBE instruction */
+ treg = insn & 0x1f;
+ if (regs->isr) {
+ tsk = current;
+ mm = tsk->mm;
+ if (mm) {
+ /* Search for VMA */
+ address = regs->ior;
+ mmap_read_lock(mm);
+ vma = find_vma_prev(mm, address, &prev_vma);
+ mmap_read_unlock(mm);
+
+ /*
+ * Check if access to the VMA is okay.
+ * We don't allow for stack expansion.
+ */
+ acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
+ if (vma
+ && address >= vma->vm_start
+ && (vma->vm_flags & acc_type) == acc_type)
+ val = 1;
+ }
+ }
+ if (treg)
+ regs->gr[treg] = val;
+ regs->gr[0] |= PSW_N;
+ return 1;
+
+ case 0x300:
+ /* LPA instruction */
+ if (insn & 0x20) {
+ /* Base modification */
+ breg = (insn >> 21) & 0x1f;
+ xreg = (insn >> 16) & 0x1f;
+ if (breg && xreg)
+ regs->gr[breg] += regs->gr[xreg];
+ }
+ treg = insn & 0x1f;
+ if (treg)
+ regs->gr[treg] = 0;
+ regs->gr[0] |= PSW_N;
+ return 1;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
diff --git a/arch/parisc/mm/fixmap.c b/arch/parisc/mm/fixmap.c
new file mode 100644
index 000000000..cc15d737f
--- /dev/null
+++ b/arch/parisc/mm/fixmap.c
@@ -0,0 +1,41 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * fixmaps for parisc
+ *
+ * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
+ */
+
+#include <linux/kprobes.h>
+#include <linux/mm.h>
+#include <asm/cacheflush.h>
+#include <asm/fixmap.h>
+
+void notrace set_fixmap(enum fixed_addresses idx, phys_addr_t phys)
+{
+ unsigned long vaddr = __fix_to_virt(idx);
+ pgd_t *pgd = pgd_offset_k(vaddr);
+ p4d_t *p4d = p4d_offset(pgd, vaddr);
+ pud_t *pud = pud_offset(p4d, vaddr);
+ pmd_t *pmd = pmd_offset(pud, vaddr);
+ pte_t *pte;
+
+ if (pmd_none(*pmd))
+ pte = pte_alloc_kernel(pmd, vaddr);
+
+ pte = pte_offset_kernel(pmd, vaddr);
+ set_pte_at(&init_mm, vaddr, pte, __mk_pte(phys, PAGE_KERNEL_RWX));
+ flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
+}
+
+void notrace clear_fixmap(enum fixed_addresses idx)
+{
+ unsigned long vaddr = __fix_to_virt(idx);
+ pte_t *pte = virt_to_kpte(vaddr);
+
+ if (WARN_ON(pte_none(*pte)))
+ return;
+
+ pte_clear(&init_mm, vaddr, pte);
+
+ flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
+}
diff --git a/arch/parisc/mm/hugetlbpage.c b/arch/parisc/mm/hugetlbpage.c
new file mode 100644
index 000000000..43652de5f
--- /dev/null
+++ b/arch/parisc/mm/hugetlbpage.c
@@ -0,0 +1,193 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * PARISC64 Huge TLB page support.
+ *
+ * This parisc implementation is heavily based on the SPARC and x86 code.
+ *
+ * Copyright (C) 2015 Helge Deller <deller@gmx.de>
+ */
+
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/sched/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
+#include <linux/sysctl.h>
+
+#include <asm/mman.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/mmu_context.h>
+
+
+unsigned long
+hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long pgoff, unsigned long flags)
+{
+ struct hstate *h = hstate_file(file);
+
+ if (len & ~huge_page_mask(h))
+ return -EINVAL;
+ if (len > TASK_SIZE)
+ return -ENOMEM;
+
+ if (flags & MAP_FIXED)
+ if (prepare_hugepage_range(file, addr, len))
+ return -EINVAL;
+
+ if (addr)
+ addr = ALIGN(addr, huge_page_size(h));
+
+ /* we need to make sure the colouring is OK */
+ return arch_get_unmapped_area(file, addr, len, pgoff, flags);
+}
+
+
+pte_t *huge_pte_alloc(struct mm_struct *mm,
+ unsigned long addr, unsigned long sz)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte = NULL;
+
+ /* We must align the address, because our caller will run
+ * set_huge_pte_at() on whatever we return, which writes out
+ * all of the sub-ptes for the hugepage range. So we have
+ * to give it the first such sub-pte.
+ */
+ addr &= HPAGE_MASK;
+
+ pgd = pgd_offset(mm, addr);
+ p4d = p4d_offset(pgd, addr);
+ pud = pud_alloc(mm, p4d, addr);
+ if (pud) {
+ pmd = pmd_alloc(mm, pud, addr);
+ if (pmd)
+ pte = pte_alloc_map(mm, pmd, addr);
+ }
+ return pte;
+}
+
+pte_t *huge_pte_offset(struct mm_struct *mm,
+ unsigned long addr, unsigned long sz)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte = NULL;
+
+ addr &= HPAGE_MASK;
+
+ pgd = pgd_offset(mm, addr);
+ if (!pgd_none(*pgd)) {
+ p4d = p4d_offset(pgd, addr);
+ if (!p4d_none(*p4d)) {
+ pud = pud_offset(p4d, addr);
+ if (!pud_none(*pud)) {
+ pmd = pmd_offset(pud, addr);
+ if (!pmd_none(*pmd))
+ pte = pte_offset_map(pmd, addr);
+ }
+ }
+ }
+ return pte;
+}
+
+/* Purge data and instruction TLB entries. Must be called holding
+ * the pa_tlb_lock. The TLB purge instructions are slow on SMP
+ * machines since the purge must be broadcast to all CPUs.
+ */
+static inline void purge_tlb_entries_huge(struct mm_struct *mm, unsigned long addr)
+{
+ int i;
+
+ /* We may use multiple physical huge pages (e.g. 2x1 MB) to emulate
+ * Linux standard huge pages (e.g. 2 MB) */
+ BUILD_BUG_ON(REAL_HPAGE_SHIFT > HPAGE_SHIFT);
+
+ addr &= HPAGE_MASK;
+ addr |= _HUGE_PAGE_SIZE_ENCODING_DEFAULT;
+
+ for (i = 0; i < (1 << (HPAGE_SHIFT-REAL_HPAGE_SHIFT)); i++) {
+ purge_tlb_entries(mm, addr);
+ addr += (1UL << REAL_HPAGE_SHIFT);
+ }
+}
+
+/* __set_huge_pte_at() must be called holding the pa_tlb_lock. */
+static void __set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep, pte_t entry)
+{
+ unsigned long addr_start;
+ int i;
+
+ addr &= HPAGE_MASK;
+ addr_start = addr;
+
+ for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
+ set_pte(ptep, entry);
+ ptep++;
+
+ addr += PAGE_SIZE;
+ pte_val(entry) += PAGE_SIZE;
+ }
+
+ purge_tlb_entries_huge(mm, addr_start);
+}
+
+void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep, pte_t entry)
+{
+ __set_huge_pte_at(mm, addr, ptep, entry);
+}
+
+
+pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep)
+{
+ pte_t entry;
+
+ entry = *ptep;
+ __set_huge_pte_at(mm, addr, ptep, __pte(0));
+
+ return entry;
+}
+
+
+void huge_ptep_set_wrprotect(struct mm_struct *mm,
+ unsigned long addr, pte_t *ptep)
+{
+ pte_t old_pte;
+
+ old_pte = *ptep;
+ __set_huge_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
+}
+
+int huge_ptep_set_access_flags(struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep,
+ pte_t pte, int dirty)
+{
+ int changed;
+ struct mm_struct *mm = vma->vm_mm;
+
+ changed = !pte_same(*ptep, pte);
+ if (changed) {
+ __set_huge_pte_at(mm, addr, ptep, pte);
+ }
+ return changed;
+}
+
+
+int pmd_huge(pmd_t pmd)
+{
+ return 0;
+}
+
+int pud_huge(pud_t pud)
+{
+ return 0;
+}
diff --git a/arch/parisc/mm/init.c b/arch/parisc/mm/init.c
new file mode 100644
index 000000000..6a083fc87
--- /dev/null
+++ b/arch/parisc/mm/init.c
@@ -0,0 +1,873 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * linux/arch/parisc/mm/init.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright 1999 SuSE GmbH
+ * changed by Philipp Rumpf
+ * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
+ * Copyright 2004 Randolph Chung (tausq@debian.org)
+ * Copyright 2006-2007 Helge Deller (deller@gmx.de)
+ *
+ */
+
+
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/memblock.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/initrd.h>
+#include <linux/swap.h>
+#include <linux/unistd.h>
+#include <linux/nodemask.h> /* for node_online_map */
+#include <linux/pagemap.h> /* for release_pages */
+#include <linux/compat.h>
+
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/pdc_chassis.h>
+#include <asm/mmzone.h>
+#include <asm/sections.h>
+#include <asm/msgbuf.h>
+#include <asm/sparsemem.h>
+
+extern int data_start;
+extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
+
+#if CONFIG_PGTABLE_LEVELS == 3
+pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
+#endif
+
+pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
+pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
+
+static struct resource data_resource = {
+ .name = "Kernel data",
+ .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
+};
+
+static struct resource code_resource = {
+ .name = "Kernel code",
+ .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
+};
+
+static struct resource pdcdata_resource = {
+ .name = "PDC data (Page Zero)",
+ .start = 0,
+ .end = 0x9ff,
+ .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
+};
+
+static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
+
+/* The following array is initialized from the firmware specific
+ * information retrieved in kernel/inventory.c.
+ */
+
+physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
+int npmem_ranges __initdata;
+
+#ifdef CONFIG_64BIT
+#define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
+#else /* !CONFIG_64BIT */
+#define MAX_MEM (3584U*1024U*1024U)
+#endif /* !CONFIG_64BIT */
+
+static unsigned long mem_limit __read_mostly = MAX_MEM;
+
+static void __init mem_limit_func(void)
+{
+ char *cp, *end;
+ unsigned long limit;
+
+ /* We need this before __setup() functions are called */
+
+ limit = MAX_MEM;
+ for (cp = boot_command_line; *cp; ) {
+ if (memcmp(cp, "mem=", 4) == 0) {
+ cp += 4;
+ limit = memparse(cp, &end);
+ if (end != cp)
+ break;
+ cp = end;
+ } else {
+ while (*cp != ' ' && *cp)
+ ++cp;
+ while (*cp == ' ')
+ ++cp;
+ }
+ }
+
+ if (limit < mem_limit)
+ mem_limit = limit;
+}
+
+#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
+
+static void __init setup_bootmem(void)
+{
+ unsigned long mem_max;
+#ifndef CONFIG_SPARSEMEM
+ physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
+ int npmem_holes;
+#endif
+ int i, sysram_resource_count;
+
+ disable_sr_hashing(); /* Turn off space register hashing */
+
+ /*
+ * Sort the ranges. Since the number of ranges is typically
+ * small, and performance is not an issue here, just do
+ * a simple insertion sort.
+ */
+
+ for (i = 1; i < npmem_ranges; i++) {
+ int j;
+
+ for (j = i; j > 0; j--) {
+ physmem_range_t tmp;
+
+ if (pmem_ranges[j-1].start_pfn <
+ pmem_ranges[j].start_pfn) {
+
+ break;
+ }
+ tmp = pmem_ranges[j-1];
+ pmem_ranges[j-1] = pmem_ranges[j];
+ pmem_ranges[j] = tmp;
+ }
+ }
+
+#ifndef CONFIG_SPARSEMEM
+ /*
+ * Throw out ranges that are too far apart (controlled by
+ * MAX_GAP).
+ */
+
+ for (i = 1; i < npmem_ranges; i++) {
+ if (pmem_ranges[i].start_pfn -
+ (pmem_ranges[i-1].start_pfn +
+ pmem_ranges[i-1].pages) > MAX_GAP) {
+ npmem_ranges = i;
+ printk("Large gap in memory detected (%ld pages). "
+ "Consider turning on CONFIG_SPARSEMEM\n",
+ pmem_ranges[i].start_pfn -
+ (pmem_ranges[i-1].start_pfn +
+ pmem_ranges[i-1].pages));
+ break;
+ }
+ }
+#endif
+
+ /* Print the memory ranges */
+ pr_info("Memory Ranges:\n");
+
+ for (i = 0; i < npmem_ranges; i++) {
+ struct resource *res = &sysram_resources[i];
+ unsigned long start;
+ unsigned long size;
+
+ size = (pmem_ranges[i].pages << PAGE_SHIFT);
+ start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
+ pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
+ i, start, start + (size - 1), size >> 20);
+
+ /* request memory resource */
+ res->name = "System RAM";
+ res->start = start;
+ res->end = start + size - 1;
+ res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
+ request_resource(&iomem_resource, res);
+ }
+
+ sysram_resource_count = npmem_ranges;
+
+ /*
+ * For 32 bit kernels we limit the amount of memory we can
+ * support, in order to preserve enough kernel address space
+ * for other purposes. For 64 bit kernels we don't normally
+ * limit the memory, but this mechanism can be used to
+ * artificially limit the amount of memory (and it is written
+ * to work with multiple memory ranges).
+ */
+
+ mem_limit_func(); /* check for "mem=" argument */
+
+ mem_max = 0;
+ for (i = 0; i < npmem_ranges; i++) {
+ unsigned long rsize;
+
+ rsize = pmem_ranges[i].pages << PAGE_SHIFT;
+ if ((mem_max + rsize) > mem_limit) {
+ printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
+ if (mem_max == mem_limit)
+ npmem_ranges = i;
+ else {
+ pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
+ - (mem_max >> PAGE_SHIFT);
+ npmem_ranges = i + 1;
+ mem_max = mem_limit;
+ }
+ break;
+ }
+ mem_max += rsize;
+ }
+
+ printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
+
+#ifndef CONFIG_SPARSEMEM
+ /* Merge the ranges, keeping track of the holes */
+ {
+ unsigned long end_pfn;
+ unsigned long hole_pages;
+
+ npmem_holes = 0;
+ end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
+ for (i = 1; i < npmem_ranges; i++) {
+
+ hole_pages = pmem_ranges[i].start_pfn - end_pfn;
+ if (hole_pages) {
+ pmem_holes[npmem_holes].start_pfn = end_pfn;
+ pmem_holes[npmem_holes++].pages = hole_pages;
+ end_pfn += hole_pages;
+ }
+ end_pfn += pmem_ranges[i].pages;
+ }
+
+ pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
+ npmem_ranges = 1;
+ }
+#endif
+
+ /*
+ * Initialize and free the full range of memory in each range.
+ */
+
+ max_pfn = 0;
+ for (i = 0; i < npmem_ranges; i++) {
+ unsigned long start_pfn;
+ unsigned long npages;
+ unsigned long start;
+ unsigned long size;
+
+ start_pfn = pmem_ranges[i].start_pfn;
+ npages = pmem_ranges[i].pages;
+
+ start = start_pfn << PAGE_SHIFT;
+ size = npages << PAGE_SHIFT;
+
+ /* add system RAM memblock */
+ memblock_add(start, size);
+
+ if ((start_pfn + npages) > max_pfn)
+ max_pfn = start_pfn + npages;
+ }
+
+ /*
+ * We can't use memblock top-down allocations because we only
+ * created the initial mapping up to KERNEL_INITIAL_SIZE in
+ * the assembly bootup code.
+ */
+ memblock_set_bottom_up(true);
+
+ /* IOMMU is always used to access "high mem" on those boxes
+ * that can support enough mem that a PCI device couldn't
+ * directly DMA to any physical addresses.
+ * ISA DMA support will need to revisit this.
+ */
+ max_low_pfn = max_pfn;
+
+ /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
+
+#define PDC_CONSOLE_IO_IODC_SIZE 32768
+
+ memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
+ PDC_CONSOLE_IO_IODC_SIZE));
+ memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
+ (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
+
+#ifndef CONFIG_SPARSEMEM
+
+ /* reserve the holes */
+
+ for (i = 0; i < npmem_holes; i++) {
+ memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
+ (pmem_holes[i].pages << PAGE_SHIFT));
+ }
+#endif
+
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (initrd_start) {
+ printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
+ if (__pa(initrd_start) < mem_max) {
+ unsigned long initrd_reserve;
+
+ if (__pa(initrd_end) > mem_max) {
+ initrd_reserve = mem_max - __pa(initrd_start);
+ } else {
+ initrd_reserve = initrd_end - initrd_start;
+ }
+ initrd_below_start_ok = 1;
+ printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
+
+ memblock_reserve(__pa(initrd_start), initrd_reserve);
+ }
+ }
+#endif
+
+ data_resource.start = virt_to_phys(&data_start);
+ data_resource.end = virt_to_phys(_end) - 1;
+ code_resource.start = virt_to_phys(_text);
+ code_resource.end = virt_to_phys(&data_start)-1;
+
+ /* We don't know which region the kernel will be in, so try
+ * all of them.
+ */
+ for (i = 0; i < sysram_resource_count; i++) {
+ struct resource *res = &sysram_resources[i];
+ request_resource(res, &code_resource);
+ request_resource(res, &data_resource);
+ }
+ request_resource(&sysram_resources[0], &pdcdata_resource);
+
+ /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
+ pdc_pdt_init();
+
+ memblock_allow_resize();
+ memblock_dump_all();
+}
+
+static bool kernel_set_to_readonly;
+
+static void __ref map_pages(unsigned long start_vaddr,
+ unsigned long start_paddr, unsigned long size,
+ pgprot_t pgprot, int force)
+{
+ pmd_t *pmd;
+ pte_t *pg_table;
+ unsigned long end_paddr;
+ unsigned long start_pmd;
+ unsigned long start_pte;
+ unsigned long tmp1;
+ unsigned long tmp2;
+ unsigned long address;
+ unsigned long vaddr;
+ unsigned long ro_start;
+ unsigned long ro_end;
+ unsigned long kernel_start, kernel_end;
+
+ ro_start = __pa((unsigned long)_text);
+ ro_end = __pa((unsigned long)&data_start);
+ kernel_start = __pa((unsigned long)&__init_begin);
+ kernel_end = __pa((unsigned long)&_end);
+
+ end_paddr = start_paddr + size;
+
+ /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
+ start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
+ start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+
+ address = start_paddr;
+ vaddr = start_vaddr;
+ while (address < end_paddr) {
+ pgd_t *pgd = pgd_offset_k(vaddr);
+ p4d_t *p4d = p4d_offset(pgd, vaddr);
+ pud_t *pud = pud_offset(p4d, vaddr);
+
+#if CONFIG_PGTABLE_LEVELS == 3
+ if (pud_none(*pud)) {
+ pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
+ PAGE_SIZE << PMD_ORDER);
+ if (!pmd)
+ panic("pmd allocation failed.\n");
+ pud_populate(NULL, pud, pmd);
+ }
+#endif
+
+ pmd = pmd_offset(pud, vaddr);
+ for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
+ if (pmd_none(*pmd)) {
+ pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
+ if (!pg_table)
+ panic("page table allocation failed\n");
+ pmd_populate_kernel(NULL, pmd, pg_table);
+ }
+
+ pg_table = pte_offset_kernel(pmd, vaddr);
+ for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
+ pte_t pte;
+ pgprot_t prot;
+ bool huge = false;
+
+ if (force) {
+ prot = pgprot;
+ } else if (address < kernel_start || address >= kernel_end) {
+ /* outside kernel memory */
+ prot = PAGE_KERNEL;
+ } else if (!kernel_set_to_readonly) {
+ /* still initializing, allow writing to RO memory */
+ prot = PAGE_KERNEL_RWX;
+ huge = true;
+ } else if (address >= ro_start) {
+ /* Code (ro) and Data areas */
+ prot = (address < ro_end) ?
+ PAGE_KERNEL_EXEC : PAGE_KERNEL;
+ huge = true;
+ } else {
+ prot = PAGE_KERNEL;
+ }
+
+ pte = __mk_pte(address, prot);
+ if (huge)
+ pte = pte_mkhuge(pte);
+
+ if (address >= end_paddr)
+ break;
+
+ set_pte(pg_table, pte);
+
+ address += PAGE_SIZE;
+ vaddr += PAGE_SIZE;
+ }
+ start_pte = 0;
+
+ if (address >= end_paddr)
+ break;
+ }
+ start_pmd = 0;
+ }
+}
+
+void __init set_kernel_text_rw(int enable_read_write)
+{
+ unsigned long start = (unsigned long) __init_begin;
+ unsigned long end = (unsigned long) &data_start;
+
+ map_pages(start, __pa(start), end-start,
+ PAGE_KERNEL_RWX, enable_read_write ? 1:0);
+
+ /* force the kernel to see the new page table entries */
+ flush_cache_all();
+ flush_tlb_all();
+}
+
+void free_initmem(void)
+{
+ unsigned long init_begin = (unsigned long)__init_begin;
+ unsigned long init_end = (unsigned long)__init_end;
+ unsigned long kernel_end = (unsigned long)&_end;
+
+ /* Remap kernel text and data, but do not touch init section yet. */
+ kernel_set_to_readonly = true;
+ map_pages(init_end, __pa(init_end), kernel_end - init_end,
+ PAGE_KERNEL, 0);
+
+ /* The init text pages are marked R-X. We have to
+ * flush the icache and mark them RW-
+ *
+ * Do a dummy remap of the data section first (the data
+ * section is already PAGE_KERNEL) to pull in the TLB entries
+ * for map_kernel */
+ map_pages(init_begin, __pa(init_begin), init_end - init_begin,
+ PAGE_KERNEL_RWX, 1);
+ /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
+ * map_pages */
+ map_pages(init_begin, __pa(init_begin), init_end - init_begin,
+ PAGE_KERNEL, 1);
+
+ /* force the kernel to see the new TLB entries */
+ __flush_tlb_range(0, init_begin, kernel_end);
+
+ /* finally dump all the instructions which were cached, since the
+ * pages are no-longer executable */
+ flush_icache_range(init_begin, init_end);
+
+ free_initmem_default(POISON_FREE_INITMEM);
+
+ /* set up a new led state on systems shipped LED State panel */
+ pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
+}
+
+
+#ifdef CONFIG_STRICT_KERNEL_RWX
+void mark_rodata_ro(void)
+{
+ /* rodata memory was already mapped with KERNEL_RO access rights by
+ pagetable_init() and map_pages(). No need to do additional stuff here */
+ unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
+
+ pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
+}
+#endif
+
+
+/*
+ * Just an arbitrary offset to serve as a "hole" between mapping areas
+ * (between top of physical memory and a potential pcxl dma mapping
+ * area, and below the vmalloc mapping area).
+ *
+ * The current 32K value just means that there will be a 32K "hole"
+ * between mapping areas. That means that any out-of-bounds memory
+ * accesses will hopefully be caught. The vmalloc() routines leaves
+ * a hole of 4kB between each vmalloced area for the same reason.
+ */
+
+ /* Leave room for gateway page expansion */
+#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
+#error KERNEL_MAP_START is in gateway reserved region
+#endif
+#define MAP_START (KERNEL_MAP_START)
+
+#define VM_MAP_OFFSET (32*1024)
+#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
+ & ~(VM_MAP_OFFSET-1)))
+
+void *parisc_vmalloc_start __ro_after_init;
+EXPORT_SYMBOL(parisc_vmalloc_start);
+
+#ifdef CONFIG_PA11
+unsigned long pcxl_dma_start __ro_after_init;
+#endif
+
+void __init mem_init(void)
+{
+ /* Do sanity checks on IPC (compat) structures */
+ BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
+#ifndef CONFIG_64BIT
+ BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
+ BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
+ BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
+#endif
+#ifdef CONFIG_COMPAT
+ BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
+ BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
+ BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
+ BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
+#endif
+
+ /* Do sanity checks on page table constants */
+ BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
+ BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
+ BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
+ BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
+ > BITS_PER_LONG);
+#if CONFIG_PGTABLE_LEVELS == 3
+ BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
+#else
+ BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
+#endif
+
+ high_memory = __va((max_pfn << PAGE_SHIFT));
+ set_max_mapnr(max_low_pfn);
+ memblock_free_all();
+
+#ifdef CONFIG_PA11
+ if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
+ pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
+ parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
+ + PCXL_DMA_MAP_SIZE);
+ } else
+#endif
+ parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
+
+ mem_init_print_info(NULL);
+
+#if 0
+ /*
+ * Do not expose the virtual kernel memory layout to userspace.
+ * But keep code for debugging purposes.
+ */
+ printk("virtual kernel memory layout:\n"
+ " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
+ " fixmap : 0x%px - 0x%px (%4ld kB)\n"
+ " memory : 0x%px - 0x%px (%4ld MB)\n"
+ " .init : 0x%px - 0x%px (%4ld kB)\n"
+ " .data : 0x%px - 0x%px (%4ld kB)\n"
+ " .text : 0x%px - 0x%px (%4ld kB)\n",
+
+ (void*)VMALLOC_START, (void*)VMALLOC_END,
+ (VMALLOC_END - VMALLOC_START) >> 20,
+
+ (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
+ (unsigned long)(FIXMAP_SIZE / 1024),
+
+ __va(0), high_memory,
+ ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
+
+ __init_begin, __init_end,
+ ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
+
+ _etext, _edata,
+ ((unsigned long)_edata - (unsigned long)_etext) >> 10,
+
+ _text, _etext,
+ ((unsigned long)_etext - (unsigned long)_text) >> 10);
+#endif
+}
+
+unsigned long *empty_zero_page __ro_after_init;
+EXPORT_SYMBOL(empty_zero_page);
+
+/*
+ * pagetable_init() sets up the page tables
+ *
+ * Note that gateway_init() places the Linux gateway page at page 0.
+ * Since gateway pages cannot be dereferenced this has the desirable
+ * side effect of trapping those pesky NULL-reference errors in the
+ * kernel.
+ */
+static void __init pagetable_init(void)
+{
+ int range;
+
+ /* Map each physical memory range to its kernel vaddr */
+
+ for (range = 0; range < npmem_ranges; range++) {
+ unsigned long start_paddr;
+ unsigned long end_paddr;
+ unsigned long size;
+
+ start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
+ size = pmem_ranges[range].pages << PAGE_SHIFT;
+ end_paddr = start_paddr + size;
+
+ map_pages((unsigned long)__va(start_paddr), start_paddr,
+ size, PAGE_KERNEL, 0);
+ }
+
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (initrd_end && initrd_end > mem_limit) {
+ printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
+ map_pages(initrd_start, __pa(initrd_start),
+ initrd_end - initrd_start, PAGE_KERNEL, 0);
+ }
+#endif
+
+ empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
+ if (!empty_zero_page)
+ panic("zero page allocation failed.\n");
+
+}
+
+static void __init gateway_init(void)
+{
+ unsigned long linux_gateway_page_addr;
+ /* FIXME: This is 'const' in order to trick the compiler
+ into not treating it as DP-relative data. */
+ extern void * const linux_gateway_page;
+
+ linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
+
+ /*
+ * Setup Linux Gateway page.
+ *
+ * The Linux gateway page will reside in kernel space (on virtual
+ * page 0), so it doesn't need to be aliased into user space.
+ */
+
+ map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
+ PAGE_SIZE, PAGE_GATEWAY, 1);
+}
+
+static void __init parisc_bootmem_free(void)
+{
+ unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
+
+ max_zone_pfn[0] = memblock_end_of_DRAM();
+
+ free_area_init(max_zone_pfn);
+}
+
+void __init paging_init(void)
+{
+ setup_bootmem();
+ pagetable_init();
+ gateway_init();
+ flush_cache_all_local(); /* start with known state */
+ flush_tlb_all_local(NULL);
+
+ sparse_init();
+ parisc_bootmem_free();
+}
+
+#ifdef CONFIG_PA20
+
+/*
+ * Currently, all PA20 chips have 18 bit protection IDs, which is the
+ * limiting factor (space ids are 32 bits).
+ */
+
+#define NR_SPACE_IDS 262144
+
+#else
+
+/*
+ * Currently we have a one-to-one relationship between space IDs and
+ * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
+ * support 15 bit protection IDs, so that is the limiting factor.
+ * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
+ * probably not worth the effort for a special case here.
+ */
+
+#define NR_SPACE_IDS 32768
+
+#endif /* !CONFIG_PA20 */
+
+#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
+#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
+
+static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
+static unsigned long dirty_space_id[SID_ARRAY_SIZE];
+static unsigned long space_id_index;
+static unsigned long free_space_ids = NR_SPACE_IDS - 1;
+static unsigned long dirty_space_ids = 0;
+
+static DEFINE_SPINLOCK(sid_lock);
+
+unsigned long alloc_sid(void)
+{
+ unsigned long index;
+
+ spin_lock(&sid_lock);
+
+ if (free_space_ids == 0) {
+ if (dirty_space_ids != 0) {
+ spin_unlock(&sid_lock);
+ flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
+ spin_lock(&sid_lock);
+ }
+ BUG_ON(free_space_ids == 0);
+ }
+
+ free_space_ids--;
+
+ index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
+ space_id[BIT_WORD(index)] |= BIT_MASK(index);
+ space_id_index = index;
+
+ spin_unlock(&sid_lock);
+
+ return index << SPACEID_SHIFT;
+}
+
+void free_sid(unsigned long spaceid)
+{
+ unsigned long index = spaceid >> SPACEID_SHIFT;
+ unsigned long *dirty_space_offset, mask;
+
+ dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
+ mask = BIT_MASK(index);
+
+ spin_lock(&sid_lock);
+
+ BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
+
+ *dirty_space_offset |= mask;
+ dirty_space_ids++;
+
+ spin_unlock(&sid_lock);
+}
+
+
+#ifdef CONFIG_SMP
+static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
+{
+ int i;
+
+ /* NOTE: sid_lock must be held upon entry */
+
+ *ndirtyptr = dirty_space_ids;
+ if (dirty_space_ids != 0) {
+ for (i = 0; i < SID_ARRAY_SIZE; i++) {
+ dirty_array[i] = dirty_space_id[i];
+ dirty_space_id[i] = 0;
+ }
+ dirty_space_ids = 0;
+ }
+
+ return;
+}
+
+static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
+{
+ int i;
+
+ /* NOTE: sid_lock must be held upon entry */
+
+ if (ndirty != 0) {
+ for (i = 0; i < SID_ARRAY_SIZE; i++) {
+ space_id[i] ^= dirty_array[i];
+ }
+
+ free_space_ids += ndirty;
+ space_id_index = 0;
+ }
+}
+
+#else /* CONFIG_SMP */
+
+static void recycle_sids(void)
+{
+ int i;
+
+ /* NOTE: sid_lock must be held upon entry */
+
+ if (dirty_space_ids != 0) {
+ for (i = 0; i < SID_ARRAY_SIZE; i++) {
+ space_id[i] ^= dirty_space_id[i];
+ dirty_space_id[i] = 0;
+ }
+
+ free_space_ids += dirty_space_ids;
+ dirty_space_ids = 0;
+ space_id_index = 0;
+ }
+}
+#endif
+
+/*
+ * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
+ * purged, we can safely reuse the space ids that were released but
+ * not flushed from the tlb.
+ */
+
+#ifdef CONFIG_SMP
+
+static unsigned long recycle_ndirty;
+static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
+static unsigned int recycle_inuse;
+
+void flush_tlb_all(void)
+{
+ int do_recycle;
+
+ do_recycle = 0;
+ spin_lock(&sid_lock);
+ __inc_irq_stat(irq_tlb_count);
+ if (dirty_space_ids > RECYCLE_THRESHOLD) {
+ BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
+ get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
+ recycle_inuse++;
+ do_recycle++;
+ }
+ spin_unlock(&sid_lock);
+ on_each_cpu(flush_tlb_all_local, NULL, 1);
+ if (do_recycle) {
+ spin_lock(&sid_lock);
+ recycle_sids(recycle_ndirty,recycle_dirty_array);
+ recycle_inuse = 0;
+ spin_unlock(&sid_lock);
+ }
+}
+#else
+void flush_tlb_all(void)
+{
+ spin_lock(&sid_lock);
+ __inc_irq_stat(irq_tlb_count);
+ flush_tlb_all_local(NULL);
+ recycle_sids();
+ spin_unlock(&sid_lock);
+}
+#endif
diff --git a/arch/parisc/mm/ioremap.c b/arch/parisc/mm/ioremap.c
new file mode 100644
index 000000000..345ff0b66
--- /dev/null
+++ b/arch/parisc/mm/ioremap.c
@@ -0,0 +1,100 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * arch/parisc/mm/ioremap.c
+ *
+ * (C) Copyright 1995 1996 Linus Torvalds
+ * (C) Copyright 2001-2019 Helge Deller <deller@gmx.de>
+ * (C) Copyright 2005 Kyle McMartin <kyle@parisc-linux.org>
+ */
+
+#include <linux/vmalloc.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/mm.h>
+
+/*
+ * Generic mapping function (not visible outside):
+ */
+
+/*
+ * Remap an arbitrary physical address space into the kernel virtual
+ * address space.
+ *
+ * NOTE! We need to allow non-page-aligned mappings too: we will obviously
+ * have to convert them into an offset in a page-aligned mapping, but the
+ * caller shouldn't need to know that small detail.
+ */
+void __iomem *ioremap(unsigned long phys_addr, unsigned long size)
+{
+ void __iomem *addr;
+ struct vm_struct *area;
+ unsigned long offset, last_addr;
+ pgprot_t pgprot;
+
+#ifdef CONFIG_EISA
+ unsigned long end = phys_addr + size - 1;
+ /* Support EISA addresses */
+ if ((phys_addr >= 0x00080000 && end < 0x000fffff) ||
+ (phys_addr >= 0x00500000 && end < 0x03bfffff))
+ phys_addr |= F_EXTEND(0xfc000000);
+#endif
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ /*
+ * Don't allow anybody to remap normal RAM that we're using..
+ */
+ if (phys_addr < virt_to_phys(high_memory)) {
+ char *t_addr, *t_end;
+ struct page *page;
+
+ t_addr = __va(phys_addr);
+ t_end = t_addr + (size - 1);
+
+ for (page = virt_to_page(t_addr);
+ page <= virt_to_page(t_end); page++) {
+ if(!PageReserved(page))
+ return NULL;
+ }
+ }
+
+ pgprot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY |
+ _PAGE_ACCESSED | _PAGE_NO_CACHE);
+
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr + 1) - phys_addr;
+
+ /*
+ * Ok, go for it..
+ */
+ area = get_vm_area(size, VM_IOREMAP);
+ if (!area)
+ return NULL;
+
+ addr = (void __iomem *) area->addr;
+ if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
+ phys_addr, pgprot)) {
+ vunmap(addr);
+ return NULL;
+ }
+
+ return (void __iomem *) (offset + (char __iomem *)addr);
+}
+EXPORT_SYMBOL(ioremap);
+
+void iounmap(const volatile void __iomem *io_addr)
+{
+ unsigned long addr = (unsigned long)io_addr & PAGE_MASK;
+
+ if (is_vmalloc_addr((void *)addr))
+ vunmap((void *)addr);
+}
+EXPORT_SYMBOL(iounmap);