summaryrefslogtreecommitdiffstats
path: root/arch/sparc/mm/srmmu.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /arch/sparc/mm/srmmu.c
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/sparc/mm/srmmu.c')
-rw-r--r--arch/sparc/mm/srmmu.c1833
1 files changed, 1833 insertions, 0 deletions
diff --git a/arch/sparc/mm/srmmu.c b/arch/sparc/mm/srmmu.c
new file mode 100644
index 000000000..0070f8b9a
--- /dev/null
+++ b/arch/sparc/mm/srmmu.c
@@ -0,0 +1,1833 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * srmmu.c: SRMMU specific routines for memory management.
+ *
+ * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
+ * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
+ * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
+ * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
+ * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
+ */
+
+#include <linux/seq_file.h>
+#include <linux/spinlock.h>
+#include <linux/memblock.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/kdebug.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/log2.h>
+#include <linux/gfp.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+
+#include <asm/mmu_context.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/io-unit.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/bitext.h>
+#include <asm/vaddrs.h>
+#include <asm/cache.h>
+#include <asm/traps.h>
+#include <asm/oplib.h>
+#include <asm/mbus.h>
+#include <asm/page.h>
+#include <asm/asi.h>
+#include <asm/smp.h>
+#include <asm/io.h>
+
+/* Now the cpu specific definitions. */
+#include <asm/turbosparc.h>
+#include <asm/tsunami.h>
+#include <asm/viking.h>
+#include <asm/swift.h>
+#include <asm/leon.h>
+#include <asm/mxcc.h>
+#include <asm/ross.h>
+
+#include "mm_32.h"
+
+enum mbus_module srmmu_modtype;
+static unsigned int hwbug_bitmask;
+int vac_cache_size;
+EXPORT_SYMBOL(vac_cache_size);
+int vac_line_size;
+
+extern struct resource sparc_iomap;
+
+extern unsigned long last_valid_pfn;
+
+static pgd_t *srmmu_swapper_pg_dir;
+
+const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
+EXPORT_SYMBOL(sparc32_cachetlb_ops);
+
+#ifdef CONFIG_SMP
+const struct sparc32_cachetlb_ops *local_ops;
+
+#define FLUSH_BEGIN(mm)
+#define FLUSH_END
+#else
+#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
+#define FLUSH_END }
+#endif
+
+int flush_page_for_dma_global = 1;
+
+char *srmmu_name;
+
+ctxd_t *srmmu_ctx_table_phys;
+static ctxd_t *srmmu_context_table;
+
+int viking_mxcc_present;
+static DEFINE_SPINLOCK(srmmu_context_spinlock);
+
+static int is_hypersparc;
+
+static int srmmu_cache_pagetables;
+
+/* these will be initialized in srmmu_nocache_calcsize() */
+static unsigned long srmmu_nocache_size;
+static unsigned long srmmu_nocache_end;
+
+/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
+#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
+
+/* The context table is a nocache user with the biggest alignment needs. */
+#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
+
+void *srmmu_nocache_pool;
+static struct bit_map srmmu_nocache_map;
+
+static inline int srmmu_pmd_none(pmd_t pmd)
+{ return !(pmd_val(pmd) & 0xFFFFFFF); }
+
+/* XXX should we hyper_flush_whole_icache here - Anton */
+static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
+{
+ pte_t pte;
+
+ pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
+ set_pte((pte_t *)ctxp, pte);
+}
+
+/*
+ * Locations of MSI Registers.
+ */
+#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
+
+/*
+ * Useful bits in the MSI Registers.
+ */
+#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
+
+static void msi_set_sync(void)
+{
+ __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
+ "andn %%g3, %2, %%g3\n\t"
+ "sta %%g3, [%0] %1\n\t" : :
+ "r" (MSI_MBUS_ARBEN),
+ "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
+}
+
+void pmd_set(pmd_t *pmdp, pte_t *ptep)
+{
+ unsigned long ptp = __nocache_pa(ptep) >> 4;
+ set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
+}
+
+/*
+ * size: bytes to allocate in the nocache area.
+ * align: bytes, number to align at.
+ * Returns the virtual address of the allocated area.
+ */
+static void *__srmmu_get_nocache(int size, int align)
+{
+ int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
+ unsigned long addr;
+
+ if (size < minsz) {
+ printk(KERN_ERR "Size 0x%x too small for nocache request\n",
+ size);
+ size = minsz;
+ }
+ if (size & (minsz - 1)) {
+ printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
+ size);
+ size += minsz - 1;
+ }
+ BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
+
+ offset = bit_map_string_get(&srmmu_nocache_map,
+ size >> SRMMU_NOCACHE_BITMAP_SHIFT,
+ align >> SRMMU_NOCACHE_BITMAP_SHIFT);
+ if (offset == -1) {
+ printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
+ size, (int) srmmu_nocache_size,
+ srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
+ return NULL;
+ }
+
+ addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
+ return (void *)addr;
+}
+
+void *srmmu_get_nocache(int size, int align)
+{
+ void *tmp;
+
+ tmp = __srmmu_get_nocache(size, align);
+
+ if (tmp)
+ memset(tmp, 0, size);
+
+ return tmp;
+}
+
+void srmmu_free_nocache(void *addr, int size)
+{
+ unsigned long vaddr;
+ int offset;
+
+ vaddr = (unsigned long)addr;
+ if (vaddr < SRMMU_NOCACHE_VADDR) {
+ printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
+ vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
+ BUG();
+ }
+ if (vaddr + size > srmmu_nocache_end) {
+ printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
+ vaddr, srmmu_nocache_end);
+ BUG();
+ }
+ if (!is_power_of_2(size)) {
+ printk("Size 0x%x is not a power of 2\n", size);
+ BUG();
+ }
+ if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
+ printk("Size 0x%x is too small\n", size);
+ BUG();
+ }
+ if (vaddr & (size - 1)) {
+ printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
+ BUG();
+ }
+
+ offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
+ size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
+
+ bit_map_clear(&srmmu_nocache_map, offset, size);
+}
+
+static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
+ unsigned long end);
+
+/* Return how much physical memory we have. */
+static unsigned long __init probe_memory(void)
+{
+ unsigned long total = 0;
+ int i;
+
+ for (i = 0; sp_banks[i].num_bytes; i++)
+ total += sp_banks[i].num_bytes;
+
+ return total;
+}
+
+/*
+ * Reserve nocache dynamically proportionally to the amount of
+ * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
+ */
+static void __init srmmu_nocache_calcsize(void)
+{
+ unsigned long sysmemavail = probe_memory() / 1024;
+ int srmmu_nocache_npages;
+
+ srmmu_nocache_npages =
+ sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
+
+ /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
+ // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
+ if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
+ srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
+
+ /* anything above 1280 blows up */
+ if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
+ srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
+
+ srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
+ srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
+}
+
+static void __init srmmu_nocache_init(void)
+{
+ void *srmmu_nocache_bitmap;
+ unsigned int bitmap_bits;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long paddr, vaddr;
+ unsigned long pteval;
+
+ bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
+
+ srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
+ SRMMU_NOCACHE_ALIGN_MAX);
+ if (!srmmu_nocache_pool)
+ panic("%s: Failed to allocate %lu bytes align=0x%x\n",
+ __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
+ memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
+
+ srmmu_nocache_bitmap =
+ memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
+ SMP_CACHE_BYTES);
+ if (!srmmu_nocache_bitmap)
+ panic("%s: Failed to allocate %zu bytes\n", __func__,
+ BITS_TO_LONGS(bitmap_bits) * sizeof(long));
+ bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
+
+ srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
+ memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
+ init_mm.pgd = srmmu_swapper_pg_dir;
+
+ srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
+
+ paddr = __pa((unsigned long)srmmu_nocache_pool);
+ vaddr = SRMMU_NOCACHE_VADDR;
+
+ while (vaddr < srmmu_nocache_end) {
+ pgd = pgd_offset_k(vaddr);
+ p4d = p4d_offset(pgd, vaddr);
+ pud = pud_offset(p4d, vaddr);
+ pmd = pmd_offset(__nocache_fix(pud), vaddr);
+ pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
+
+ pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
+
+ if (srmmu_cache_pagetables)
+ pteval |= SRMMU_CACHE;
+
+ set_pte(__nocache_fix(pte), __pte(pteval));
+
+ vaddr += PAGE_SIZE;
+ paddr += PAGE_SIZE;
+ }
+
+ flush_cache_all();
+ flush_tlb_all();
+}
+
+pgd_t *get_pgd_fast(void)
+{
+ pgd_t *pgd = NULL;
+
+ pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
+ if (pgd) {
+ pgd_t *init = pgd_offset_k(0);
+ memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
+ memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
+ (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
+ }
+
+ return pgd;
+}
+
+/*
+ * Hardware needs alignment to 256 only, but we align to whole page size
+ * to reduce fragmentation problems due to the buddy principle.
+ * XXX Provide actual fragmentation statistics in /proc.
+ *
+ * Alignments up to the page size are the same for physical and virtual
+ * addresses of the nocache area.
+ */
+pgtable_t pte_alloc_one(struct mm_struct *mm)
+{
+ pte_t *ptep;
+ struct page *page;
+
+ if ((ptep = pte_alloc_one_kernel(mm)) == 0)
+ return NULL;
+ page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
+ spin_lock(&mm->page_table_lock);
+ if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
+ page_ref_dec(page);
+ ptep = NULL;
+ }
+ spin_unlock(&mm->page_table_lock);
+
+ return ptep;
+}
+
+void pte_free(struct mm_struct *mm, pgtable_t ptep)
+{
+ struct page *page;
+
+ page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
+ spin_lock(&mm->page_table_lock);
+ if (page_ref_dec_return(page) == 1)
+ pgtable_pte_page_dtor(page);
+ spin_unlock(&mm->page_table_lock);
+
+ srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
+}
+
+/* context handling - a dynamically sized pool is used */
+#define NO_CONTEXT -1
+
+struct ctx_list {
+ struct ctx_list *next;
+ struct ctx_list *prev;
+ unsigned int ctx_number;
+ struct mm_struct *ctx_mm;
+};
+
+static struct ctx_list *ctx_list_pool;
+static struct ctx_list ctx_free;
+static struct ctx_list ctx_used;
+
+/* At boot time we determine the number of contexts */
+static int num_contexts;
+
+static inline void remove_from_ctx_list(struct ctx_list *entry)
+{
+ entry->next->prev = entry->prev;
+ entry->prev->next = entry->next;
+}
+
+static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
+{
+ entry->next = head;
+ (entry->prev = head->prev)->next = entry;
+ head->prev = entry;
+}
+#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
+#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
+
+
+static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
+{
+ struct ctx_list *ctxp;
+
+ ctxp = ctx_free.next;
+ if (ctxp != &ctx_free) {
+ remove_from_ctx_list(ctxp);
+ add_to_used_ctxlist(ctxp);
+ mm->context = ctxp->ctx_number;
+ ctxp->ctx_mm = mm;
+ return;
+ }
+ ctxp = ctx_used.next;
+ if (ctxp->ctx_mm == old_mm)
+ ctxp = ctxp->next;
+ if (ctxp == &ctx_used)
+ panic("out of mmu contexts");
+ flush_cache_mm(ctxp->ctx_mm);
+ flush_tlb_mm(ctxp->ctx_mm);
+ remove_from_ctx_list(ctxp);
+ add_to_used_ctxlist(ctxp);
+ ctxp->ctx_mm->context = NO_CONTEXT;
+ ctxp->ctx_mm = mm;
+ mm->context = ctxp->ctx_number;
+}
+
+static inline void free_context(int context)
+{
+ struct ctx_list *ctx_old;
+
+ ctx_old = ctx_list_pool + context;
+ remove_from_ctx_list(ctx_old);
+ add_to_free_ctxlist(ctx_old);
+}
+
+static void __init sparc_context_init(int numctx)
+{
+ int ctx;
+ unsigned long size;
+
+ size = numctx * sizeof(struct ctx_list);
+ ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
+ if (!ctx_list_pool)
+ panic("%s: Failed to allocate %lu bytes\n", __func__, size);
+
+ for (ctx = 0; ctx < numctx; ctx++) {
+ struct ctx_list *clist;
+
+ clist = (ctx_list_pool + ctx);
+ clist->ctx_number = ctx;
+ clist->ctx_mm = NULL;
+ }
+ ctx_free.next = ctx_free.prev = &ctx_free;
+ ctx_used.next = ctx_used.prev = &ctx_used;
+ for (ctx = 0; ctx < numctx; ctx++)
+ add_to_free_ctxlist(ctx_list_pool + ctx);
+}
+
+void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
+ struct task_struct *tsk)
+{
+ unsigned long flags;
+
+ if (mm->context == NO_CONTEXT) {
+ spin_lock_irqsave(&srmmu_context_spinlock, flags);
+ alloc_context(old_mm, mm);
+ spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
+ srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
+ }
+
+ if (sparc_cpu_model == sparc_leon)
+ leon_switch_mm();
+
+ if (is_hypersparc)
+ hyper_flush_whole_icache();
+
+ srmmu_set_context(mm->context);
+}
+
+/* Low level IO area allocation on the SRMMU. */
+static inline void srmmu_mapioaddr(unsigned long physaddr,
+ unsigned long virt_addr, int bus_type)
+{
+ pgd_t *pgdp;
+ p4d_t *p4dp;
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+ unsigned long tmp;
+
+ physaddr &= PAGE_MASK;
+ pgdp = pgd_offset_k(virt_addr);
+ p4dp = p4d_offset(pgdp, virt_addr);
+ pudp = pud_offset(p4dp, virt_addr);
+ pmdp = pmd_offset(pudp, virt_addr);
+ ptep = pte_offset_kernel(pmdp, virt_addr);
+ tmp = (physaddr >> 4) | SRMMU_ET_PTE;
+
+ /* I need to test whether this is consistent over all
+ * sun4m's. The bus_type represents the upper 4 bits of
+ * 36-bit physical address on the I/O space lines...
+ */
+ tmp |= (bus_type << 28);
+ tmp |= SRMMU_PRIV;
+ __flush_page_to_ram(virt_addr);
+ set_pte(ptep, __pte(tmp));
+}
+
+void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
+ unsigned long xva, unsigned int len)
+{
+ while (len != 0) {
+ len -= PAGE_SIZE;
+ srmmu_mapioaddr(xpa, xva, bus);
+ xva += PAGE_SIZE;
+ xpa += PAGE_SIZE;
+ }
+ flush_tlb_all();
+}
+
+static inline void srmmu_unmapioaddr(unsigned long virt_addr)
+{
+ pgd_t *pgdp;
+ p4d_t *p4dp;
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+
+ pgdp = pgd_offset_k(virt_addr);
+ p4dp = p4d_offset(pgdp, virt_addr);
+ pudp = pud_offset(p4dp, virt_addr);
+ pmdp = pmd_offset(pudp, virt_addr);
+ ptep = pte_offset_kernel(pmdp, virt_addr);
+
+ /* No need to flush uncacheable page. */
+ __pte_clear(ptep);
+}
+
+void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
+{
+ while (len != 0) {
+ len -= PAGE_SIZE;
+ srmmu_unmapioaddr(virt_addr);
+ virt_addr += PAGE_SIZE;
+ }
+ flush_tlb_all();
+}
+
+/* tsunami.S */
+extern void tsunami_flush_cache_all(void);
+extern void tsunami_flush_cache_mm(struct mm_struct *mm);
+extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void tsunami_flush_page_to_ram(unsigned long page);
+extern void tsunami_flush_page_for_dma(unsigned long page);
+extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void tsunami_flush_tlb_all(void);
+extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
+extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+extern void tsunami_setup_blockops(void);
+
+/* swift.S */
+extern void swift_flush_cache_all(void);
+extern void swift_flush_cache_mm(struct mm_struct *mm);
+extern void swift_flush_cache_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end);
+extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void swift_flush_page_to_ram(unsigned long page);
+extern void swift_flush_page_for_dma(unsigned long page);
+extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void swift_flush_tlb_all(void);
+extern void swift_flush_tlb_mm(struct mm_struct *mm);
+extern void swift_flush_tlb_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end);
+extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+
+#if 0 /* P3: deadwood to debug precise flushes on Swift. */
+void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+ int cctx, ctx1;
+
+ page &= PAGE_MASK;
+ if ((ctx1 = vma->vm_mm->context) != -1) {
+ cctx = srmmu_get_context();
+/* Is context # ever different from current context? P3 */
+ if (cctx != ctx1) {
+ printk("flush ctx %02x curr %02x\n", ctx1, cctx);
+ srmmu_set_context(ctx1);
+ swift_flush_page(page);
+ __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
+ "r" (page), "i" (ASI_M_FLUSH_PROBE));
+ srmmu_set_context(cctx);
+ } else {
+ /* Rm. prot. bits from virt. c. */
+ /* swift_flush_cache_all(); */
+ /* swift_flush_cache_page(vma, page); */
+ swift_flush_page(page);
+
+ __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
+ "r" (page), "i" (ASI_M_FLUSH_PROBE));
+ /* same as above: srmmu_flush_tlb_page() */
+ }
+ }
+}
+#endif
+
+/*
+ * The following are all MBUS based SRMMU modules, and therefore could
+ * be found in a multiprocessor configuration. On the whole, these
+ * chips seems to be much more touchy about DVMA and page tables
+ * with respect to cache coherency.
+ */
+
+/* viking.S */
+extern void viking_flush_cache_all(void);
+extern void viking_flush_cache_mm(struct mm_struct *mm);
+extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
+ unsigned long end);
+extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void viking_flush_page_to_ram(unsigned long page);
+extern void viking_flush_page_for_dma(unsigned long page);
+extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
+extern void viking_flush_page(unsigned long page);
+extern void viking_mxcc_flush_page(unsigned long page);
+extern void viking_flush_tlb_all(void);
+extern void viking_flush_tlb_mm(struct mm_struct *mm);
+extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
+ unsigned long end);
+extern void viking_flush_tlb_page(struct vm_area_struct *vma,
+ unsigned long page);
+extern void sun4dsmp_flush_tlb_all(void);
+extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
+extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
+ unsigned long end);
+extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
+ unsigned long page);
+
+/* hypersparc.S */
+extern void hypersparc_flush_cache_all(void);
+extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
+extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
+extern void hypersparc_flush_page_to_ram(unsigned long page);
+extern void hypersparc_flush_page_for_dma(unsigned long page);
+extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
+extern void hypersparc_flush_tlb_all(void);
+extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
+extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+extern void hypersparc_setup_blockops(void);
+
+/*
+ * NOTE: All of this startup code assumes the low 16mb (approx.) of
+ * kernel mappings are done with one single contiguous chunk of
+ * ram. On small ram machines (classics mainly) we only get
+ * around 8mb mapped for us.
+ */
+
+static void __init early_pgtable_allocfail(char *type)
+{
+ prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
+ prom_halt();
+}
+
+static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
+ unsigned long end)
+{
+ pgd_t *pgdp;
+ p4d_t *p4dp;
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+ while (start < end) {
+ pgdp = pgd_offset_k(start);
+ p4dp = p4d_offset(pgdp, start);
+ pudp = pud_offset(p4dp, start);
+ if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
+ pmdp = __srmmu_get_nocache(
+ SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
+ if (pmdp == NULL)
+ early_pgtable_allocfail("pmd");
+ memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
+ pud_set(__nocache_fix(pudp), pmdp);
+ }
+ pmdp = pmd_offset(__nocache_fix(pudp), start);
+ if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
+ ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
+ if (ptep == NULL)
+ early_pgtable_allocfail("pte");
+ memset(__nocache_fix(ptep), 0, PTE_SIZE);
+ pmd_set(__nocache_fix(pmdp), ptep);
+ }
+ if (start > (0xffffffffUL - PMD_SIZE))
+ break;
+ start = (start + PMD_SIZE) & PMD_MASK;
+ }
+}
+
+static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
+ unsigned long end)
+{
+ pgd_t *pgdp;
+ p4d_t *p4dp;
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+ while (start < end) {
+ pgdp = pgd_offset_k(start);
+ p4dp = p4d_offset(pgdp, start);
+ pudp = pud_offset(p4dp, start);
+ if (pud_none(*pudp)) {
+ pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
+ if (pmdp == NULL)
+ early_pgtable_allocfail("pmd");
+ memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
+ pud_set((pud_t *)pgdp, pmdp);
+ }
+ pmdp = pmd_offset(pudp, start);
+ if (srmmu_pmd_none(*pmdp)) {
+ ptep = __srmmu_get_nocache(PTE_SIZE,
+ PTE_SIZE);
+ if (ptep == NULL)
+ early_pgtable_allocfail("pte");
+ memset(ptep, 0, PTE_SIZE);
+ pmd_set(pmdp, ptep);
+ }
+ if (start > (0xffffffffUL - PMD_SIZE))
+ break;
+ start = (start + PMD_SIZE) & PMD_MASK;
+ }
+}
+
+/* These flush types are not available on all chips... */
+static inline unsigned long srmmu_probe(unsigned long vaddr)
+{
+ unsigned long retval;
+
+ if (sparc_cpu_model != sparc_leon) {
+
+ vaddr &= PAGE_MASK;
+ __asm__ __volatile__("lda [%1] %2, %0\n\t" :
+ "=r" (retval) :
+ "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
+ } else {
+ retval = leon_swprobe(vaddr, NULL);
+ }
+ return retval;
+}
+
+/*
+ * This is much cleaner than poking around physical address space
+ * looking at the prom's page table directly which is what most
+ * other OS's do. Yuck... this is much better.
+ */
+static void __init srmmu_inherit_prom_mappings(unsigned long start,
+ unsigned long end)
+{
+ unsigned long probed;
+ unsigned long addr;
+ pgd_t *pgdp;
+ p4d_t *p4dp;
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+ int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
+
+ while (start <= end) {
+ if (start == 0)
+ break; /* probably wrap around */
+ if (start == 0xfef00000)
+ start = KADB_DEBUGGER_BEGVM;
+ probed = srmmu_probe(start);
+ if (!probed) {
+ /* continue probing until we find an entry */
+ start += PAGE_SIZE;
+ continue;
+ }
+
+ /* A red snapper, see what it really is. */
+ what = 0;
+ addr = start - PAGE_SIZE;
+
+ if (!(start & ~(PMD_MASK))) {
+ if (srmmu_probe(addr + PMD_SIZE) == probed)
+ what = 1;
+ }
+
+ if (!(start & ~(PGDIR_MASK))) {
+ if (srmmu_probe(addr + PGDIR_SIZE) == probed)
+ what = 2;
+ }
+
+ pgdp = pgd_offset_k(start);
+ p4dp = p4d_offset(pgdp, start);
+ pudp = pud_offset(p4dp, start);
+ if (what == 2) {
+ *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
+ start += PGDIR_SIZE;
+ continue;
+ }
+ if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
+ pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
+ SRMMU_PMD_TABLE_SIZE);
+ if (pmdp == NULL)
+ early_pgtable_allocfail("pmd");
+ memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
+ pud_set(__nocache_fix(pudp), pmdp);
+ }
+ pmdp = pmd_offset(__nocache_fix(pgdp), start);
+ if (what == 1) {
+ *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
+ start += PMD_SIZE;
+ continue;
+ }
+ if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
+ ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
+ if (ptep == NULL)
+ early_pgtable_allocfail("pte");
+ memset(__nocache_fix(ptep), 0, PTE_SIZE);
+ pmd_set(__nocache_fix(pmdp), ptep);
+ }
+ ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
+ *(pte_t *)__nocache_fix(ptep) = __pte(probed);
+ start += PAGE_SIZE;
+ }
+}
+
+#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
+
+/* Create a third-level SRMMU 16MB page mapping. */
+static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
+{
+ pgd_t *pgdp = pgd_offset_k(vaddr);
+ unsigned long big_pte;
+
+ big_pte = KERNEL_PTE(phys_base >> 4);
+ *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
+}
+
+/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
+static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
+{
+ unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
+ unsigned long vstart = (vbase & PGDIR_MASK);
+ unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
+ /* Map "low" memory only */
+ const unsigned long min_vaddr = PAGE_OFFSET;
+ const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
+
+ if (vstart < min_vaddr || vstart >= max_vaddr)
+ return vstart;
+
+ if (vend > max_vaddr || vend < min_vaddr)
+ vend = max_vaddr;
+
+ while (vstart < vend) {
+ do_large_mapping(vstart, pstart);
+ vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
+ }
+ return vstart;
+}
+
+static void __init map_kernel(void)
+{
+ int i;
+
+ if (phys_base > 0) {
+ do_large_mapping(PAGE_OFFSET, phys_base);
+ }
+
+ for (i = 0; sp_banks[i].num_bytes != 0; i++) {
+ map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
+ }
+}
+
+void (*poke_srmmu)(void) = NULL;
+
+void __init srmmu_paging_init(void)
+{
+ int i;
+ phandle cpunode;
+ char node_str[128];
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long pages_avail;
+
+ init_mm.context = (unsigned long) NO_CONTEXT;
+ sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
+
+ if (sparc_cpu_model == sun4d)
+ num_contexts = 65536; /* We know it is Viking */
+ else {
+ /* Find the number of contexts on the srmmu. */
+ cpunode = prom_getchild(prom_root_node);
+ num_contexts = 0;
+ while (cpunode != 0) {
+ prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
+ if (!strcmp(node_str, "cpu")) {
+ num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
+ break;
+ }
+ cpunode = prom_getsibling(cpunode);
+ }
+ }
+
+ if (!num_contexts) {
+ prom_printf("Something wrong, can't find cpu node in paging_init.\n");
+ prom_halt();
+ }
+
+ pages_avail = 0;
+ last_valid_pfn = bootmem_init(&pages_avail);
+
+ srmmu_nocache_calcsize();
+ srmmu_nocache_init();
+ srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
+ map_kernel();
+
+ /* ctx table has to be physically aligned to its size */
+ srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
+ srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
+
+ for (i = 0; i < num_contexts; i++)
+ srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
+
+ flush_cache_all();
+ srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
+#ifdef CONFIG_SMP
+ /* Stop from hanging here... */
+ local_ops->tlb_all();
+#else
+ flush_tlb_all();
+#endif
+ poke_srmmu();
+
+ srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
+ srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
+
+ srmmu_allocate_ptable_skeleton(
+ __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
+ srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
+
+ pgd = pgd_offset_k(PKMAP_BASE);
+ p4d = p4d_offset(pgd, PKMAP_BASE);
+ pud = pud_offset(p4d, PKMAP_BASE);
+ pmd = pmd_offset(pud, PKMAP_BASE);
+ pte = pte_offset_kernel(pmd, PKMAP_BASE);
+ pkmap_page_table = pte;
+
+ flush_cache_all();
+ flush_tlb_all();
+
+ sparc_context_init(num_contexts);
+
+ kmap_init();
+
+ {
+ unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
+
+ max_zone_pfn[ZONE_DMA] = max_low_pfn;
+ max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
+ max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
+
+ free_area_init(max_zone_pfn);
+ }
+}
+
+void mmu_info(struct seq_file *m)
+{
+ seq_printf(m,
+ "MMU type\t: %s\n"
+ "contexts\t: %d\n"
+ "nocache total\t: %ld\n"
+ "nocache used\t: %d\n",
+ srmmu_name,
+ num_contexts,
+ srmmu_nocache_size,
+ srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
+}
+
+int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
+{
+ mm->context = NO_CONTEXT;
+ return 0;
+}
+
+void destroy_context(struct mm_struct *mm)
+{
+ unsigned long flags;
+
+ if (mm->context != NO_CONTEXT) {
+ flush_cache_mm(mm);
+ srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
+ flush_tlb_mm(mm);
+ spin_lock_irqsave(&srmmu_context_spinlock, flags);
+ free_context(mm->context);
+ spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
+ mm->context = NO_CONTEXT;
+ }
+}
+
+/* Init various srmmu chip types. */
+static void __init srmmu_is_bad(void)
+{
+ prom_printf("Could not determine SRMMU chip type.\n");
+ prom_halt();
+}
+
+static void __init init_vac_layout(void)
+{
+ phandle nd;
+ int cache_lines;
+ char node_str[128];
+#ifdef CONFIG_SMP
+ int cpu = 0;
+ unsigned long max_size = 0;
+ unsigned long min_line_size = 0x10000000;
+#endif
+
+ nd = prom_getchild(prom_root_node);
+ while ((nd = prom_getsibling(nd)) != 0) {
+ prom_getstring(nd, "device_type", node_str, sizeof(node_str));
+ if (!strcmp(node_str, "cpu")) {
+ vac_line_size = prom_getint(nd, "cache-line-size");
+ if (vac_line_size == -1) {
+ prom_printf("can't determine cache-line-size, halting.\n");
+ prom_halt();
+ }
+ cache_lines = prom_getint(nd, "cache-nlines");
+ if (cache_lines == -1) {
+ prom_printf("can't determine cache-nlines, halting.\n");
+ prom_halt();
+ }
+
+ vac_cache_size = cache_lines * vac_line_size;
+#ifdef CONFIG_SMP
+ if (vac_cache_size > max_size)
+ max_size = vac_cache_size;
+ if (vac_line_size < min_line_size)
+ min_line_size = vac_line_size;
+ //FIXME: cpus not contiguous!!
+ cpu++;
+ if (cpu >= nr_cpu_ids || !cpu_online(cpu))
+ break;
+#else
+ break;
+#endif
+ }
+ }
+ if (nd == 0) {
+ prom_printf("No CPU nodes found, halting.\n");
+ prom_halt();
+ }
+#ifdef CONFIG_SMP
+ vac_cache_size = max_size;
+ vac_line_size = min_line_size;
+#endif
+ printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
+ (int)vac_cache_size, (int)vac_line_size);
+}
+
+static void poke_hypersparc(void)
+{
+ volatile unsigned long clear;
+ unsigned long mreg = srmmu_get_mmureg();
+
+ hyper_flush_unconditional_combined();
+
+ mreg &= ~(HYPERSPARC_CWENABLE);
+ mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
+ mreg |= (HYPERSPARC_CMODE);
+
+ srmmu_set_mmureg(mreg);
+
+#if 0 /* XXX I think this is bad news... -DaveM */
+ hyper_clear_all_tags();
+#endif
+
+ put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
+ hyper_flush_whole_icache();
+ clear = srmmu_get_faddr();
+ clear = srmmu_get_fstatus();
+}
+
+static const struct sparc32_cachetlb_ops hypersparc_ops = {
+ .cache_all = hypersparc_flush_cache_all,
+ .cache_mm = hypersparc_flush_cache_mm,
+ .cache_page = hypersparc_flush_cache_page,
+ .cache_range = hypersparc_flush_cache_range,
+ .tlb_all = hypersparc_flush_tlb_all,
+ .tlb_mm = hypersparc_flush_tlb_mm,
+ .tlb_page = hypersparc_flush_tlb_page,
+ .tlb_range = hypersparc_flush_tlb_range,
+ .page_to_ram = hypersparc_flush_page_to_ram,
+ .sig_insns = hypersparc_flush_sig_insns,
+ .page_for_dma = hypersparc_flush_page_for_dma,
+};
+
+static void __init init_hypersparc(void)
+{
+ srmmu_name = "ROSS HyperSparc";
+ srmmu_modtype = HyperSparc;
+
+ init_vac_layout();
+
+ is_hypersparc = 1;
+ sparc32_cachetlb_ops = &hypersparc_ops;
+
+ poke_srmmu = poke_hypersparc;
+
+ hypersparc_setup_blockops();
+}
+
+static void poke_swift(void)
+{
+ unsigned long mreg;
+
+ /* Clear any crap from the cache or else... */
+ swift_flush_cache_all();
+
+ /* Enable I & D caches */
+ mreg = srmmu_get_mmureg();
+ mreg |= (SWIFT_IE | SWIFT_DE);
+ /*
+ * The Swift branch folding logic is completely broken. At
+ * trap time, if things are just right, if can mistakenly
+ * think that a trap is coming from kernel mode when in fact
+ * it is coming from user mode (it mis-executes the branch in
+ * the trap code). So you see things like crashme completely
+ * hosing your machine which is completely unacceptable. Turn
+ * this shit off... nice job Fujitsu.
+ */
+ mreg &= ~(SWIFT_BF);
+ srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops swift_ops = {
+ .cache_all = swift_flush_cache_all,
+ .cache_mm = swift_flush_cache_mm,
+ .cache_page = swift_flush_cache_page,
+ .cache_range = swift_flush_cache_range,
+ .tlb_all = swift_flush_tlb_all,
+ .tlb_mm = swift_flush_tlb_mm,
+ .tlb_page = swift_flush_tlb_page,
+ .tlb_range = swift_flush_tlb_range,
+ .page_to_ram = swift_flush_page_to_ram,
+ .sig_insns = swift_flush_sig_insns,
+ .page_for_dma = swift_flush_page_for_dma,
+};
+
+#define SWIFT_MASKID_ADDR 0x10003018
+static void __init init_swift(void)
+{
+ unsigned long swift_rev;
+
+ __asm__ __volatile__("lda [%1] %2, %0\n\t"
+ "srl %0, 0x18, %0\n\t" :
+ "=r" (swift_rev) :
+ "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
+ srmmu_name = "Fujitsu Swift";
+ switch (swift_rev) {
+ case 0x11:
+ case 0x20:
+ case 0x23:
+ case 0x30:
+ srmmu_modtype = Swift_lots_o_bugs;
+ hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
+ /*
+ * Gee george, I wonder why Sun is so hush hush about
+ * this hardware bug... really braindamage stuff going
+ * on here. However I think we can find a way to avoid
+ * all of the workaround overhead under Linux. Basically,
+ * any page fault can cause kernel pages to become user
+ * accessible (the mmu gets confused and clears some of
+ * the ACC bits in kernel ptes). Aha, sounds pretty
+ * horrible eh? But wait, after extensive testing it appears
+ * that if you use pgd_t level large kernel pte's (like the
+ * 4MB pages on the Pentium) the bug does not get tripped
+ * at all. This avoids almost all of the major overhead.
+ * Welcome to a world where your vendor tells you to,
+ * "apply this kernel patch" instead of "sorry for the
+ * broken hardware, send it back and we'll give you
+ * properly functioning parts"
+ */
+ break;
+ case 0x25:
+ case 0x31:
+ srmmu_modtype = Swift_bad_c;
+ hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
+ /*
+ * You see Sun allude to this hardware bug but never
+ * admit things directly, they'll say things like,
+ * "the Swift chip cache problems" or similar.
+ */
+ break;
+ default:
+ srmmu_modtype = Swift_ok;
+ break;
+ }
+
+ sparc32_cachetlb_ops = &swift_ops;
+ flush_page_for_dma_global = 0;
+
+ /*
+ * Are you now convinced that the Swift is one of the
+ * biggest VLSI abortions of all time? Bravo Fujitsu!
+ * Fujitsu, the !#?!%$'d up processor people. I bet if
+ * you examined the microcode of the Swift you'd find
+ * XXX's all over the place.
+ */
+ poke_srmmu = poke_swift;
+}
+
+static void turbosparc_flush_cache_all(void)
+{
+ flush_user_windows();
+ turbosparc_idflash_clear();
+}
+
+static void turbosparc_flush_cache_mm(struct mm_struct *mm)
+{
+ FLUSH_BEGIN(mm)
+ flush_user_windows();
+ turbosparc_idflash_clear();
+ FLUSH_END
+}
+
+static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
+{
+ FLUSH_BEGIN(vma->vm_mm)
+ flush_user_windows();
+ turbosparc_idflash_clear();
+ FLUSH_END
+}
+
+static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
+{
+ FLUSH_BEGIN(vma->vm_mm)
+ flush_user_windows();
+ if (vma->vm_flags & VM_EXEC)
+ turbosparc_flush_icache();
+ turbosparc_flush_dcache();
+ FLUSH_END
+}
+
+/* TurboSparc is copy-back, if we turn it on, but this does not work. */
+static void turbosparc_flush_page_to_ram(unsigned long page)
+{
+#ifdef TURBOSPARC_WRITEBACK
+ volatile unsigned long clear;
+
+ if (srmmu_probe(page))
+ turbosparc_flush_page_cache(page);
+ clear = srmmu_get_fstatus();
+#endif
+}
+
+static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
+{
+}
+
+static void turbosparc_flush_page_for_dma(unsigned long page)
+{
+ turbosparc_flush_dcache();
+}
+
+static void turbosparc_flush_tlb_all(void)
+{
+ srmmu_flush_whole_tlb();
+}
+
+static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
+{
+ FLUSH_BEGIN(mm)
+ srmmu_flush_whole_tlb();
+ FLUSH_END
+}
+
+static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
+{
+ FLUSH_BEGIN(vma->vm_mm)
+ srmmu_flush_whole_tlb();
+ FLUSH_END
+}
+
+static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+ FLUSH_BEGIN(vma->vm_mm)
+ srmmu_flush_whole_tlb();
+ FLUSH_END
+}
+
+
+static void poke_turbosparc(void)
+{
+ unsigned long mreg = srmmu_get_mmureg();
+ unsigned long ccreg;
+
+ /* Clear any crap from the cache or else... */
+ turbosparc_flush_cache_all();
+ /* Temporarily disable I & D caches */
+ mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
+ mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
+ srmmu_set_mmureg(mreg);
+
+ ccreg = turbosparc_get_ccreg();
+
+#ifdef TURBOSPARC_WRITEBACK
+ ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
+ ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
+ /* Write-back D-cache, emulate VLSI
+ * abortion number three, not number one */
+#else
+ /* For now let's play safe, optimize later */
+ ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
+ /* Do DVMA snooping in Dcache, Write-thru D-cache */
+ ccreg &= ~(TURBOSPARC_uS2);
+ /* Emulate VLSI abortion number three, not number one */
+#endif
+
+ switch (ccreg & 7) {
+ case 0: /* No SE cache */
+ case 7: /* Test mode */
+ break;
+ default:
+ ccreg |= (TURBOSPARC_SCENABLE);
+ }
+ turbosparc_set_ccreg(ccreg);
+
+ mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
+ mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
+ srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops turbosparc_ops = {
+ .cache_all = turbosparc_flush_cache_all,
+ .cache_mm = turbosparc_flush_cache_mm,
+ .cache_page = turbosparc_flush_cache_page,
+ .cache_range = turbosparc_flush_cache_range,
+ .tlb_all = turbosparc_flush_tlb_all,
+ .tlb_mm = turbosparc_flush_tlb_mm,
+ .tlb_page = turbosparc_flush_tlb_page,
+ .tlb_range = turbosparc_flush_tlb_range,
+ .page_to_ram = turbosparc_flush_page_to_ram,
+ .sig_insns = turbosparc_flush_sig_insns,
+ .page_for_dma = turbosparc_flush_page_for_dma,
+};
+
+static void __init init_turbosparc(void)
+{
+ srmmu_name = "Fujitsu TurboSparc";
+ srmmu_modtype = TurboSparc;
+ sparc32_cachetlb_ops = &turbosparc_ops;
+ poke_srmmu = poke_turbosparc;
+}
+
+static void poke_tsunami(void)
+{
+ unsigned long mreg = srmmu_get_mmureg();
+
+ tsunami_flush_icache();
+ tsunami_flush_dcache();
+ mreg &= ~TSUNAMI_ITD;
+ mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
+ srmmu_set_mmureg(mreg);
+}
+
+static const struct sparc32_cachetlb_ops tsunami_ops = {
+ .cache_all = tsunami_flush_cache_all,
+ .cache_mm = tsunami_flush_cache_mm,
+ .cache_page = tsunami_flush_cache_page,
+ .cache_range = tsunami_flush_cache_range,
+ .tlb_all = tsunami_flush_tlb_all,
+ .tlb_mm = tsunami_flush_tlb_mm,
+ .tlb_page = tsunami_flush_tlb_page,
+ .tlb_range = tsunami_flush_tlb_range,
+ .page_to_ram = tsunami_flush_page_to_ram,
+ .sig_insns = tsunami_flush_sig_insns,
+ .page_for_dma = tsunami_flush_page_for_dma,
+};
+
+static void __init init_tsunami(void)
+{
+ /*
+ * Tsunami's pretty sane, Sun and TI actually got it
+ * somewhat right this time. Fujitsu should have
+ * taken some lessons from them.
+ */
+
+ srmmu_name = "TI Tsunami";
+ srmmu_modtype = Tsunami;
+ sparc32_cachetlb_ops = &tsunami_ops;
+ poke_srmmu = poke_tsunami;
+
+ tsunami_setup_blockops();
+}
+
+static void poke_viking(void)
+{
+ unsigned long mreg = srmmu_get_mmureg();
+ static int smp_catch;
+
+ if (viking_mxcc_present) {
+ unsigned long mxcc_control = mxcc_get_creg();
+
+ mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
+ mxcc_control &= ~(MXCC_CTL_RRC);
+ mxcc_set_creg(mxcc_control);
+
+ /*
+ * We don't need memory parity checks.
+ * XXX This is a mess, have to dig out later. ecd.
+ viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
+ */
+
+ /* We do cache ptables on MXCC. */
+ mreg |= VIKING_TCENABLE;
+ } else {
+ unsigned long bpreg;
+
+ mreg &= ~(VIKING_TCENABLE);
+ if (smp_catch++) {
+ /* Must disable mixed-cmd mode here for other cpu's. */
+ bpreg = viking_get_bpreg();
+ bpreg &= ~(VIKING_ACTION_MIX);
+ viking_set_bpreg(bpreg);
+
+ /* Just in case PROM does something funny. */
+ msi_set_sync();
+ }
+ }
+
+ mreg |= VIKING_SPENABLE;
+ mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
+ mreg |= VIKING_SBENABLE;
+ mreg &= ~(VIKING_ACENABLE);
+ srmmu_set_mmureg(mreg);
+}
+
+static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
+ .cache_all = viking_flush_cache_all,
+ .cache_mm = viking_flush_cache_mm,
+ .cache_page = viking_flush_cache_page,
+ .cache_range = viking_flush_cache_range,
+ .tlb_all = viking_flush_tlb_all,
+ .tlb_mm = viking_flush_tlb_mm,
+ .tlb_page = viking_flush_tlb_page,
+ .tlb_range = viking_flush_tlb_range,
+ .page_to_ram = viking_flush_page_to_ram,
+ .sig_insns = viking_flush_sig_insns,
+ .page_for_dma = viking_flush_page_for_dma,
+};
+
+#ifdef CONFIG_SMP
+/* On sun4d the cpu broadcasts local TLB flushes, so we can just
+ * perform the local TLB flush and all the other cpus will see it.
+ * But, unfortunately, there is a bug in the sun4d XBUS backplane
+ * that requires that we add some synchronization to these flushes.
+ *
+ * The bug is that the fifo which keeps track of all the pending TLB
+ * broadcasts in the system is an entry or two too small, so if we
+ * have too many going at once we'll overflow that fifo and lose a TLB
+ * flush resulting in corruption.
+ *
+ * Our workaround is to take a global spinlock around the TLB flushes,
+ * which guarentees we won't ever have too many pending. It's a big
+ * hammer, but a semaphore like system to make sure we only have N TLB
+ * flushes going at once will require SMP locking anyways so there's
+ * no real value in trying any harder than this.
+ */
+static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
+ .cache_all = viking_flush_cache_all,
+ .cache_mm = viking_flush_cache_mm,
+ .cache_page = viking_flush_cache_page,
+ .cache_range = viking_flush_cache_range,
+ .tlb_all = sun4dsmp_flush_tlb_all,
+ .tlb_mm = sun4dsmp_flush_tlb_mm,
+ .tlb_page = sun4dsmp_flush_tlb_page,
+ .tlb_range = sun4dsmp_flush_tlb_range,
+ .page_to_ram = viking_flush_page_to_ram,
+ .sig_insns = viking_flush_sig_insns,
+ .page_for_dma = viking_flush_page_for_dma,
+};
+#endif
+
+static void __init init_viking(void)
+{
+ unsigned long mreg = srmmu_get_mmureg();
+
+ /* Ahhh, the viking. SRMMU VLSI abortion number two... */
+ if (mreg & VIKING_MMODE) {
+ srmmu_name = "TI Viking";
+ viking_mxcc_present = 0;
+ msi_set_sync();
+
+ /*
+ * We need this to make sure old viking takes no hits
+ * on it's cache for dma snoops to workaround the
+ * "load from non-cacheable memory" interrupt bug.
+ * This is only necessary because of the new way in
+ * which we use the IOMMU.
+ */
+ viking_ops.page_for_dma = viking_flush_page;
+#ifdef CONFIG_SMP
+ viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
+#endif
+ flush_page_for_dma_global = 0;
+ } else {
+ srmmu_name = "TI Viking/MXCC";
+ viking_mxcc_present = 1;
+ srmmu_cache_pagetables = 1;
+ }
+
+ sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+ &viking_ops;
+#ifdef CONFIG_SMP
+ if (sparc_cpu_model == sun4d)
+ sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+ &viking_sun4d_smp_ops;
+#endif
+
+ poke_srmmu = poke_viking;
+}
+
+/* Probe for the srmmu chip version. */
+static void __init get_srmmu_type(void)
+{
+ unsigned long mreg, psr;
+ unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
+
+ srmmu_modtype = SRMMU_INVAL_MOD;
+ hwbug_bitmask = 0;
+
+ mreg = srmmu_get_mmureg(); psr = get_psr();
+ mod_typ = (mreg & 0xf0000000) >> 28;
+ mod_rev = (mreg & 0x0f000000) >> 24;
+ psr_typ = (psr >> 28) & 0xf;
+ psr_vers = (psr >> 24) & 0xf;
+
+ /* First, check for sparc-leon. */
+ if (sparc_cpu_model == sparc_leon) {
+ init_leon();
+ return;
+ }
+
+ /* Second, check for HyperSparc or Cypress. */
+ if (mod_typ == 1) {
+ switch (mod_rev) {
+ case 7:
+ /* UP or MP Hypersparc */
+ init_hypersparc();
+ break;
+ case 0:
+ case 2:
+ case 10:
+ case 11:
+ case 12:
+ case 13:
+ case 14:
+ case 15:
+ default:
+ prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
+ prom_halt();
+ break;
+ }
+ return;
+ }
+
+ /* Now Fujitsu TurboSparc. It might happen that it is
+ * in Swift emulation mode, so we will check later...
+ */
+ if (psr_typ == 0 && psr_vers == 5) {
+ init_turbosparc();
+ return;
+ }
+
+ /* Next check for Fujitsu Swift. */
+ if (psr_typ == 0 && psr_vers == 4) {
+ phandle cpunode;
+ char node_str[128];
+
+ /* Look if it is not a TurboSparc emulating Swift... */
+ cpunode = prom_getchild(prom_root_node);
+ while ((cpunode = prom_getsibling(cpunode)) != 0) {
+ prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
+ if (!strcmp(node_str, "cpu")) {
+ if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
+ prom_getintdefault(cpunode, "psr-version", 1) == 5) {
+ init_turbosparc();
+ return;
+ }
+ break;
+ }
+ }
+
+ init_swift();
+ return;
+ }
+
+ /* Now the Viking family of srmmu. */
+ if (psr_typ == 4 &&
+ ((psr_vers == 0) ||
+ ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
+ init_viking();
+ return;
+ }
+
+ /* Finally the Tsunami. */
+ if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
+ init_tsunami();
+ return;
+ }
+
+ /* Oh well */
+ srmmu_is_bad();
+}
+
+#ifdef CONFIG_SMP
+/* Local cross-calls. */
+static void smp_flush_page_for_dma(unsigned long page)
+{
+ xc1((smpfunc_t) local_ops->page_for_dma, page);
+ local_ops->page_for_dma(page);
+}
+
+static void smp_flush_cache_all(void)
+{
+ xc0((smpfunc_t) local_ops->cache_all);
+ local_ops->cache_all();
+}
+
+static void smp_flush_tlb_all(void)
+{
+ xc0((smpfunc_t) local_ops->tlb_all);
+ local_ops->tlb_all();
+}
+
+static void smp_flush_cache_mm(struct mm_struct *mm)
+{
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
+ local_ops->cache_mm(mm);
+ }
+}
+
+static void smp_flush_tlb_mm(struct mm_struct *mm)
+{
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask)) {
+ xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
+ if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
+ cpumask_copy(mm_cpumask(mm),
+ cpumask_of(smp_processor_id()));
+ }
+ local_ops->tlb_mm(mm);
+ }
+}
+
+static void smp_flush_cache_range(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end)
+{
+ struct mm_struct *mm = vma->vm_mm;
+
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc3((smpfunc_t) local_ops->cache_range,
+ (unsigned long) vma, start, end);
+ local_ops->cache_range(vma, start, end);
+ }
+}
+
+static void smp_flush_tlb_range(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end)
+{
+ struct mm_struct *mm = vma->vm_mm;
+
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc3((smpfunc_t) local_ops->tlb_range,
+ (unsigned long) vma, start, end);
+ local_ops->tlb_range(vma, start, end);
+ }
+}
+
+static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
+{
+ struct mm_struct *mm = vma->vm_mm;
+
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc2((smpfunc_t) local_ops->cache_page,
+ (unsigned long) vma, page);
+ local_ops->cache_page(vma, page);
+ }
+}
+
+static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
+{
+ struct mm_struct *mm = vma->vm_mm;
+
+ if (mm->context != NO_CONTEXT) {
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc2((smpfunc_t) local_ops->tlb_page,
+ (unsigned long) vma, page);
+ local_ops->tlb_page(vma, page);
+ }
+}
+
+static void smp_flush_page_to_ram(unsigned long page)
+{
+ /* Current theory is that those who call this are the one's
+ * who have just dirtied their cache with the pages contents
+ * in kernel space, therefore we only run this on local cpu.
+ *
+ * XXX This experiment failed, research further... -DaveM
+ */
+#if 1
+ xc1((smpfunc_t) local_ops->page_to_ram, page);
+#endif
+ local_ops->page_to_ram(page);
+}
+
+static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
+{
+ cpumask_t cpu_mask;
+ cpumask_copy(&cpu_mask, mm_cpumask(mm));
+ cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
+ if (!cpumask_empty(&cpu_mask))
+ xc2((smpfunc_t) local_ops->sig_insns,
+ (unsigned long) mm, insn_addr);
+ local_ops->sig_insns(mm, insn_addr);
+}
+
+static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
+ .cache_all = smp_flush_cache_all,
+ .cache_mm = smp_flush_cache_mm,
+ .cache_page = smp_flush_cache_page,
+ .cache_range = smp_flush_cache_range,
+ .tlb_all = smp_flush_tlb_all,
+ .tlb_mm = smp_flush_tlb_mm,
+ .tlb_page = smp_flush_tlb_page,
+ .tlb_range = smp_flush_tlb_range,
+ .page_to_ram = smp_flush_page_to_ram,
+ .sig_insns = smp_flush_sig_insns,
+ .page_for_dma = smp_flush_page_for_dma,
+};
+#endif
+
+/* Load up routines and constants for sun4m and sun4d mmu */
+void __init load_mmu(void)
+{
+ /* Functions */
+ get_srmmu_type();
+
+#ifdef CONFIG_SMP
+ /* El switcheroo... */
+ local_ops = sparc32_cachetlb_ops;
+
+ if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
+ smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
+ smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
+ smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
+ smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
+ }
+
+ if (poke_srmmu == poke_viking) {
+ /* Avoid unnecessary cross calls. */
+ smp_cachetlb_ops.cache_all = local_ops->cache_all;
+ smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
+ smp_cachetlb_ops.cache_range = local_ops->cache_range;
+ smp_cachetlb_ops.cache_page = local_ops->cache_page;
+
+ smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
+ smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
+ smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
+ }
+
+ /* It really is const after this point. */
+ sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
+ &smp_cachetlb_ops;
+#endif
+
+ if (sparc_cpu_model != sun4d)
+ ld_mmu_iommu();
+#ifdef CONFIG_SMP
+ if (sparc_cpu_model == sun4d)
+ sun4d_init_smp();
+ else if (sparc_cpu_model == sparc_leon)
+ leon_init_smp();
+ else
+ sun4m_init_smp();
+#endif
+}