diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /arch/x86/kvm/mmu/mmu.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 6104 |
1 files changed, 6104 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c new file mode 100644 index 000000000..13bf3198d --- /dev/null +++ b/arch/x86/kvm/mmu/mmu.c @@ -0,0 +1,6104 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * MMU support + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + */ + +#include "irq.h" +#include "ioapic.h" +#include "mmu.h" +#include "mmu_internal.h" +#include "tdp_mmu.h" +#include "x86.h" +#include "kvm_cache_regs.h" +#include "kvm_emulate.h" +#include "cpuid.h" +#include "spte.h" + +#include <linux/kvm_host.h> +#include <linux/types.h> +#include <linux/string.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/moduleparam.h> +#include <linux/export.h> +#include <linux/swap.h> +#include <linux/hugetlb.h> +#include <linux/compiler.h> +#include <linux/srcu.h> +#include <linux/slab.h> +#include <linux/sched/signal.h> +#include <linux/uaccess.h> +#include <linux/hash.h> +#include <linux/kern_levels.h> +#include <linux/kthread.h> + +#include <asm/page.h> +#include <asm/memtype.h> +#include <asm/cmpxchg.h> +#include <asm/io.h> +#include <asm/vmx.h> +#include <asm/kvm_page_track.h> +#include "trace.h" + +#include "paging.h" + +extern bool itlb_multihit_kvm_mitigation; + +static int __read_mostly nx_huge_pages = -1; +#ifdef CONFIG_PREEMPT_RT +/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ +static uint __read_mostly nx_huge_pages_recovery_ratio = 0; +#else +static uint __read_mostly nx_huge_pages_recovery_ratio = 60; +#endif + +static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); +static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); + +static const struct kernel_param_ops nx_huge_pages_ops = { + .set = set_nx_huge_pages, + .get = param_get_bool, +}; + +static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { + .set = set_nx_huge_pages_recovery_ratio, + .get = param_get_uint, +}; + +module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); +__MODULE_PARM_TYPE(nx_huge_pages, "bool"); +module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, + &nx_huge_pages_recovery_ratio, 0644); +__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); + +static bool __read_mostly force_flush_and_sync_on_reuse; +module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); + +/* + * When setting this variable to true it enables Two-Dimensional-Paging + * where the hardware walks 2 page tables: + * 1. the guest-virtual to guest-physical + * 2. while doing 1. it walks guest-physical to host-physical + * If the hardware supports that we don't need to do shadow paging. + */ +bool tdp_enabled = false; + +static int max_huge_page_level __read_mostly; +static int max_tdp_level __read_mostly; + +enum { + AUDIT_PRE_PAGE_FAULT, + AUDIT_POST_PAGE_FAULT, + AUDIT_PRE_PTE_WRITE, + AUDIT_POST_PTE_WRITE, + AUDIT_PRE_SYNC, + AUDIT_POST_SYNC +}; + +#ifdef MMU_DEBUG +bool dbg = 0; +module_param(dbg, bool, 0644); +#endif + +#define PTE_PREFETCH_NUM 8 + +#define PT32_LEVEL_BITS 10 + +#define PT32_LEVEL_SHIFT(level) \ + (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) + +#define PT32_LVL_OFFSET_MASK(level) \ + (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT32_LEVEL_BITS))) - 1)) + +#define PT32_INDEX(address, level)\ + (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) + + +#define PT32_BASE_ADDR_MASK PAGE_MASK +#define PT32_DIR_BASE_ADDR_MASK \ + (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) +#define PT32_LVL_ADDR_MASK(level) \ + (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT32_LEVEL_BITS))) - 1)) + +#include <trace/events/kvm.h> + +/* make pte_list_desc fit well in cache line */ +#define PTE_LIST_EXT 3 + +struct pte_list_desc { + u64 *sptes[PTE_LIST_EXT]; + struct pte_list_desc *more; +}; + +struct kvm_shadow_walk_iterator { + u64 addr; + hpa_t shadow_addr; + u64 *sptep; + int level; + unsigned index; +}; + +#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ + for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ + (_root), (_addr)); \ + shadow_walk_okay(&(_walker)); \ + shadow_walk_next(&(_walker))) + +#define for_each_shadow_entry(_vcpu, _addr, _walker) \ + for (shadow_walk_init(&(_walker), _vcpu, _addr); \ + shadow_walk_okay(&(_walker)); \ + shadow_walk_next(&(_walker))) + +#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ + for (shadow_walk_init(&(_walker), _vcpu, _addr); \ + shadow_walk_okay(&(_walker)) && \ + ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ + __shadow_walk_next(&(_walker), spte)) + +static struct kmem_cache *pte_list_desc_cache; +struct kmem_cache *mmu_page_header_cache; +static struct percpu_counter kvm_total_used_mmu_pages; + +static void mmu_spte_set(u64 *sptep, u64 spte); +static union kvm_mmu_page_role +kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); + +#define CREATE_TRACE_POINTS +#include "mmutrace.h" + + +static inline bool kvm_available_flush_tlb_with_range(void) +{ + return kvm_x86_ops.tlb_remote_flush_with_range; +} + +static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, + struct kvm_tlb_range *range) +{ + int ret = -ENOTSUPP; + + if (range && kvm_x86_ops.tlb_remote_flush_with_range) + ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); + + if (ret) + kvm_flush_remote_tlbs(kvm); +} + +void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, + u64 start_gfn, u64 pages) +{ + struct kvm_tlb_range range; + + range.start_gfn = start_gfn; + range.pages = pages; + + kvm_flush_remote_tlbs_with_range(kvm, &range); +} + +bool is_nx_huge_page_enabled(void) +{ + return READ_ONCE(nx_huge_pages); +} + +static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, + unsigned int access) +{ + u64 mask = make_mmio_spte(vcpu, gfn, access); + + trace_mark_mmio_spte(sptep, gfn, mask); + mmu_spte_set(sptep, mask); +} + +static gfn_t get_mmio_spte_gfn(u64 spte) +{ + u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; + + gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) + & shadow_nonpresent_or_rsvd_mask; + + return gpa >> PAGE_SHIFT; +} + +static unsigned get_mmio_spte_access(u64 spte) +{ + return spte & shadow_mmio_access_mask; +} + +static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, + kvm_pfn_t pfn, unsigned int access) +{ + if (unlikely(is_noslot_pfn(pfn))) { + mark_mmio_spte(vcpu, sptep, gfn, access); + return true; + } + + return false; +} + +static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) +{ + u64 kvm_gen, spte_gen, gen; + + gen = kvm_vcpu_memslots(vcpu)->generation; + if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) + return false; + + kvm_gen = gen & MMIO_SPTE_GEN_MASK; + spte_gen = get_mmio_spte_generation(spte); + + trace_check_mmio_spte(spte, kvm_gen, spte_gen); + return likely(kvm_gen == spte_gen); +} + +static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, + struct x86_exception *exception) +{ + return gpa; +} + +static int is_cpuid_PSE36(void) +{ + return 1; +} + +static int is_nx(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.efer & EFER_NX; +} + +static gfn_t pse36_gfn_delta(u32 gpte) +{ + int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; + + return (gpte & PT32_DIR_PSE36_MASK) << shift; +} + +#ifdef CONFIG_X86_64 +static void __set_spte(u64 *sptep, u64 spte) +{ + WRITE_ONCE(*sptep, spte); +} + +static void __update_clear_spte_fast(u64 *sptep, u64 spte) +{ + WRITE_ONCE(*sptep, spte); +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ + return xchg(sptep, spte); +} + +static u64 __get_spte_lockless(u64 *sptep) +{ + return READ_ONCE(*sptep); +} +#else +union split_spte { + struct { + u32 spte_low; + u32 spte_high; + }; + u64 spte; +}; + +static void count_spte_clear(u64 *sptep, u64 spte) +{ + struct kvm_mmu_page *sp = sptep_to_sp(sptep); + + if (is_shadow_present_pte(spte)) + return; + + /* Ensure the spte is completely set before we increase the count */ + smp_wmb(); + sp->clear_spte_count++; +} + +static void __set_spte(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + ssptep->spte_high = sspte.spte_high; + + /* + * If we map the spte from nonpresent to present, We should store + * the high bits firstly, then set present bit, so cpu can not + * fetch this spte while we are setting the spte. + */ + smp_wmb(); + + WRITE_ONCE(ssptep->spte_low, sspte.spte_low); +} + +static void __update_clear_spte_fast(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + WRITE_ONCE(ssptep->spte_low, sspte.spte_low); + + /* + * If we map the spte from present to nonpresent, we should clear + * present bit firstly to avoid vcpu fetch the old high bits. + */ + smp_wmb(); + + ssptep->spte_high = sspte.spte_high; + count_spte_clear(sptep, spte); +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte, orig; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + /* xchg acts as a barrier before the setting of the high bits */ + orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); + orig.spte_high = ssptep->spte_high; + ssptep->spte_high = sspte.spte_high; + count_spte_clear(sptep, spte); + + return orig.spte; +} + +/* + * The idea using the light way get the spte on x86_32 guest is from + * gup_get_pte (mm/gup.c). + * + * An spte tlb flush may be pending, because kvm_set_pte_rmapp + * coalesces them and we are running out of the MMU lock. Therefore + * we need to protect against in-progress updates of the spte. + * + * Reading the spte while an update is in progress may get the old value + * for the high part of the spte. The race is fine for a present->non-present + * change (because the high part of the spte is ignored for non-present spte), + * but for a present->present change we must reread the spte. + * + * All such changes are done in two steps (present->non-present and + * non-present->present), hence it is enough to count the number of + * present->non-present updates: if it changed while reading the spte, + * we might have hit the race. This is done using clear_spte_count. + */ +static u64 __get_spte_lockless(u64 *sptep) +{ + struct kvm_mmu_page *sp = sptep_to_sp(sptep); + union split_spte spte, *orig = (union split_spte *)sptep; + int count; + +retry: + count = sp->clear_spte_count; + smp_rmb(); + + spte.spte_low = orig->spte_low; + smp_rmb(); + + spte.spte_high = orig->spte_high; + smp_rmb(); + + if (unlikely(spte.spte_low != orig->spte_low || + count != sp->clear_spte_count)) + goto retry; + + return spte.spte; +} +#endif + +static bool spte_has_volatile_bits(u64 spte) +{ + if (!is_shadow_present_pte(spte)) + return false; + + /* + * Always atomically update spte if it can be updated + * out of mmu-lock, it can ensure dirty bit is not lost, + * also, it can help us to get a stable is_writable_pte() + * to ensure tlb flush is not missed. + */ + if (spte_can_locklessly_be_made_writable(spte) || + is_access_track_spte(spte)) + return true; + + if (spte_ad_enabled(spte)) { + if ((spte & shadow_accessed_mask) == 0 || + (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) + return true; + } + + return false; +} + +/* Rules for using mmu_spte_set: + * Set the sptep from nonpresent to present. + * Note: the sptep being assigned *must* be either not present + * or in a state where the hardware will not attempt to update + * the spte. + */ +static void mmu_spte_set(u64 *sptep, u64 new_spte) +{ + WARN_ON(is_shadow_present_pte(*sptep)); + __set_spte(sptep, new_spte); +} + +/* + * Update the SPTE (excluding the PFN), but do not track changes in its + * accessed/dirty status. + */ +static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) +{ + u64 old_spte = *sptep; + + WARN_ON(!is_shadow_present_pte(new_spte)); + + if (!is_shadow_present_pte(old_spte)) { + mmu_spte_set(sptep, new_spte); + return old_spte; + } + + if (!spte_has_volatile_bits(old_spte)) + __update_clear_spte_fast(sptep, new_spte); + else + old_spte = __update_clear_spte_slow(sptep, new_spte); + + WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); + + return old_spte; +} + +/* Rules for using mmu_spte_update: + * Update the state bits, it means the mapped pfn is not changed. + * + * Whenever we overwrite a writable spte with a read-only one we + * should flush remote TLBs. Otherwise rmap_write_protect + * will find a read-only spte, even though the writable spte + * might be cached on a CPU's TLB, the return value indicates this + * case. + * + * Returns true if the TLB needs to be flushed + */ +static bool mmu_spte_update(u64 *sptep, u64 new_spte) +{ + bool flush = false; + u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); + + if (!is_shadow_present_pte(old_spte)) + return false; + + /* + * For the spte updated out of mmu-lock is safe, since + * we always atomically update it, see the comments in + * spte_has_volatile_bits(). + */ + if (spte_can_locklessly_be_made_writable(old_spte) && + !is_writable_pte(new_spte)) + flush = true; + + /* + * Flush TLB when accessed/dirty states are changed in the page tables, + * to guarantee consistency between TLB and page tables. + */ + + if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { + flush = true; + kvm_set_pfn_accessed(spte_to_pfn(old_spte)); + } + + if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { + flush = true; + kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + } + + return flush; +} + +/* + * Rules for using mmu_spte_clear_track_bits: + * It sets the sptep from present to nonpresent, and track the + * state bits, it is used to clear the last level sptep. + * Returns non-zero if the PTE was previously valid. + */ +static int mmu_spte_clear_track_bits(u64 *sptep) +{ + kvm_pfn_t pfn; + u64 old_spte = *sptep; + + if (!spte_has_volatile_bits(old_spte)) + __update_clear_spte_fast(sptep, 0ull); + else + old_spte = __update_clear_spte_slow(sptep, 0ull); + + if (!is_shadow_present_pte(old_spte)) + return 0; + + pfn = spte_to_pfn(old_spte); + + /* + * KVM does not hold the refcount of the page used by + * kvm mmu, before reclaiming the page, we should + * unmap it from mmu first. + */ + WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); + + if (is_accessed_spte(old_spte)) + kvm_set_pfn_accessed(pfn); + + if (is_dirty_spte(old_spte)) + kvm_set_pfn_dirty(pfn); + + return 1; +} + +/* + * Rules for using mmu_spte_clear_no_track: + * Directly clear spte without caring the state bits of sptep, + * it is used to set the upper level spte. + */ +static void mmu_spte_clear_no_track(u64 *sptep) +{ + __update_clear_spte_fast(sptep, 0ull); +} + +static u64 mmu_spte_get_lockless(u64 *sptep) +{ + return __get_spte_lockless(sptep); +} + +/* Restore an acc-track PTE back to a regular PTE */ +static u64 restore_acc_track_spte(u64 spte) +{ + u64 new_spte = spte; + u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) + & SHADOW_ACC_TRACK_SAVED_BITS_MASK; + + WARN_ON_ONCE(spte_ad_enabled(spte)); + WARN_ON_ONCE(!is_access_track_spte(spte)); + + new_spte &= ~shadow_acc_track_mask; + new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << + SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); + new_spte |= saved_bits; + + return new_spte; +} + +/* Returns the Accessed status of the PTE and resets it at the same time. */ +static bool mmu_spte_age(u64 *sptep) +{ + u64 spte = mmu_spte_get_lockless(sptep); + + if (!is_accessed_spte(spte)) + return false; + + if (spte_ad_enabled(spte)) { + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)sptep); + } else { + /* + * Capture the dirty status of the page, so that it doesn't get + * lost when the SPTE is marked for access tracking. + */ + if (is_writable_pte(spte)) + kvm_set_pfn_dirty(spte_to_pfn(spte)); + + spte = mark_spte_for_access_track(spte); + mmu_spte_update_no_track(sptep, spte); + } + + return true; +} + +static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) +{ + /* + * Prevent page table teardown by making any free-er wait during + * kvm_flush_remote_tlbs() IPI to all active vcpus. + */ + local_irq_disable(); + + /* + * Make sure a following spte read is not reordered ahead of the write + * to vcpu->mode. + */ + smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); +} + +static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) +{ + /* + * Make sure the write to vcpu->mode is not reordered in front of + * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us + * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. + */ + smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); + local_irq_enable(); +} + +static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) +{ + int r; + + /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ + r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, + 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); + if (r) + return r; + r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, + PT64_ROOT_MAX_LEVEL); + if (r) + return r; + if (maybe_indirect) { + r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, + PT64_ROOT_MAX_LEVEL); + if (r) + return r; + } + return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, + PT64_ROOT_MAX_LEVEL); +} + +static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) +{ + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); +} + +static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) +{ + return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); +} + +static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) +{ + kmem_cache_free(pte_list_desc_cache, pte_list_desc); +} + +static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) +{ + if (!sp->role.direct) + return sp->gfns[index]; + + return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); +} + +static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) +{ + if (!sp->role.direct) { + sp->gfns[index] = gfn; + return; + } + + if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) + pr_err_ratelimited("gfn mismatch under direct page %llx " + "(expected %llx, got %llx)\n", + sp->gfn, + kvm_mmu_page_get_gfn(sp, index), gfn); +} + +/* + * Return the pointer to the large page information for a given gfn, + * handling slots that are not large page aligned. + */ +static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, + struct kvm_memory_slot *slot, + int level) +{ + unsigned long idx; + + idx = gfn_to_index(gfn, slot->base_gfn, level); + return &slot->arch.lpage_info[level - 2][idx]; +} + +static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, + gfn_t gfn, int count) +{ + struct kvm_lpage_info *linfo; + int i; + + for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { + linfo = lpage_info_slot(gfn, slot, i); + linfo->disallow_lpage += count; + WARN_ON(linfo->disallow_lpage < 0); + } +} + +void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) +{ + update_gfn_disallow_lpage_count(slot, gfn, 1); +} + +void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) +{ + update_gfn_disallow_lpage_count(slot, gfn, -1); +} + +static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *slot; + gfn_t gfn; + + kvm->arch.indirect_shadow_pages++; + gfn = sp->gfn; + slots = kvm_memslots_for_spte_role(kvm, sp->role); + slot = __gfn_to_memslot(slots, gfn); + + /* the non-leaf shadow pages are keeping readonly. */ + if (sp->role.level > PG_LEVEL_4K) + return kvm_slot_page_track_add_page(kvm, slot, gfn, + KVM_PAGE_TRACK_WRITE); + + kvm_mmu_gfn_disallow_lpage(slot, gfn); +} + +void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + if (sp->lpage_disallowed) + return; + + ++kvm->stat.nx_lpage_splits; + list_add_tail(&sp->lpage_disallowed_link, + &kvm->arch.lpage_disallowed_mmu_pages); + sp->lpage_disallowed = true; +} + +static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *slot; + gfn_t gfn; + + kvm->arch.indirect_shadow_pages--; + gfn = sp->gfn; + slots = kvm_memslots_for_spte_role(kvm, sp->role); + slot = __gfn_to_memslot(slots, gfn); + if (sp->role.level > PG_LEVEL_4K) + return kvm_slot_page_track_remove_page(kvm, slot, gfn, + KVM_PAGE_TRACK_WRITE); + + kvm_mmu_gfn_allow_lpage(slot, gfn); +} + +void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + --kvm->stat.nx_lpage_splits; + sp->lpage_disallowed = false; + list_del(&sp->lpage_disallowed_link); +} + +static struct kvm_memory_slot * +gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, + bool no_dirty_log) +{ + struct kvm_memory_slot *slot; + + slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + if (!slot || slot->flags & KVM_MEMSLOT_INVALID) + return NULL; + if (no_dirty_log && slot->dirty_bitmap) + return NULL; + + return slot; +} + +/* + * About rmap_head encoding: + * + * If the bit zero of rmap_head->val is clear, then it points to the only spte + * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct + * pte_list_desc containing more mappings. + */ + +/* + * Returns the number of pointers in the rmap chain, not counting the new one. + */ +static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, + struct kvm_rmap_head *rmap_head) +{ + struct pte_list_desc *desc; + int i, count = 0; + + if (!rmap_head->val) { + rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); + rmap_head->val = (unsigned long)spte; + } else if (!(rmap_head->val & 1)) { + rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); + desc = mmu_alloc_pte_list_desc(vcpu); + desc->sptes[0] = (u64 *)rmap_head->val; + desc->sptes[1] = spte; + rmap_head->val = (unsigned long)desc | 1; + ++count; + } else { + rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); + desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); + while (desc->sptes[PTE_LIST_EXT-1]) { + count += PTE_LIST_EXT; + + if (!desc->more) { + desc->more = mmu_alloc_pte_list_desc(vcpu); + desc = desc->more; + break; + } + desc = desc->more; + } + for (i = 0; desc->sptes[i]; ++i) + ++count; + desc->sptes[i] = spte; + } + return count; +} + +static void +pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, + struct pte_list_desc *desc, int i, + struct pte_list_desc *prev_desc) +{ + int j; + + for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) + ; + desc->sptes[i] = desc->sptes[j]; + desc->sptes[j] = NULL; + if (j != 0) + return; + if (!prev_desc && !desc->more) + rmap_head->val = 0; + else + if (prev_desc) + prev_desc->more = desc->more; + else + rmap_head->val = (unsigned long)desc->more | 1; + mmu_free_pte_list_desc(desc); +} + +static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) +{ + struct pte_list_desc *desc; + struct pte_list_desc *prev_desc; + int i; + + if (!rmap_head->val) { + pr_err("%s: %p 0->BUG\n", __func__, spte); + BUG(); + } else if (!(rmap_head->val & 1)) { + rmap_printk("%s: %p 1->0\n", __func__, spte); + if ((u64 *)rmap_head->val != spte) { + pr_err("%s: %p 1->BUG\n", __func__, spte); + BUG(); + } + rmap_head->val = 0; + } else { + rmap_printk("%s: %p many->many\n", __func__, spte); + desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); + prev_desc = NULL; + while (desc) { + for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { + if (desc->sptes[i] == spte) { + pte_list_desc_remove_entry(rmap_head, + desc, i, prev_desc); + return; + } + } + prev_desc = desc; + desc = desc->more; + } + pr_err("%s: %p many->many\n", __func__, spte); + BUG(); + } +} + +static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) +{ + mmu_spte_clear_track_bits(sptep); + __pte_list_remove(sptep, rmap_head); +} + +static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, + struct kvm_memory_slot *slot) +{ + unsigned long idx; + + idx = gfn_to_index(gfn, slot->base_gfn, level); + return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; +} + +static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, + struct kvm_mmu_page *sp) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *slot; + + slots = kvm_memslots_for_spte_role(kvm, sp->role); + slot = __gfn_to_memslot(slots, gfn); + return __gfn_to_rmap(gfn, sp->role.level, slot); +} + +static bool rmap_can_add(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_memory_cache *mc; + + mc = &vcpu->arch.mmu_pte_list_desc_cache; + return kvm_mmu_memory_cache_nr_free_objects(mc); +} + +static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +{ + struct kvm_mmu_page *sp; + struct kvm_rmap_head *rmap_head; + + sp = sptep_to_sp(spte); + kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); + rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); + return pte_list_add(vcpu, spte, rmap_head); +} + +static void rmap_remove(struct kvm *kvm, u64 *spte) +{ + struct kvm_mmu_page *sp; + gfn_t gfn; + struct kvm_rmap_head *rmap_head; + + sp = sptep_to_sp(spte); + gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); + rmap_head = gfn_to_rmap(kvm, gfn, sp); + __pte_list_remove(spte, rmap_head); +} + +/* + * Used by the following functions to iterate through the sptes linked by a + * rmap. All fields are private and not assumed to be used outside. + */ +struct rmap_iterator { + /* private fields */ + struct pte_list_desc *desc; /* holds the sptep if not NULL */ + int pos; /* index of the sptep */ +}; + +/* + * Iteration must be started by this function. This should also be used after + * removing/dropping sptes from the rmap link because in such cases the + * information in the iterator may not be valid. + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, + struct rmap_iterator *iter) +{ + u64 *sptep; + + if (!rmap_head->val) + return NULL; + + if (!(rmap_head->val & 1)) { + iter->desc = NULL; + sptep = (u64 *)rmap_head->val; + goto out; + } + + iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); + iter->pos = 0; + sptep = iter->desc->sptes[iter->pos]; +out: + BUG_ON(!is_shadow_present_pte(*sptep)); + return sptep; +} + +/* + * Must be used with a valid iterator: e.g. after rmap_get_first(). + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_next(struct rmap_iterator *iter) +{ + u64 *sptep; + + if (iter->desc) { + if (iter->pos < PTE_LIST_EXT - 1) { + ++iter->pos; + sptep = iter->desc->sptes[iter->pos]; + if (sptep) + goto out; + } + + iter->desc = iter->desc->more; + + if (iter->desc) { + iter->pos = 0; + /* desc->sptes[0] cannot be NULL */ + sptep = iter->desc->sptes[iter->pos]; + goto out; + } + } + + return NULL; +out: + BUG_ON(!is_shadow_present_pte(*sptep)); + return sptep; +} + +#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ + for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ + _spte_; _spte_ = rmap_get_next(_iter_)) + +static void drop_spte(struct kvm *kvm, u64 *sptep) +{ + if (mmu_spte_clear_track_bits(sptep)) + rmap_remove(kvm, sptep); +} + + +static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) +{ + if (is_large_pte(*sptep)) { + WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); + drop_spte(kvm, sptep); + --kvm->stat.lpages; + return true; + } + + return false; +} + +static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) +{ + if (__drop_large_spte(vcpu->kvm, sptep)) { + struct kvm_mmu_page *sp = sptep_to_sp(sptep); + + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + } +} + +/* + * Write-protect on the specified @sptep, @pt_protect indicates whether + * spte write-protection is caused by protecting shadow page table. + * + * Note: write protection is difference between dirty logging and spte + * protection: + * - for dirty logging, the spte can be set to writable at anytime if + * its dirty bitmap is properly set. + * - for spte protection, the spte can be writable only after unsync-ing + * shadow page. + * + * Return true if tlb need be flushed. + */ +static bool spte_write_protect(u64 *sptep, bool pt_protect) +{ + u64 spte = *sptep; + + if (!is_writable_pte(spte) && + !(pt_protect && spte_can_locklessly_be_made_writable(spte))) + return false; + + rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); + + if (pt_protect) + spte &= ~SPTE_MMU_WRITEABLE; + spte = spte & ~PT_WRITABLE_MASK; + + return mmu_spte_update(sptep, spte); +} + +static bool __rmap_write_protect(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + bool pt_protect) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for_each_rmap_spte(rmap_head, &iter, sptep) + flush |= spte_write_protect(sptep, pt_protect); + + return flush; +} + +static bool spte_clear_dirty(u64 *sptep) +{ + u64 spte = *sptep; + + rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); + + MMU_WARN_ON(!spte_ad_enabled(spte)); + spte &= ~shadow_dirty_mask; + return mmu_spte_update(sptep, spte); +} + +static bool spte_wrprot_for_clear_dirty(u64 *sptep) +{ + bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, + (unsigned long *)sptep); + if (was_writable && !spte_ad_enabled(*sptep)) + kvm_set_pfn_dirty(spte_to_pfn(*sptep)); + + return was_writable; +} + +/* + * Gets the GFN ready for another round of dirty logging by clearing the + * - D bit on ad-enabled SPTEs, and + * - W bit on ad-disabled SPTEs. + * Returns true iff any D or W bits were cleared. + */ +static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for_each_rmap_spte(rmap_head, &iter, sptep) + if (spte_ad_need_write_protect(*sptep)) + flush |= spte_wrprot_for_clear_dirty(sptep); + else + flush |= spte_clear_dirty(sptep); + + return flush; +} + +static bool spte_set_dirty(u64 *sptep) +{ + u64 spte = *sptep; + + rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); + + /* + * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, + * do not bother adding back write access to pages marked + * SPTE_AD_WRPROT_ONLY_MASK. + */ + spte |= shadow_dirty_mask; + + return mmu_spte_update(sptep, spte); +} + +static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for_each_rmap_spte(rmap_head, &iter, sptep) + if (spte_ad_enabled(*sptep)) + flush |= spte_set_dirty(sptep); + + return flush; +} + +/** + * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages + * @kvm: kvm instance + * @slot: slot to protect + * @gfn_offset: start of the BITS_PER_LONG pages we care about + * @mask: indicates which pages we should protect + * + * Used when we do not need to care about huge page mappings: e.g. during dirty + * logging we do not have any such mappings. + */ +static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + struct kvm_rmap_head *rmap_head; + + if (kvm->arch.tdp_mmu_enabled) + kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, + slot->base_gfn + gfn_offset, mask, true); + while (mask) { + rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), + PG_LEVEL_4K, slot); + __rmap_write_protect(kvm, rmap_head, false); + + /* clear the first set bit */ + mask &= mask - 1; + } +} + +/** + * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write + * protect the page if the D-bit isn't supported. + * @kvm: kvm instance + * @slot: slot to clear D-bit + * @gfn_offset: start of the BITS_PER_LONG pages we care about + * @mask: indicates which pages we should clear D-bit + * + * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. + */ +void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + struct kvm_rmap_head *rmap_head; + + if (kvm->arch.tdp_mmu_enabled) + kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, + slot->base_gfn + gfn_offset, mask, false); + while (mask) { + rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), + PG_LEVEL_4K, slot); + __rmap_clear_dirty(kvm, rmap_head); + + /* clear the first set bit */ + mask &= mask - 1; + } +} +EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); + +/** + * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected + * PT level pages. + * + * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to + * enable dirty logging for them. + * + * Used when we do not need to care about huge page mappings: e.g. during dirty + * logging we do not have any such mappings. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + if (kvm_x86_ops.enable_log_dirty_pt_masked) + kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, + mask); + else + kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); +} + +bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, + struct kvm_memory_slot *slot, u64 gfn) +{ + struct kvm_rmap_head *rmap_head; + int i; + bool write_protected = false; + + for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { + rmap_head = __gfn_to_rmap(gfn, i, slot); + write_protected |= __rmap_write_protect(kvm, rmap_head, true); + } + + if (kvm->arch.tdp_mmu_enabled) + write_protected |= + kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); + + return write_protected; +} + +static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) +{ + struct kvm_memory_slot *slot; + + slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); +} + +static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + while ((sptep = rmap_get_first(rmap_head, &iter))) { + rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); + + pte_list_remove(rmap_head, sptep); + flush = true; + } + + return flush; +} + +static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + return kvm_zap_rmapp(kvm, rmap_head); +} + +static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_flush = 0; + u64 new_spte; + pte_t *ptep = (pte_t *)data; + kvm_pfn_t new_pfn; + + WARN_ON(pte_huge(*ptep)); + new_pfn = pte_pfn(*ptep); + +restart: + for_each_rmap_spte(rmap_head, &iter, sptep) { + rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", + sptep, *sptep, gfn, level); + + need_flush = 1; + + if (pte_write(*ptep)) { + pte_list_remove(rmap_head, sptep); + goto restart; + } else { + new_spte = kvm_mmu_changed_pte_notifier_make_spte( + *sptep, new_pfn); + + mmu_spte_clear_track_bits(sptep); + mmu_spte_set(sptep, new_spte); + } + } + + if (need_flush && kvm_available_flush_tlb_with_range()) { + kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); + return 0; + } + + return need_flush; +} + +struct slot_rmap_walk_iterator { + /* input fields. */ + struct kvm_memory_slot *slot; + gfn_t start_gfn; + gfn_t end_gfn; + int start_level; + int end_level; + + /* output fields. */ + gfn_t gfn; + struct kvm_rmap_head *rmap; + int level; + + /* private field. */ + struct kvm_rmap_head *end_rmap; +}; + +static void +rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) +{ + iterator->level = level; + iterator->gfn = iterator->start_gfn; + iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); + iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, + iterator->slot); +} + +static void +slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, + struct kvm_memory_slot *slot, int start_level, + int end_level, gfn_t start_gfn, gfn_t end_gfn) +{ + iterator->slot = slot; + iterator->start_level = start_level; + iterator->end_level = end_level; + iterator->start_gfn = start_gfn; + iterator->end_gfn = end_gfn; + + rmap_walk_init_level(iterator, iterator->start_level); +} + +static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) +{ + return !!iterator->rmap; +} + +static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) +{ + if (++iterator->rmap <= iterator->end_rmap) { + iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); + return; + } + + if (++iterator->level > iterator->end_level) { + iterator->rmap = NULL; + return; + } + + rmap_walk_init_level(iterator, iterator->level); +} + +#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ + _start_gfn, _end_gfn, _iter_) \ + for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ + _end_level_, _start_gfn, _end_gfn); \ + slot_rmap_walk_okay(_iter_); \ + slot_rmap_walk_next(_iter_)) + +static int kvm_handle_hva_range(struct kvm *kvm, + unsigned long start, + unsigned long end, + unsigned long data, + int (*handler)(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, + gfn_t gfn, + int level, + unsigned long data)) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + struct slot_rmap_walk_iterator iterator; + int ret = 0; + int i; + + for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { + slots = __kvm_memslots(kvm, i); + kvm_for_each_memslot(memslot, slots) { + unsigned long hva_start, hva_end; + gfn_t gfn_start, gfn_end; + + hva_start = max(start, memslot->userspace_addr); + hva_end = min(end, memslot->userspace_addr + + (memslot->npages << PAGE_SHIFT)); + if (hva_start >= hva_end) + continue; + /* + * {gfn(page) | page intersects with [hva_start, hva_end)} = + * {gfn_start, gfn_start+1, ..., gfn_end-1}. + */ + gfn_start = hva_to_gfn_memslot(hva_start, memslot); + gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); + + for_each_slot_rmap_range(memslot, PG_LEVEL_4K, + KVM_MAX_HUGEPAGE_LEVEL, + gfn_start, gfn_end - 1, + &iterator) + ret |= handler(kvm, iterator.rmap, memslot, + iterator.gfn, iterator.level, data); + } + } + + return ret; +} + +static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, + unsigned long data, + int (*handler)(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, + gfn_t gfn, int level, + unsigned long data)) +{ + return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); +} + +int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, + unsigned flags) +{ + int r; + + r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); + + if (kvm->arch.tdp_mmu_enabled) + r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); + + return r; +} + +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +{ + int r; + + r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); + + if (kvm->arch.tdp_mmu_enabled) + r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); + + return r; +} + +static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + int young = 0; + + for_each_rmap_spte(rmap_head, &iter, sptep) + young |= mmu_spte_age(sptep); + + trace_kvm_age_page(gfn, level, slot, young); + return young; +} + +static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, + int level, unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + + for_each_rmap_spte(rmap_head, &iter, sptep) + if (is_accessed_spte(*sptep)) + return 1; + return 0; +} + +#define RMAP_RECYCLE_THRESHOLD 1000 + +static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +{ + struct kvm_rmap_head *rmap_head; + struct kvm_mmu_page *sp; + + sp = sptep_to_sp(spte); + + rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); + + kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); +} + +int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) +{ + int young = false; + + young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); + if (kvm->arch.tdp_mmu_enabled) + young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); + + return young; +} + +int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) +{ + int young = false; + + young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); + if (kvm->arch.tdp_mmu_enabled) + young |= kvm_tdp_mmu_test_age_hva(kvm, hva); + + return young; +} + +#ifdef MMU_DEBUG +static int is_empty_shadow_page(u64 *spt) +{ + u64 *pos; + u64 *end; + + for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) + if (is_shadow_present_pte(*pos)) { + printk(KERN_ERR "%s: %p %llx\n", __func__, + pos, *pos); + return 0; + } + return 1; +} +#endif + +/* + * This value is the sum of all of the kvm instances's + * kvm->arch.n_used_mmu_pages values. We need a global, + * aggregate version in order to make the slab shrinker + * faster + */ +static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) +{ + kvm->arch.n_used_mmu_pages += nr; + percpu_counter_add(&kvm_total_used_mmu_pages, nr); +} + +static void kvm_mmu_free_page(struct kvm_mmu_page *sp) +{ + MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); + hlist_del(&sp->hash_link); + list_del(&sp->link); + free_page((unsigned long)sp->spt); + if (!sp->role.direct) + free_page((unsigned long)sp->gfns); + kmem_cache_free(mmu_page_header_cache, sp); +} + +static unsigned kvm_page_table_hashfn(gfn_t gfn) +{ + return hash_64(gfn, KVM_MMU_HASH_SHIFT); +} + +static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *parent_pte) +{ + if (!parent_pte) + return; + + pte_list_add(vcpu, parent_pte, &sp->parent_ptes); +} + +static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, + u64 *parent_pte) +{ + __pte_list_remove(parent_pte, &sp->parent_ptes); +} + +static void drop_parent_pte(struct kvm_mmu_page *sp, + u64 *parent_pte) +{ + mmu_page_remove_parent_pte(sp, parent_pte); + mmu_spte_clear_no_track(parent_pte); +} + +static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) +{ + struct kvm_mmu_page *sp; + + sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); + sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); + if (!direct) + sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); + + /* + * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() + * depends on valid pages being added to the head of the list. See + * comments in kvm_zap_obsolete_pages(). + */ + sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; + list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); + kvm_mod_used_mmu_pages(vcpu->kvm, +1); + return sp; +} + +static void mark_unsync(u64 *spte); +static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) +{ + u64 *sptep; + struct rmap_iterator iter; + + for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { + mark_unsync(sptep); + } +} + +static void mark_unsync(u64 *spte) +{ + struct kvm_mmu_page *sp; + unsigned int index; + + sp = sptep_to_sp(spte); + index = spte - sp->spt; + if (__test_and_set_bit(index, sp->unsync_child_bitmap)) + return; + if (sp->unsync_children++) + return; + kvm_mmu_mark_parents_unsync(sp); +} + +static int nonpaging_sync_page(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp) +{ + return 0; +} + +#define KVM_PAGE_ARRAY_NR 16 + +struct kvm_mmu_pages { + struct mmu_page_and_offset { + struct kvm_mmu_page *sp; + unsigned int idx; + } page[KVM_PAGE_ARRAY_NR]; + unsigned int nr; +}; + +static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, + int idx) +{ + int i; + + if (sp->unsync) + for (i=0; i < pvec->nr; i++) + if (pvec->page[i].sp == sp) + return 0; + + pvec->page[pvec->nr].sp = sp; + pvec->page[pvec->nr].idx = idx; + pvec->nr++; + return (pvec->nr == KVM_PAGE_ARRAY_NR); +} + +static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) +{ + --sp->unsync_children; + WARN_ON((int)sp->unsync_children < 0); + __clear_bit(idx, sp->unsync_child_bitmap); +} + +static int __mmu_unsync_walk(struct kvm_mmu_page *sp, + struct kvm_mmu_pages *pvec) +{ + int i, ret, nr_unsync_leaf = 0; + + for_each_set_bit(i, sp->unsync_child_bitmap, 512) { + struct kvm_mmu_page *child; + u64 ent = sp->spt[i]; + + if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { + clear_unsync_child_bit(sp, i); + continue; + } + + child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); + + if (child->unsync_children) { + if (mmu_pages_add(pvec, child, i)) + return -ENOSPC; + + ret = __mmu_unsync_walk(child, pvec); + if (!ret) { + clear_unsync_child_bit(sp, i); + continue; + } else if (ret > 0) { + nr_unsync_leaf += ret; + } else + return ret; + } else if (child->unsync) { + nr_unsync_leaf++; + if (mmu_pages_add(pvec, child, i)) + return -ENOSPC; + } else + clear_unsync_child_bit(sp, i); + } + + return nr_unsync_leaf; +} + +#define INVALID_INDEX (-1) + +static int mmu_unsync_walk(struct kvm_mmu_page *sp, + struct kvm_mmu_pages *pvec) +{ + pvec->nr = 0; + if (!sp->unsync_children) + return 0; + + mmu_pages_add(pvec, sp, INVALID_INDEX); + return __mmu_unsync_walk(sp, pvec); +} + +static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + WARN_ON(!sp->unsync); + trace_kvm_mmu_sync_page(sp); + sp->unsync = 0; + --kvm->stat.mmu_unsync; +} + +static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, + struct list_head *invalid_list); +static void kvm_mmu_commit_zap_page(struct kvm *kvm, + struct list_head *invalid_list); + +#define for_each_valid_sp(_kvm, _sp, _list) \ + hlist_for_each_entry(_sp, _list, hash_link) \ + if (is_obsolete_sp((_kvm), (_sp))) { \ + } else + +#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ + for_each_valid_sp(_kvm, _sp, \ + &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ + if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else + +static inline bool is_ept_sp(struct kvm_mmu_page *sp) +{ + return sp->role.cr0_wp && sp->role.smap_andnot_wp; +} + +/* @sp->gfn should be write-protected at the call site */ +static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || + vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); + return false; + } + + return true; +} + +static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, + struct list_head *invalid_list, + bool remote_flush) +{ + if (!remote_flush && list_empty(invalid_list)) + return false; + + if (!list_empty(invalid_list)) + kvm_mmu_commit_zap_page(kvm, invalid_list); + else + kvm_flush_remote_tlbs(kvm); + return true; +} + +static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, + struct list_head *invalid_list, + bool remote_flush, bool local_flush) +{ + if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) + return; + + if (local_flush) + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); +} + +#ifdef CONFIG_KVM_MMU_AUDIT +#include "mmu_audit.c" +#else +static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } +static void mmu_audit_disable(void) { } +#endif + +static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + return sp->role.invalid || + unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); +} + +static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + kvm_unlink_unsync_page(vcpu->kvm, sp); + return __kvm_sync_page(vcpu, sp, invalid_list); +} + +/* @gfn should be write-protected at the call site */ +static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, + struct list_head *invalid_list) +{ + struct kvm_mmu_page *s; + bool ret = false; + + for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { + if (!s->unsync) + continue; + + WARN_ON(s->role.level != PG_LEVEL_4K); + ret |= kvm_sync_page(vcpu, s, invalid_list); + } + + return ret; +} + +struct mmu_page_path { + struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; + unsigned int idx[PT64_ROOT_MAX_LEVEL]; +}; + +#define for_each_sp(pvec, sp, parents, i) \ + for (i = mmu_pages_first(&pvec, &parents); \ + i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ + i = mmu_pages_next(&pvec, &parents, i)) + +static int mmu_pages_next(struct kvm_mmu_pages *pvec, + struct mmu_page_path *parents, + int i) +{ + int n; + + for (n = i+1; n < pvec->nr; n++) { + struct kvm_mmu_page *sp = pvec->page[n].sp; + unsigned idx = pvec->page[n].idx; + int level = sp->role.level; + + parents->idx[level-1] = idx; + if (level == PG_LEVEL_4K) + break; + + parents->parent[level-2] = sp; + } + + return n; +} + +static int mmu_pages_first(struct kvm_mmu_pages *pvec, + struct mmu_page_path *parents) +{ + struct kvm_mmu_page *sp; + int level; + + if (pvec->nr == 0) + return 0; + + WARN_ON(pvec->page[0].idx != INVALID_INDEX); + + sp = pvec->page[0].sp; + level = sp->role.level; + WARN_ON(level == PG_LEVEL_4K); + + parents->parent[level-2] = sp; + + /* Also set up a sentinel. Further entries in pvec are all + * children of sp, so this element is never overwritten. + */ + parents->parent[level-1] = NULL; + return mmu_pages_next(pvec, parents, 0); +} + +static void mmu_pages_clear_parents(struct mmu_page_path *parents) +{ + struct kvm_mmu_page *sp; + unsigned int level = 0; + + do { + unsigned int idx = parents->idx[level]; + sp = parents->parent[level]; + if (!sp) + return; + + WARN_ON(idx == INVALID_INDEX); + clear_unsync_child_bit(sp, idx); + level++; + } while (!sp->unsync_children); +} + +static void mmu_sync_children(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *parent) +{ + int i; + struct kvm_mmu_page *sp; + struct mmu_page_path parents; + struct kvm_mmu_pages pages; + LIST_HEAD(invalid_list); + bool flush = false; + + while (mmu_unsync_walk(parent, &pages)) { + bool protected = false; + + for_each_sp(pages, sp, parents, i) + protected |= rmap_write_protect(vcpu, sp->gfn); + + if (protected) { + kvm_flush_remote_tlbs(vcpu->kvm); + flush = false; + } + + for_each_sp(pages, sp, parents, i) { + flush |= kvm_sync_page(vcpu, sp, &invalid_list); + mmu_pages_clear_parents(&parents); + } + if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { + kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); + cond_resched_lock(&vcpu->kvm->mmu_lock); + flush = false; + } + } + + kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); +} + +static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) +{ + atomic_set(&sp->write_flooding_count, 0); +} + +static void clear_sp_write_flooding_count(u64 *spte) +{ + __clear_sp_write_flooding_count(sptep_to_sp(spte)); +} + +static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, + gfn_t gfn, + gva_t gaddr, + unsigned level, + int direct, + unsigned int access) +{ + bool direct_mmu = vcpu->arch.mmu->direct_map; + union kvm_mmu_page_role role; + struct hlist_head *sp_list; + unsigned quadrant; + struct kvm_mmu_page *sp; + bool need_sync = false; + bool flush = false; + int collisions = 0; + LIST_HEAD(invalid_list); + + role = vcpu->arch.mmu->mmu_role.base; + role.level = level; + role.direct = direct; + if (role.direct) + role.gpte_is_8_bytes = true; + role.access = access; + if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { + quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); + quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; + role.quadrant = quadrant; + } + + sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; + for_each_valid_sp(vcpu->kvm, sp, sp_list) { + if (sp->gfn != gfn) { + collisions++; + continue; + } + + if (!need_sync && sp->unsync) + need_sync = true; + + if (sp->role.word != role.word) + continue; + + if (direct_mmu) + goto trace_get_page; + + if (sp->unsync) { + /* The page is good, but __kvm_sync_page might still end + * up zapping it. If so, break in order to rebuild it. + */ + if (!__kvm_sync_page(vcpu, sp, &invalid_list)) + break; + + WARN_ON(!list_empty(&invalid_list)); + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + } + + if (sp->unsync_children) + kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); + + __clear_sp_write_flooding_count(sp); + +trace_get_page: + trace_kvm_mmu_get_page(sp, false); + goto out; + } + + ++vcpu->kvm->stat.mmu_cache_miss; + + sp = kvm_mmu_alloc_page(vcpu, direct); + + sp->gfn = gfn; + sp->role = role; + hlist_add_head(&sp->hash_link, sp_list); + if (!direct) { + /* + * we should do write protection before syncing pages + * otherwise the content of the synced shadow page may + * be inconsistent with guest page table. + */ + account_shadowed(vcpu->kvm, sp); + if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); + + if (level > PG_LEVEL_4K && need_sync) + flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); + } + trace_kvm_mmu_get_page(sp, true); + + kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); +out: + if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) + vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; + return sp; +} + +static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, + struct kvm_vcpu *vcpu, hpa_t root, + u64 addr) +{ + iterator->addr = addr; + iterator->shadow_addr = root; + iterator->level = vcpu->arch.mmu->shadow_root_level; + + if (iterator->level == PT64_ROOT_4LEVEL && + vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && + !vcpu->arch.mmu->direct_map) + --iterator->level; + + if (iterator->level == PT32E_ROOT_LEVEL) { + /* + * prev_root is currently only used for 64-bit hosts. So only + * the active root_hpa is valid here. + */ + BUG_ON(root != vcpu->arch.mmu->root_hpa); + + iterator->shadow_addr + = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; + iterator->shadow_addr &= PT64_BASE_ADDR_MASK; + --iterator->level; + if (!iterator->shadow_addr) + iterator->level = 0; + } +} + +static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, + struct kvm_vcpu *vcpu, u64 addr) +{ + shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, + addr); +} + +static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) +{ + if (iterator->level < PG_LEVEL_4K) + return false; + + iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); + iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; + return true; +} + +static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, + u64 spte) +{ + if (is_last_spte(spte, iterator->level)) { + iterator->level = 0; + return; + } + + iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; + --iterator->level; +} + +static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) +{ + __shadow_walk_next(iterator, *iterator->sptep); +} + +static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, + struct kvm_mmu_page *sp) +{ + u64 spte; + + BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); + + spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); + + mmu_spte_set(sptep, spte); + + mmu_page_add_parent_pte(vcpu, sp, sptep); + + if (sp->unsync_children || sp->unsync) + mark_unsync(sptep); +} + +static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned direct_access) +{ + if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { + struct kvm_mmu_page *child; + + /* + * For the direct sp, if the guest pte's dirty bit + * changed form clean to dirty, it will corrupt the + * sp's access: allow writable in the read-only sp, + * so we should update the spte at this point to get + * a new sp with the correct access. + */ + child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); + if (child->role.access == direct_access) + return; + + drop_parent_pte(child, sptep); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); + } +} + +/* Returns the number of zapped non-leaf child shadow pages. */ +static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, + u64 *spte, struct list_head *invalid_list) +{ + u64 pte; + struct kvm_mmu_page *child; + + pte = *spte; + if (is_shadow_present_pte(pte)) { + if (is_last_spte(pte, sp->role.level)) { + drop_spte(kvm, spte); + if (is_large_pte(pte)) + --kvm->stat.lpages; + } else { + child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); + drop_parent_pte(child, spte); + + /* + * Recursively zap nested TDP SPs, parentless SPs are + * unlikely to be used again in the near future. This + * avoids retaining a large number of stale nested SPs. + */ + if (tdp_enabled && invalid_list && + child->role.guest_mode && !child->parent_ptes.val) + return kvm_mmu_prepare_zap_page(kvm, child, + invalid_list); + } + } else if (is_mmio_spte(pte)) { + mmu_spte_clear_no_track(spte); + } + return 0; +} + +static int kvm_mmu_page_unlink_children(struct kvm *kvm, + struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + int zapped = 0; + unsigned i; + + for (i = 0; i < PT64_ENT_PER_PAGE; ++i) + zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); + + return zapped; +} + +static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + u64 *sptep; + struct rmap_iterator iter; + + while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) + drop_parent_pte(sp, sptep); +} + +static int mmu_zap_unsync_children(struct kvm *kvm, + struct kvm_mmu_page *parent, + struct list_head *invalid_list) +{ + int i, zapped = 0; + struct mmu_page_path parents; + struct kvm_mmu_pages pages; + + if (parent->role.level == PG_LEVEL_4K) + return 0; + + while (mmu_unsync_walk(parent, &pages)) { + struct kvm_mmu_page *sp; + + for_each_sp(pages, sp, parents, i) { + kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); + mmu_pages_clear_parents(&parents); + zapped++; + } + } + + return zapped; +} + +static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, + struct kvm_mmu_page *sp, + struct list_head *invalid_list, + int *nr_zapped) +{ + bool list_unstable; + + trace_kvm_mmu_prepare_zap_page(sp); + ++kvm->stat.mmu_shadow_zapped; + *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); + *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); + kvm_mmu_unlink_parents(kvm, sp); + + /* Zapping children means active_mmu_pages has become unstable. */ + list_unstable = *nr_zapped; + + if (!sp->role.invalid && !sp->role.direct) + unaccount_shadowed(kvm, sp); + + if (sp->unsync) + kvm_unlink_unsync_page(kvm, sp); + if (!sp->root_count) { + /* Count self */ + (*nr_zapped)++; + + /* + * Already invalid pages (previously active roots) are not on + * the active page list. See list_del() in the "else" case of + * !sp->root_count. + */ + if (sp->role.invalid) + list_add(&sp->link, invalid_list); + else + list_move(&sp->link, invalid_list); + kvm_mod_used_mmu_pages(kvm, -1); + } else { + /* + * Remove the active root from the active page list, the root + * will be explicitly freed when the root_count hits zero. + */ + list_del(&sp->link); + + /* + * Obsolete pages cannot be used on any vCPUs, see the comment + * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also + * treats invalid shadow pages as being obsolete. + */ + if (!is_obsolete_sp(kvm, sp)) + kvm_reload_remote_mmus(kvm); + } + + if (sp->lpage_disallowed) + unaccount_huge_nx_page(kvm, sp); + + sp->role.invalid = 1; + return list_unstable; +} + +static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + int nr_zapped; + + __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); + return nr_zapped; +} + +static void kvm_mmu_commit_zap_page(struct kvm *kvm, + struct list_head *invalid_list) +{ + struct kvm_mmu_page *sp, *nsp; + + if (list_empty(invalid_list)) + return; + + /* + * We need to make sure everyone sees our modifications to + * the page tables and see changes to vcpu->mode here. The barrier + * in the kvm_flush_remote_tlbs() achieves this. This pairs + * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. + * + * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit + * guest mode and/or lockless shadow page table walks. + */ + kvm_flush_remote_tlbs(kvm); + + list_for_each_entry_safe(sp, nsp, invalid_list, link) { + WARN_ON(!sp->role.invalid || sp->root_count); + kvm_mmu_free_page(sp); + } +} + +static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, + unsigned long nr_to_zap) +{ + unsigned long total_zapped = 0; + struct kvm_mmu_page *sp, *tmp; + LIST_HEAD(invalid_list); + bool unstable; + int nr_zapped; + + if (list_empty(&kvm->arch.active_mmu_pages)) + return 0; + +restart: + list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { + /* + * Don't zap active root pages, the page itself can't be freed + * and zapping it will just force vCPUs to realloc and reload. + */ + if (sp->root_count) + continue; + + unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, + &nr_zapped); + total_zapped += nr_zapped; + if (total_zapped >= nr_to_zap) + break; + + if (unstable) + goto restart; + } + + kvm_mmu_commit_zap_page(kvm, &invalid_list); + + kvm->stat.mmu_recycled += total_zapped; + return total_zapped; +} + +static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) +{ + if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) + return kvm->arch.n_max_mmu_pages - + kvm->arch.n_used_mmu_pages; + + return 0; +} + +static int make_mmu_pages_available(struct kvm_vcpu *vcpu) +{ + unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); + + if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) + return 0; + + kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); + + if (!kvm_mmu_available_pages(vcpu->kvm)) + return -ENOSPC; + return 0; +} + +/* + * Changing the number of mmu pages allocated to the vm + * Note: if goal_nr_mmu_pages is too small, you will get dead lock + */ +void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) +{ + spin_lock(&kvm->mmu_lock); + + if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { + kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - + goal_nr_mmu_pages); + + goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; + } + + kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; + + spin_unlock(&kvm->mmu_lock); +} + +int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_mmu_page *sp; + LIST_HEAD(invalid_list); + int r; + + pgprintk("%s: looking for gfn %llx\n", __func__, gfn); + r = 0; + spin_lock(&kvm->mmu_lock); + for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { + pgprintk("%s: gfn %llx role %x\n", __func__, gfn, + sp->role.word); + r = 1; + kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); + } + kvm_mmu_commit_zap_page(kvm, &invalid_list); + spin_unlock(&kvm->mmu_lock); + + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); + +static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +{ + trace_kvm_mmu_unsync_page(sp); + ++vcpu->kvm->stat.mmu_unsync; + sp->unsync = 1; + + kvm_mmu_mark_parents_unsync(sp); +} + +bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, + bool can_unsync) +{ + struct kvm_mmu_page *sp; + + if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) + return true; + + for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { + if (!can_unsync) + return true; + + if (sp->unsync) + continue; + + WARN_ON(sp->role.level != PG_LEVEL_4K); + kvm_unsync_page(vcpu, sp); + } + + /* + * We need to ensure that the marking of unsync pages is visible + * before the SPTE is updated to allow writes because + * kvm_mmu_sync_roots() checks the unsync flags without holding + * the MMU lock and so can race with this. If the SPTE was updated + * before the page had been marked as unsync-ed, something like the + * following could happen: + * + * CPU 1 CPU 2 + * --------------------------------------------------------------------- + * 1.2 Host updates SPTE + * to be writable + * 2.1 Guest writes a GPTE for GVA X. + * (GPTE being in the guest page table shadowed + * by the SP from CPU 1.) + * This reads SPTE during the page table walk. + * Since SPTE.W is read as 1, there is no + * fault. + * + * 2.2 Guest issues TLB flush. + * That causes a VM Exit. + * + * 2.3 kvm_mmu_sync_pages() reads sp->unsync. + * Since it is false, so it just returns. + * + * 2.4 Guest accesses GVA X. + * Since the mapping in the SP was not updated, + * so the old mapping for GVA X incorrectly + * gets used. + * 1.1 Host marks SP + * as unsync + * (sp->unsync = true) + * + * The write barrier below ensures that 1.1 happens before 1.2 and thus + * the situation in 2.4 does not arise. The implicit barrier in 2.2 + * pairs with this write barrier. + */ + smp_wmb(); + + return false; +} + +static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned int pte_access, int level, + gfn_t gfn, kvm_pfn_t pfn, bool speculative, + bool can_unsync, bool host_writable) +{ + u64 spte; + struct kvm_mmu_page *sp; + int ret; + + if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) + return 0; + + sp = sptep_to_sp(sptep); + + ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, + can_unsync, host_writable, sp_ad_disabled(sp), &spte); + + if (spte & PT_WRITABLE_MASK) + kvm_vcpu_mark_page_dirty(vcpu, gfn); + + if (*sptep == spte) + ret |= SET_SPTE_SPURIOUS; + else if (mmu_spte_update(sptep, spte)) + ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; + return ret; +} + +static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned int pte_access, bool write_fault, int level, + gfn_t gfn, kvm_pfn_t pfn, bool speculative, + bool host_writable) +{ + int was_rmapped = 0; + int rmap_count; + int set_spte_ret; + int ret = RET_PF_FIXED; + bool flush = false; + + pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, + *sptep, write_fault, gfn); + + if (is_shadow_present_pte(*sptep)) { + /* + * If we overwrite a PTE page pointer with a 2MB PMD, unlink + * the parent of the now unreachable PTE. + */ + if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { + struct kvm_mmu_page *child; + u64 pte = *sptep; + + child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); + drop_parent_pte(child, sptep); + flush = true; + } else if (pfn != spte_to_pfn(*sptep)) { + pgprintk("hfn old %llx new %llx\n", + spte_to_pfn(*sptep), pfn); + drop_spte(vcpu->kvm, sptep); + flush = true; + } else + was_rmapped = 1; + } + + set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, + speculative, true, host_writable); + if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { + if (write_fault) + ret = RET_PF_EMULATE; + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + } + + if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, + KVM_PAGES_PER_HPAGE(level)); + + if (unlikely(is_mmio_spte(*sptep))) + ret = RET_PF_EMULATE; + + /* + * The fault is fully spurious if and only if the new SPTE and old SPTE + * are identical, and emulation is not required. + */ + if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { + WARN_ON_ONCE(!was_rmapped); + return RET_PF_SPURIOUS; + } + + pgprintk("%s: setting spte %llx\n", __func__, *sptep); + trace_kvm_mmu_set_spte(level, gfn, sptep); + if (!was_rmapped && is_large_pte(*sptep)) + ++vcpu->kvm->stat.lpages; + + if (is_shadow_present_pte(*sptep)) { + if (!was_rmapped) { + rmap_count = rmap_add(vcpu, sptep, gfn); + if (rmap_count > RMAP_RECYCLE_THRESHOLD) + rmap_recycle(vcpu, sptep, gfn); + } + } + + return ret; +} + +static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, + bool no_dirty_log) +{ + struct kvm_memory_slot *slot; + + slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); + if (!slot) + return KVM_PFN_ERR_FAULT; + + return gfn_to_pfn_memslot_atomic(slot, gfn); +} + +static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, + u64 *start, u64 *end) +{ + struct page *pages[PTE_PREFETCH_NUM]; + struct kvm_memory_slot *slot; + unsigned int access = sp->role.access; + int i, ret; + gfn_t gfn; + + gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); + slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); + if (!slot) + return -1; + + ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); + if (ret <= 0) + return -1; + + for (i = 0; i < ret; i++, gfn++, start++) { + mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, + page_to_pfn(pages[i]), true, true); + put_page(pages[i]); + } + + return 0; +} + +static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *sptep) +{ + u64 *spte, *start = NULL; + int i; + + WARN_ON(!sp->role.direct); + + i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + spte = sp->spt + i; + + for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { + if (is_shadow_present_pte(*spte) || spte == sptep) { + if (!start) + continue; + if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) + break; + start = NULL; + } else if (!start) + start = spte; + } +} + +static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) +{ + struct kvm_mmu_page *sp; + + sp = sptep_to_sp(sptep); + + /* + * Without accessed bits, there's no way to distinguish between + * actually accessed translations and prefetched, so disable pte + * prefetch if accessed bits aren't available. + */ + if (sp_ad_disabled(sp)) + return; + + if (sp->role.level > PG_LEVEL_4K) + return; + + __direct_pte_prefetch(vcpu, sp, sptep); +} + +static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, + kvm_pfn_t pfn, struct kvm_memory_slot *slot) +{ + unsigned long hva; + pte_t *pte; + int level; + + if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) + return PG_LEVEL_4K; + + /* + * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() + * is not solely for performance, it's also necessary to avoid the + * "writable" check in __gfn_to_hva_many(), which will always fail on + * read-only memslots due to gfn_to_hva() assuming writes. Earlier + * page fault steps have already verified the guest isn't writing a + * read-only memslot. + */ + hva = __gfn_to_hva_memslot(slot, gfn); + + pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); + if (unlikely(!pte)) + return PG_LEVEL_4K; + + return level; +} + +int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, + int max_level, kvm_pfn_t *pfnp, + bool huge_page_disallowed, int *req_level) +{ + struct kvm_memory_slot *slot; + struct kvm_lpage_info *linfo; + kvm_pfn_t pfn = *pfnp; + kvm_pfn_t mask; + int level; + + *req_level = PG_LEVEL_4K; + + if (unlikely(max_level == PG_LEVEL_4K)) + return PG_LEVEL_4K; + + if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) + return PG_LEVEL_4K; + + slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); + if (!slot) + return PG_LEVEL_4K; + + max_level = min(max_level, max_huge_page_level); + for ( ; max_level > PG_LEVEL_4K; max_level--) { + linfo = lpage_info_slot(gfn, slot, max_level); + if (!linfo->disallow_lpage) + break; + } + + if (max_level == PG_LEVEL_4K) + return PG_LEVEL_4K; + + level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); + if (level == PG_LEVEL_4K) + return level; + + *req_level = level = min(level, max_level); + + /* + * Enforce the iTLB multihit workaround after capturing the requested + * level, which will be used to do precise, accurate accounting. + */ + if (huge_page_disallowed) + return PG_LEVEL_4K; + + /* + * mmu_notifier_retry() was successful and mmu_lock is held, so + * the pmd can't be split from under us. + */ + mask = KVM_PAGES_PER_HPAGE(level) - 1; + VM_BUG_ON((gfn & mask) != (pfn & mask)); + *pfnp = pfn & ~mask; + + return level; +} + +void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, + kvm_pfn_t *pfnp, int *goal_levelp) +{ + int level = *goal_levelp; + + if (cur_level == level && level > PG_LEVEL_4K && + is_shadow_present_pte(spte) && + !is_large_pte(spte)) { + /* + * A small SPTE exists for this pfn, but FNAME(fetch) + * and __direct_map would like to create a large PTE + * instead: just force them to go down another level, + * patching back for them into pfn the next 9 bits of + * the address. + */ + u64 page_mask = KVM_PAGES_PER_HPAGE(level) - + KVM_PAGES_PER_HPAGE(level - 1); + *pfnp |= gfn & page_mask; + (*goal_levelp)--; + } +} + +static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, + int map_writable, int max_level, kvm_pfn_t pfn, + bool prefault, bool is_tdp) +{ + bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); + bool write = error_code & PFERR_WRITE_MASK; + bool exec = error_code & PFERR_FETCH_MASK; + bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; + struct kvm_shadow_walk_iterator it; + struct kvm_mmu_page *sp; + int level, req_level, ret; + gfn_t gfn = gpa >> PAGE_SHIFT; + gfn_t base_gfn = gfn; + + if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) + return RET_PF_RETRY; + + level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, + huge_page_disallowed, &req_level); + + trace_kvm_mmu_spte_requested(gpa, level, pfn); + for_each_shadow_entry(vcpu, gpa, it) { + /* + * We cannot overwrite existing page tables with an NX + * large page, as the leaf could be executable. + */ + if (nx_huge_page_workaround_enabled) + disallowed_hugepage_adjust(*it.sptep, gfn, it.level, + &pfn, &level); + + base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); + if (it.level == level) + break; + + drop_large_spte(vcpu, it.sptep); + if (!is_shadow_present_pte(*it.sptep)) { + sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, + it.level - 1, true, ACC_ALL); + + link_shadow_page(vcpu, it.sptep, sp); + if (is_tdp && huge_page_disallowed && + req_level >= it.level) + account_huge_nx_page(vcpu->kvm, sp); + } + } + + ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, + write, level, base_gfn, pfn, prefault, + map_writable); + if (ret == RET_PF_SPURIOUS) + return ret; + + direct_pte_prefetch(vcpu, it.sptep); + ++vcpu->stat.pf_fixed; + return ret; +} + +static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) +{ + send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); +} + +static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) +{ + /* + * Do not cache the mmio info caused by writing the readonly gfn + * into the spte otherwise read access on readonly gfn also can + * caused mmio page fault and treat it as mmio access. + */ + if (pfn == KVM_PFN_ERR_RO_FAULT) + return RET_PF_EMULATE; + + if (pfn == KVM_PFN_ERR_HWPOISON) { + kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); + return RET_PF_RETRY; + } + + return -EFAULT; +} + +static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, + kvm_pfn_t pfn, unsigned int access, + int *ret_val) +{ + /* The pfn is invalid, report the error! */ + if (unlikely(is_error_pfn(pfn))) { + *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); + return true; + } + + if (unlikely(is_noslot_pfn(pfn))) + vcpu_cache_mmio_info(vcpu, gva, gfn, + access & shadow_mmio_access_mask); + + return false; +} + +static bool page_fault_can_be_fast(u32 error_code) +{ + /* + * Do not fix the mmio spte with invalid generation number which + * need to be updated by slow page fault path. + */ + if (unlikely(error_code & PFERR_RSVD_MASK)) + return false; + + /* See if the page fault is due to an NX violation */ + if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) + == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) + return false; + + /* + * #PF can be fast if: + * 1. The shadow page table entry is not present, which could mean that + * the fault is potentially caused by access tracking (if enabled). + * 2. The shadow page table entry is present and the fault + * is caused by write-protect, that means we just need change the W + * bit of the spte which can be done out of mmu-lock. + * + * However, if access tracking is disabled we know that a non-present + * page must be a genuine page fault where we have to create a new SPTE. + * So, if access tracking is disabled, we return true only for write + * accesses to a present page. + */ + + return shadow_acc_track_mask != 0 || + ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) + == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); +} + +/* + * Returns true if the SPTE was fixed successfully. Otherwise, + * someone else modified the SPTE from its original value. + */ +static bool +fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *sptep, u64 old_spte, u64 new_spte) +{ + gfn_t gfn; + + WARN_ON(!sp->role.direct); + + /* + * Theoretically we could also set dirty bit (and flush TLB) here in + * order to eliminate unnecessary PML logging. See comments in + * set_spte. But fast_page_fault is very unlikely to happen with PML + * enabled, so we do not do this. This might result in the same GPA + * to be logged in PML buffer again when the write really happens, and + * eventually to be called by mark_page_dirty twice. But it's also no + * harm. This also avoids the TLB flush needed after setting dirty bit + * so non-PML cases won't be impacted. + * + * Compare with set_spte where instead shadow_dirty_mask is set. + */ + if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) + return false; + + if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { + /* + * The gfn of direct spte is stable since it is + * calculated by sp->gfn. + */ + gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); + kvm_vcpu_mark_page_dirty(vcpu, gfn); + } + + return true; +} + +static bool is_access_allowed(u32 fault_err_code, u64 spte) +{ + if (fault_err_code & PFERR_FETCH_MASK) + return is_executable_pte(spte); + + if (fault_err_code & PFERR_WRITE_MASK) + return is_writable_pte(spte); + + /* Fault was on Read access */ + return spte & PT_PRESENT_MASK; +} + +/* + * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. + */ +static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + u32 error_code) +{ + struct kvm_shadow_walk_iterator iterator; + struct kvm_mmu_page *sp; + int ret = RET_PF_INVALID; + u64 spte = 0ull; + uint retry_count = 0; + + if (!page_fault_can_be_fast(error_code)) + return ret; + + walk_shadow_page_lockless_begin(vcpu); + + do { + u64 new_spte; + + for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) + if (!is_shadow_present_pte(spte)) + break; + + sp = sptep_to_sp(iterator.sptep); + if (!is_last_spte(spte, sp->role.level)) + break; + + /* + * Check whether the memory access that caused the fault would + * still cause it if it were to be performed right now. If not, + * then this is a spurious fault caused by TLB lazily flushed, + * or some other CPU has already fixed the PTE after the + * current CPU took the fault. + * + * Need not check the access of upper level table entries since + * they are always ACC_ALL. + */ + if (is_access_allowed(error_code, spte)) { + ret = RET_PF_SPURIOUS; + break; + } + + new_spte = spte; + + if (is_access_track_spte(spte)) + new_spte = restore_acc_track_spte(new_spte); + + /* + * Currently, to simplify the code, write-protection can + * be removed in the fast path only if the SPTE was + * write-protected for dirty-logging or access tracking. + */ + if ((error_code & PFERR_WRITE_MASK) && + spte_can_locklessly_be_made_writable(spte)) { + new_spte |= PT_WRITABLE_MASK; + + /* + * Do not fix write-permission on the large spte. Since + * we only dirty the first page into the dirty-bitmap in + * fast_pf_fix_direct_spte(), other pages are missed + * if its slot has dirty logging enabled. + * + * Instead, we let the slow page fault path create a + * normal spte to fix the access. + * + * See the comments in kvm_arch_commit_memory_region(). + */ + if (sp->role.level > PG_LEVEL_4K) + break; + } + + /* Verify that the fault can be handled in the fast path */ + if (new_spte == spte || + !is_access_allowed(error_code, new_spte)) + break; + + /* + * Currently, fast page fault only works for direct mapping + * since the gfn is not stable for indirect shadow page. See + * Documentation/virt/kvm/locking.rst to get more detail. + */ + if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, + new_spte)) { + ret = RET_PF_FIXED; + break; + } + + if (++retry_count > 4) { + printk_once(KERN_WARNING + "kvm: Fast #PF retrying more than 4 times.\n"); + break; + } + + } while (true); + + trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, + spte, ret); + walk_shadow_page_lockless_end(vcpu); + + return ret; +} + +static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, + struct list_head *invalid_list) +{ + struct kvm_mmu_page *sp; + + if (!VALID_PAGE(*root_hpa)) + return; + + sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); + if (WARN_ON(!sp)) + return; + + if (kvm_mmu_put_root(kvm, sp)) { + if (sp->tdp_mmu_page) + kvm_tdp_mmu_free_root(kvm, sp); + else if (sp->role.invalid) + kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); + } + + *root_hpa = INVALID_PAGE; +} + +/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ +void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + ulong roots_to_free) +{ + struct kvm *kvm = vcpu->kvm; + int i; + LIST_HEAD(invalid_list); + bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; + + BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); + + /* Before acquiring the MMU lock, see if we need to do any real work. */ + if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && + VALID_PAGE(mmu->prev_roots[i].hpa)) + break; + + if (i == KVM_MMU_NUM_PREV_ROOTS) + return; + } + + spin_lock(&kvm->mmu_lock); + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) + mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, + &invalid_list); + + if (free_active_root) { + if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && + (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { + mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); + } else if (mmu->pae_root) { + for (i = 0; i < 4; ++i) + if (mmu->pae_root[i] != 0) + mmu_free_root_page(kvm, + &mmu->pae_root[i], + &invalid_list); + } + mmu->root_hpa = INVALID_PAGE; + mmu->root_pgd = 0; + } + + kvm_mmu_commit_zap_page(kvm, &invalid_list); + spin_unlock(&kvm->mmu_lock); +} +EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); + +static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) +{ + int ret = 0; + + if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + ret = 1; + } + + return ret; +} + +static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, + u8 level, bool direct) +{ + struct kvm_mmu_page *sp; + + spin_lock(&vcpu->kvm->mmu_lock); + + if (make_mmu_pages_available(vcpu)) { + spin_unlock(&vcpu->kvm->mmu_lock); + return INVALID_PAGE; + } + sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); + ++sp->root_count; + + spin_unlock(&vcpu->kvm->mmu_lock); + return __pa(sp->spt); +} + +static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) +{ + u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; + hpa_t root; + unsigned i; + + if (vcpu->kvm->arch.tdp_mmu_enabled) { + root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); + + if (!VALID_PAGE(root)) + return -ENOSPC; + vcpu->arch.mmu->root_hpa = root; + } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { + root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, + true); + + if (!VALID_PAGE(root)) + return -ENOSPC; + vcpu->arch.mmu->root_hpa = root; + } else if (shadow_root_level == PT32E_ROOT_LEVEL) { + for (i = 0; i < 4; ++i) { + MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); + + root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), + i << 30, PT32_ROOT_LEVEL, true); + if (!VALID_PAGE(root)) + return -ENOSPC; + vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; + } + vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); + } else + BUG(); + + /* root_pgd is ignored for direct MMUs. */ + vcpu->arch.mmu->root_pgd = 0; + + return 0; +} + +static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) +{ + u64 pdptr, pm_mask; + gfn_t root_gfn, root_pgd; + hpa_t root; + int i; + + root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); + root_gfn = root_pgd >> PAGE_SHIFT; + + if (mmu_check_root(vcpu, root_gfn)) + return 1; + + /* + * Do we shadow a long mode page table? If so we need to + * write-protect the guests page table root. + */ + if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { + MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); + + root = mmu_alloc_root(vcpu, root_gfn, 0, + vcpu->arch.mmu->shadow_root_level, false); + if (!VALID_PAGE(root)) + return -ENOSPC; + vcpu->arch.mmu->root_hpa = root; + goto set_root_pgd; + } + + /* + * We shadow a 32 bit page table. This may be a legacy 2-level + * or a PAE 3-level page table. In either case we need to be aware that + * the shadow page table may be a PAE or a long mode page table. + */ + pm_mask = PT_PRESENT_MASK; + if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { + pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; + + /* + * Allocate the page for the PDPTEs when shadowing 32-bit NPT + * with 64-bit only when needed. Unlike 32-bit NPT, it doesn't + * need to be in low mem. See also lm_root below. + */ + if (!vcpu->arch.mmu->pae_root) { + WARN_ON_ONCE(!tdp_enabled); + + vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); + if (!vcpu->arch.mmu->pae_root) + return -ENOMEM; + } + } + + for (i = 0; i < 4; ++i) { + MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); + if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { + pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); + if (!(pdptr & PT_PRESENT_MASK)) { + vcpu->arch.mmu->pae_root[i] = 0; + continue; + } + root_gfn = pdptr >> PAGE_SHIFT; + if (mmu_check_root(vcpu, root_gfn)) + return 1; + } + + root = mmu_alloc_root(vcpu, root_gfn, i << 30, + PT32_ROOT_LEVEL, false); + if (!VALID_PAGE(root)) + return -ENOSPC; + vcpu->arch.mmu->pae_root[i] = root | pm_mask; + } + vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); + + /* + * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP + * tables are allocated and initialized at MMU creation as there is no + * equivalent level in the guest's NPT to shadow. Allocate the tables + * on demand, as running a 32-bit L1 VMM is very rare. The PDP is + * handled above (to share logic with PAE), deal with the PML4 here. + */ + if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { + if (vcpu->arch.mmu->lm_root == NULL) { + u64 *lm_root; + + lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); + if (!lm_root) + return -ENOMEM; + + lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; + + vcpu->arch.mmu->lm_root = lm_root; + } + + vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); + } + +set_root_pgd: + vcpu->arch.mmu->root_pgd = root_pgd; + + return 0; +} + +static int mmu_alloc_roots(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.mmu->direct_map) + return mmu_alloc_direct_roots(vcpu); + else + return mmu_alloc_shadow_roots(vcpu); +} + +void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_mmu_page *sp; + + if (vcpu->arch.mmu->direct_map) + return; + + if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) + return; + + vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); + + if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { + hpa_t root = vcpu->arch.mmu->root_hpa; + sp = to_shadow_page(root); + + /* + * Even if another CPU was marking the SP as unsync-ed + * simultaneously, any guest page table changes are not + * guaranteed to be visible anyway until this VCPU issues a TLB + * flush strictly after those changes are made. We only need to + * ensure that the other CPU sets these flags before any actual + * changes to the page tables are made. The comments in + * mmu_need_write_protect() describe what could go wrong if this + * requirement isn't satisfied. + */ + if (!smp_load_acquire(&sp->unsync) && + !smp_load_acquire(&sp->unsync_children)) + return; + + spin_lock(&vcpu->kvm->mmu_lock); + kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); + + mmu_sync_children(vcpu, sp); + + kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); + spin_unlock(&vcpu->kvm->mmu_lock); + return; + } + + spin_lock(&vcpu->kvm->mmu_lock); + kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); + + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu->pae_root[i]; + + if (root && VALID_PAGE(root)) { + root &= PT64_BASE_ADDR_MASK; + sp = to_shadow_page(root); + mmu_sync_children(vcpu, sp); + } + } + + kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); + spin_unlock(&vcpu->kvm->mmu_lock); +} +EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); + +static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, + u32 access, struct x86_exception *exception) +{ + if (exception) + exception->error_code = 0; + return vaddr; +} + +static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, + u32 access, + struct x86_exception *exception) +{ + if (exception) + exception->error_code = 0; + return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); +} + +static bool +__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) +{ + int bit7 = (pte >> 7) & 1; + + return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; +} + +static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) +{ + return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); +} + +static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ + /* + * A nested guest cannot use the MMIO cache if it is using nested + * page tables, because cr2 is a nGPA while the cache stores GPAs. + */ + if (mmu_is_nested(vcpu)) + return false; + + if (direct) + return vcpu_match_mmio_gpa(vcpu, addr); + + return vcpu_match_mmio_gva(vcpu, addr); +} + +/* + * Return the level of the lowest level SPTE added to sptes. + * That SPTE may be non-present. + */ +static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) +{ + struct kvm_shadow_walk_iterator iterator; + int leaf = -1; + u64 spte; + + walk_shadow_page_lockless_begin(vcpu); + + for (shadow_walk_init(&iterator, vcpu, addr), + *root_level = iterator.level; + shadow_walk_okay(&iterator); + __shadow_walk_next(&iterator, spte)) { + leaf = iterator.level; + spte = mmu_spte_get_lockless(iterator.sptep); + + sptes[leaf - 1] = spte; + + if (!is_shadow_present_pte(spte)) + break; + } + + walk_shadow_page_lockless_end(vcpu); + + return leaf; +} + +/* return true if reserved bit is detected on spte. */ +static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) +{ + u64 sptes[PT64_ROOT_MAX_LEVEL]; + struct rsvd_bits_validate *rsvd_check; + int root, leaf, level; + bool reserved = false; + + if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { + *sptep = 0ull; + return reserved; + } + + if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) + leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); + else + leaf = get_walk(vcpu, addr, sptes, &root); + + if (unlikely(leaf < 0)) { + *sptep = 0ull; + return reserved; + } + + rsvd_check = &vcpu->arch.mmu->shadow_zero_check; + + for (level = root; level >= leaf; level--) { + if (!is_shadow_present_pte(sptes[level - 1])) + break; + /* + * Use a bitwise-OR instead of a logical-OR to aggregate the + * reserved bit and EPT's invalid memtype/XWR checks to avoid + * adding a Jcc in the loop. + */ + reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) || + __is_rsvd_bits_set(rsvd_check, sptes[level - 1], + level); + } + + if (reserved) { + pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", + __func__, addr); + for (level = root; level >= leaf; level--) + pr_err("------ spte 0x%llx level %d.\n", + sptes[level - 1], level); + } + + *sptep = sptes[leaf - 1]; + + return reserved; +} + +static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ + u64 spte; + bool reserved; + + if (mmio_info_in_cache(vcpu, addr, direct)) + return RET_PF_EMULATE; + + reserved = get_mmio_spte(vcpu, addr, &spte); + if (WARN_ON(reserved)) + return -EINVAL; + + if (is_mmio_spte(spte)) { + gfn_t gfn = get_mmio_spte_gfn(spte); + unsigned int access = get_mmio_spte_access(spte); + + if (!check_mmio_spte(vcpu, spte)) + return RET_PF_INVALID; + + if (direct) + addr = 0; + + trace_handle_mmio_page_fault(addr, gfn, access); + vcpu_cache_mmio_info(vcpu, addr, gfn, access); + return RET_PF_EMULATE; + } + + /* + * If the page table is zapped by other cpus, let CPU fault again on + * the address. + */ + return RET_PF_RETRY; +} + +static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, + u32 error_code, gfn_t gfn) +{ + if (unlikely(error_code & PFERR_RSVD_MASK)) + return false; + + if (!(error_code & PFERR_PRESENT_MASK) || + !(error_code & PFERR_WRITE_MASK)) + return false; + + /* + * guest is writing the page which is write tracked which can + * not be fixed by page fault handler. + */ + if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) + return true; + + return false; +} + +static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) +{ + struct kvm_shadow_walk_iterator iterator; + u64 spte; + + walk_shadow_page_lockless_begin(vcpu); + for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { + clear_sp_write_flooding_count(iterator.sptep); + if (!is_shadow_present_pte(spte)) + break; + } + walk_shadow_page_lockless_end(vcpu); +} + +static u32 alloc_apf_token(struct kvm_vcpu *vcpu) +{ + /* make sure the token value is not 0 */ + u32 id = vcpu->arch.apf.id; + + if (id << 12 == 0) + vcpu->arch.apf.id = 1; + + return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; +} + +static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + gfn_t gfn) +{ + struct kvm_arch_async_pf arch; + + arch.token = alloc_apf_token(vcpu); + arch.gfn = gfn; + arch.direct_map = vcpu->arch.mmu->direct_map; + arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); + + return kvm_setup_async_pf(vcpu, cr2_or_gpa, + kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); +} + +static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, + gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, + bool *writable) +{ + struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + bool async; + + /* + * Retry the page fault if the gfn hit a memslot that is being deleted + * or moved. This ensures any existing SPTEs for the old memslot will + * be zapped before KVM inserts a new MMIO SPTE for the gfn. + */ + if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) + return true; + + /* Don't expose private memslots to L2. */ + if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { + *pfn = KVM_PFN_NOSLOT; + *writable = false; + return false; + } + + async = false; + *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); + if (!async) + return false; /* *pfn has correct page already */ + + if (!prefault && kvm_can_do_async_pf(vcpu)) { + trace_kvm_try_async_get_page(cr2_or_gpa, gfn); + if (kvm_find_async_pf_gfn(vcpu, gfn)) { + trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); + kvm_make_request(KVM_REQ_APF_HALT, vcpu); + return true; + } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) + return true; + } + + *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); + return false; +} + +static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, + bool prefault, int max_level, bool is_tdp) +{ + bool write = error_code & PFERR_WRITE_MASK; + bool map_writable; + + gfn_t gfn = gpa >> PAGE_SHIFT; + unsigned long mmu_seq; + kvm_pfn_t pfn; + int r; + + if (page_fault_handle_page_track(vcpu, error_code, gfn)) + return RET_PF_EMULATE; + + if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { + r = fast_page_fault(vcpu, gpa, error_code); + if (r != RET_PF_INVALID) + return r; + } + + r = mmu_topup_memory_caches(vcpu, false); + if (r) + return r; + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + smp_rmb(); + + if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) + return RET_PF_RETRY; + + if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) + return r; + + r = RET_PF_RETRY; + spin_lock(&vcpu->kvm->mmu_lock); + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + goto out_unlock; + r = make_mmu_pages_available(vcpu); + if (r) + goto out_unlock; + + if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) + r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, + pfn, prefault); + else + r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, + prefault, is_tdp); + +out_unlock: + spin_unlock(&vcpu->kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return r; +} + +static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, + u32 error_code, bool prefault) +{ + pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); + + /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ + return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, + PG_LEVEL_2M, false); +} + +int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, + u64 fault_address, char *insn, int insn_len) +{ + int r = 1; + u32 flags = vcpu->arch.apf.host_apf_flags; + +#ifndef CONFIG_X86_64 + /* A 64-bit CR2 should be impossible on 32-bit KVM. */ + if (WARN_ON_ONCE(fault_address >> 32)) + return -EFAULT; +#endif + + vcpu->arch.l1tf_flush_l1d = true; + if (!flags) { + trace_kvm_page_fault(fault_address, error_code); + + if (kvm_event_needs_reinjection(vcpu)) + kvm_mmu_unprotect_page_virt(vcpu, fault_address); + r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, + insn_len); + } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { + vcpu->arch.apf.host_apf_flags = 0; + local_irq_disable(); + kvm_async_pf_task_wait_schedule(fault_address); + local_irq_enable(); + } else { + WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); + } + + return r; +} +EXPORT_SYMBOL_GPL(kvm_handle_page_fault); + +int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, + bool prefault) +{ + int max_level; + + for (max_level = KVM_MAX_HUGEPAGE_LEVEL; + max_level > PG_LEVEL_4K; + max_level--) { + int page_num = KVM_PAGES_PER_HPAGE(max_level); + gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); + + if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) + break; + } + + return direct_page_fault(vcpu, gpa, error_code, prefault, + max_level, true); +} + +static void nonpaging_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + context->page_fault = nonpaging_page_fault; + context->gva_to_gpa = nonpaging_gva_to_gpa; + context->sync_page = nonpaging_sync_page; + context->invlpg = NULL; + context->root_level = 0; + context->shadow_root_level = PT32E_ROOT_LEVEL; + context->direct_map = true; + context->nx = false; +} + +static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, + union kvm_mmu_page_role role) +{ + return (role.direct || pgd == root->pgd) && + VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && + role.word == to_shadow_page(root->hpa)->role.word; +} + +/* + * Find out if a previously cached root matching the new pgd/role is available. + * The current root is also inserted into the cache. + * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is + * returned. + * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and + * false is returned. This root should now be freed by the caller. + */ +static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, + union kvm_mmu_page_role new_role) +{ + uint i; + struct kvm_mmu_root_info root; + struct kvm_mmu *mmu = vcpu->arch.mmu; + + root.pgd = mmu->root_pgd; + root.hpa = mmu->root_hpa; + + if (is_root_usable(&root, new_pgd, new_role)) + return true; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { + swap(root, mmu->prev_roots[i]); + + if (is_root_usable(&root, new_pgd, new_role)) + break; + } + + mmu->root_hpa = root.hpa; + mmu->root_pgd = root.pgd; + + return i < KVM_MMU_NUM_PREV_ROOTS; +} + +static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, + union kvm_mmu_page_role new_role) +{ + struct kvm_mmu *mmu = vcpu->arch.mmu; + + /* + * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid + * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs + * later if necessary. + */ + if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && + mmu->root_level >= PT64_ROOT_4LEVEL) + return cached_root_available(vcpu, new_pgd, new_role); + + return false; +} + +static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, + union kvm_mmu_page_role new_role, + bool skip_tlb_flush, bool skip_mmu_sync) +{ + if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { + kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); + return; + } + + /* + * It's possible that the cached previous root page is obsolete because + * of a change in the MMU generation number. However, changing the + * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will + * free the root set here and allocate a new one. + */ + kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); + + if (!skip_mmu_sync || force_flush_and_sync_on_reuse) + kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); + if (!skip_tlb_flush || force_flush_and_sync_on_reuse) + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + + /* + * The last MMIO access's GVA and GPA are cached in the VCPU. When + * switching to a new CR3, that GVA->GPA mapping may no longer be + * valid. So clear any cached MMIO info even when we don't need to sync + * the shadow page tables. + */ + vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); + + /* + * If this is a direct root page, it doesn't have a write flooding + * count. Otherwise, clear the write flooding count. + */ + if (!new_role.direct) + __clear_sp_write_flooding_count( + to_shadow_page(vcpu->arch.mmu->root_hpa)); +} + +void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, + bool skip_mmu_sync) +{ + __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), + skip_tlb_flush, skip_mmu_sync); +} +EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); + +static unsigned long get_cr3(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr3(vcpu); +} + +static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, + unsigned int access, int *nr_present) +{ + if (unlikely(is_mmio_spte(*sptep))) { + if (gfn != get_mmio_spte_gfn(*sptep)) { + mmu_spte_clear_no_track(sptep); + return true; + } + + (*nr_present)++; + mark_mmio_spte(vcpu, sptep, gfn, access); + return true; + } + + return false; +} + +static inline bool is_last_gpte(struct kvm_mmu *mmu, + unsigned level, unsigned gpte) +{ + /* + * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. + * If it is clear, there are no large pages at this level, so clear + * PT_PAGE_SIZE_MASK in gpte if that is the case. + */ + gpte &= level - mmu->last_nonleaf_level; + + /* + * PG_LEVEL_4K always terminates. The RHS has bit 7 set + * iff level <= PG_LEVEL_4K, which for our purpose means + * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. + */ + gpte |= level - PG_LEVEL_4K - 1; + + return gpte & PT_PAGE_SIZE_MASK; +} + +#define PTTYPE_EPT 18 /* arbitrary */ +#define PTTYPE PTTYPE_EPT +#include "paging_tmpl.h" +#undef PTTYPE + +#define PTTYPE 64 +#include "paging_tmpl.h" +#undef PTTYPE + +#define PTTYPE 32 +#include "paging_tmpl.h" +#undef PTTYPE + +static void +__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, + struct rsvd_bits_validate *rsvd_check, + int maxphyaddr, int level, bool nx, bool gbpages, + bool pse, bool amd) +{ + u64 exb_bit_rsvd = 0; + u64 gbpages_bit_rsvd = 0; + u64 nonleaf_bit8_rsvd = 0; + + rsvd_check->bad_mt_xwr = 0; + + if (!nx) + exb_bit_rsvd = rsvd_bits(63, 63); + if (!gbpages) + gbpages_bit_rsvd = rsvd_bits(7, 7); + + /* + * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for + * leaf entries) on AMD CPUs only. + */ + if (amd) + nonleaf_bit8_rsvd = rsvd_bits(8, 8); + + switch (level) { + case PT32_ROOT_LEVEL: + /* no rsvd bits for 2 level 4K page table entries */ + rsvd_check->rsvd_bits_mask[0][1] = 0; + rsvd_check->rsvd_bits_mask[0][0] = 0; + rsvd_check->rsvd_bits_mask[1][0] = + rsvd_check->rsvd_bits_mask[0][0]; + + if (!pse) { + rsvd_check->rsvd_bits_mask[1][1] = 0; + break; + } + + if (is_cpuid_PSE36()) + /* 36bits PSE 4MB page */ + rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); + else + /* 32 bits PSE 4MB page */ + rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); + break; + case PT32E_ROOT_LEVEL: + rsvd_check->rsvd_bits_mask[0][2] = + rsvd_bits(maxphyaddr, 63) | + rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ + rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62); /* PDE */ + rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62); /* PTE */ + rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62) | + rsvd_bits(13, 20); /* large page */ + rsvd_check->rsvd_bits_mask[1][0] = + rsvd_check->rsvd_bits_mask[0][0]; + break; + case PT64_ROOT_5LEVEL: + rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | + nonleaf_bit8_rsvd | rsvd_bits(7, 7) | + rsvd_bits(maxphyaddr, 51); + rsvd_check->rsvd_bits_mask[1][4] = + rsvd_check->rsvd_bits_mask[0][4]; + fallthrough; + case PT64_ROOT_4LEVEL: + rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | + nonleaf_bit8_rsvd | rsvd_bits(7, 7) | + rsvd_bits(maxphyaddr, 51); + rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | + gbpages_bit_rsvd | + rsvd_bits(maxphyaddr, 51); + rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51); + rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51); + rsvd_check->rsvd_bits_mask[1][3] = + rsvd_check->rsvd_bits_mask[0][3]; + rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | + gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | + rsvd_bits(13, 29); + rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51) | + rsvd_bits(13, 20); /* large page */ + rsvd_check->rsvd_bits_mask[1][0] = + rsvd_check->rsvd_bits_mask[0][0]; + break; + } +} + +static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, + cpuid_maxphyaddr(vcpu), context->root_level, + context->nx, + guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), + is_pse(vcpu), + guest_cpuid_is_amd_or_hygon(vcpu)); +} + +static void +__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, + int maxphyaddr, bool execonly) +{ + u64 bad_mt_xwr; + + rsvd_check->rsvd_bits_mask[0][4] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); + rsvd_check->rsvd_bits_mask[0][3] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); + rsvd_check->rsvd_bits_mask[0][2] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); + rsvd_check->rsvd_bits_mask[0][1] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); + rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); + + /* large page */ + rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; + rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; + rsvd_check->rsvd_bits_mask[1][2] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); + rsvd_check->rsvd_bits_mask[1][1] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); + rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; + + bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ + bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ + bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ + bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ + bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ + if (!execonly) { + /* bits 0..2 must not be 100 unless VMX capabilities allow it */ + bad_mt_xwr |= REPEAT_BYTE(1ull << 4); + } + rsvd_check->bad_mt_xwr = bad_mt_xwr; +} + +static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, + struct kvm_mmu *context, bool execonly) +{ + __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, + cpuid_maxphyaddr(vcpu), execonly); +} + +/* + * the page table on host is the shadow page table for the page + * table in guest or amd nested guest, its mmu features completely + * follow the features in guest. + */ +void +reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) +{ + /* + * KVM uses NX when TDP is disabled to handle a variety of scenarios, + * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and + * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. + * The iTLB multi-hit workaround can be toggled at any time, so assume + * NX can be used by any non-nested shadow MMU to avoid having to reset + * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. + */ + bool uses_nx = context->nx || !tdp_enabled || + context->mmu_role.base.smep_andnot_wp; + struct rsvd_bits_validate *shadow_zero_check; + int i; + + /* + * Passing "true" to the last argument is okay; it adds a check + * on bit 8 of the SPTEs which KVM doesn't use anyway. + */ + shadow_zero_check = &context->shadow_zero_check; + __reset_rsvds_bits_mask(vcpu, shadow_zero_check, + shadow_phys_bits, + context->shadow_root_level, uses_nx, + guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), + is_pse(vcpu), true); + + if (!shadow_me_mask) + return; + + for (i = context->shadow_root_level; --i >= 0;) { + shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; + shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; + } + +} +EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); + +static inline bool boot_cpu_is_amd(void) +{ + WARN_ON_ONCE(!tdp_enabled); + return shadow_x_mask == 0; +} + +/* + * the direct page table on host, use as much mmu features as + * possible, however, kvm currently does not do execution-protection. + */ +static void +reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + struct rsvd_bits_validate *shadow_zero_check; + int i; + + shadow_zero_check = &context->shadow_zero_check; + + if (boot_cpu_is_amd()) + __reset_rsvds_bits_mask(vcpu, shadow_zero_check, + shadow_phys_bits, + context->shadow_root_level, false, + boot_cpu_has(X86_FEATURE_GBPAGES), + true, true); + else + __reset_rsvds_bits_mask_ept(shadow_zero_check, + shadow_phys_bits, + false); + + if (!shadow_me_mask) + return; + + for (i = context->shadow_root_level; --i >= 0;) { + shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; + shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; + } +} + +/* + * as the comments in reset_shadow_zero_bits_mask() except it + * is the shadow page table for intel nested guest. + */ +static void +reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, + struct kvm_mmu *context, bool execonly) +{ + __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, + shadow_phys_bits, execonly); +} + +#define BYTE_MASK(access) \ + ((1 & (access) ? 2 : 0) | \ + (2 & (access) ? 4 : 0) | \ + (3 & (access) ? 8 : 0) | \ + (4 & (access) ? 16 : 0) | \ + (5 & (access) ? 32 : 0) | \ + (6 & (access) ? 64 : 0) | \ + (7 & (access) ? 128 : 0)) + + +static void update_permission_bitmask(struct kvm_vcpu *vcpu, + struct kvm_mmu *mmu, bool ept) +{ + unsigned byte; + + const u8 x = BYTE_MASK(ACC_EXEC_MASK); + const u8 w = BYTE_MASK(ACC_WRITE_MASK); + const u8 u = BYTE_MASK(ACC_USER_MASK); + + bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; + bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; + bool cr0_wp = is_write_protection(vcpu); + + for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { + unsigned pfec = byte << 1; + + /* + * Each "*f" variable has a 1 bit for each UWX value + * that causes a fault with the given PFEC. + */ + + /* Faults from writes to non-writable pages */ + u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; + /* Faults from user mode accesses to supervisor pages */ + u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; + /* Faults from fetches of non-executable pages*/ + u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; + /* Faults from kernel mode fetches of user pages */ + u8 smepf = 0; + /* Faults from kernel mode accesses of user pages */ + u8 smapf = 0; + + if (!ept) { + /* Faults from kernel mode accesses to user pages */ + u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; + + /* Not really needed: !nx will cause pte.nx to fault */ + if (!mmu->nx) + ff = 0; + + /* Allow supervisor writes if !cr0.wp */ + if (!cr0_wp) + wf = (pfec & PFERR_USER_MASK) ? wf : 0; + + /* Disallow supervisor fetches of user code if cr4.smep */ + if (cr4_smep) + smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; + + /* + * SMAP:kernel-mode data accesses from user-mode + * mappings should fault. A fault is considered + * as a SMAP violation if all of the following + * conditions are true: + * - X86_CR4_SMAP is set in CR4 + * - A user page is accessed + * - The access is not a fetch + * - Page fault in kernel mode + * - if CPL = 3 or X86_EFLAGS_AC is clear + * + * Here, we cover the first three conditions. + * The fourth is computed dynamically in permission_fault(); + * PFERR_RSVD_MASK bit will be set in PFEC if the access is + * *not* subject to SMAP restrictions. + */ + if (cr4_smap) + smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; + } + + mmu->permissions[byte] = ff | uf | wf | smepf | smapf; + } +} + +/* +* PKU is an additional mechanism by which the paging controls access to +* user-mode addresses based on the value in the PKRU register. Protection +* key violations are reported through a bit in the page fault error code. +* Unlike other bits of the error code, the PK bit is not known at the +* call site of e.g. gva_to_gpa; it must be computed directly in +* permission_fault based on two bits of PKRU, on some machine state (CR4, +* CR0, EFER, CPL), and on other bits of the error code and the page tables. +* +* In particular the following conditions come from the error code, the +* page tables and the machine state: +* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 +* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) +* - PK is always zero if U=0 in the page tables +* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. +* +* The PKRU bitmask caches the result of these four conditions. The error +* code (minus the P bit) and the page table's U bit form an index into the +* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed +* with the two bits of the PKRU register corresponding to the protection key. +* For the first three conditions above the bits will be 00, thus masking +* away both AD and WD. For all reads or if the last condition holds, WD +* only will be masked away. +*/ +static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + bool ept) +{ + unsigned bit; + bool wp; + + if (ept) { + mmu->pkru_mask = 0; + return; + } + + /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ + if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { + mmu->pkru_mask = 0; + return; + } + + wp = is_write_protection(vcpu); + + for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { + unsigned pfec, pkey_bits; + bool check_pkey, check_write, ff, uf, wf, pte_user; + + pfec = bit << 1; + ff = pfec & PFERR_FETCH_MASK; + uf = pfec & PFERR_USER_MASK; + wf = pfec & PFERR_WRITE_MASK; + + /* PFEC.RSVD is replaced by ACC_USER_MASK. */ + pte_user = pfec & PFERR_RSVD_MASK; + + /* + * Only need to check the access which is not an + * instruction fetch and is to a user page. + */ + check_pkey = (!ff && pte_user); + /* + * write access is controlled by PKRU if it is a + * user access or CR0.WP = 1. + */ + check_write = check_pkey && wf && (uf || wp); + + /* PKRU.AD stops both read and write access. */ + pkey_bits = !!check_pkey; + /* PKRU.WD stops write access. */ + pkey_bits |= (!!check_write) << 1; + + mmu->pkru_mask |= (pkey_bits & 3) << pfec; + } +} + +static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) +{ + unsigned root_level = mmu->root_level; + + mmu->last_nonleaf_level = root_level; + if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) + mmu->last_nonleaf_level++; +} + +static void paging64_init_context_common(struct kvm_vcpu *vcpu, + struct kvm_mmu *context, + int level) +{ + context->nx = is_nx(vcpu); + context->root_level = level; + + reset_rsvds_bits_mask(vcpu, context); + update_permission_bitmask(vcpu, context, false); + update_pkru_bitmask(vcpu, context, false); + update_last_nonleaf_level(vcpu, context); + + MMU_WARN_ON(!is_pae(vcpu)); + context->page_fault = paging64_page_fault; + context->gva_to_gpa = paging64_gva_to_gpa; + context->sync_page = paging64_sync_page; + context->invlpg = paging64_invlpg; + context->shadow_root_level = level; + context->direct_map = false; +} + +static void paging64_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + int root_level = is_la57_mode(vcpu) ? + PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; + + paging64_init_context_common(vcpu, context, root_level); +} + +static void paging32_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + context->nx = false; + context->root_level = PT32_ROOT_LEVEL; + + reset_rsvds_bits_mask(vcpu, context); + update_permission_bitmask(vcpu, context, false); + update_pkru_bitmask(vcpu, context, false); + update_last_nonleaf_level(vcpu, context); + + context->page_fault = paging32_page_fault; + context->gva_to_gpa = paging32_gva_to_gpa; + context->sync_page = paging32_sync_page; + context->invlpg = paging32_invlpg; + context->shadow_root_level = PT32E_ROOT_LEVEL; + context->direct_map = false; +} + +static void paging32E_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); +} + +static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_extended_role ext = {0}; + + ext.cr0_pg = !!is_paging(vcpu); + ext.cr4_pae = !!is_pae(vcpu); + ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); + ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); + ext.cr4_pse = !!is_pse(vcpu); + ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); + ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); + ext.maxphyaddr = cpuid_maxphyaddr(vcpu); + + ext.valid = 1; + + return ext; +} + +static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, + bool base_only) +{ + union kvm_mmu_role role = {0}; + + role.base.access = ACC_ALL; + role.base.nxe = !!is_nx(vcpu); + role.base.cr0_wp = is_write_protection(vcpu); + role.base.smm = is_smm(vcpu); + role.base.guest_mode = is_guest_mode(vcpu); + + if (base_only) + return role; + + role.ext = kvm_calc_mmu_role_ext(vcpu); + + return role; +} + +static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) +{ + /* Use 5-level TDP if and only if it's useful/necessary. */ + if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) + return 4; + + return max_tdp_level; +} + +static union kvm_mmu_role +kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) +{ + union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); + + role.base.ad_disabled = (shadow_accessed_mask == 0); + role.base.level = kvm_mmu_get_tdp_level(vcpu); + role.base.direct = true; + role.base.gpte_is_8_bytes = true; + + return role; +} + +static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *context = &vcpu->arch.root_mmu; + union kvm_mmu_role new_role = + kvm_calc_tdp_mmu_root_page_role(vcpu, false); + + if (new_role.as_u64 == context->mmu_role.as_u64) + return; + + context->mmu_role.as_u64 = new_role.as_u64; + context->page_fault = kvm_tdp_page_fault; + context->sync_page = nonpaging_sync_page; + context->invlpg = NULL; + context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); + context->direct_map = true; + context->get_guest_pgd = get_cr3; + context->get_pdptr = kvm_pdptr_read; + context->inject_page_fault = kvm_inject_page_fault; + + if (!is_paging(vcpu)) { + context->nx = false; + context->gva_to_gpa = nonpaging_gva_to_gpa; + context->root_level = 0; + } else if (is_long_mode(vcpu)) { + context->nx = is_nx(vcpu); + context->root_level = is_la57_mode(vcpu) ? + PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging64_gva_to_gpa; + } else if (is_pae(vcpu)) { + context->nx = is_nx(vcpu); + context->root_level = PT32E_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging64_gva_to_gpa; + } else { + context->nx = false; + context->root_level = PT32_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging32_gva_to_gpa; + } + + update_permission_bitmask(vcpu, context, false); + update_pkru_bitmask(vcpu, context, false); + update_last_nonleaf_level(vcpu, context); + reset_tdp_shadow_zero_bits_mask(vcpu, context); +} + +static union kvm_mmu_role +kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) +{ + union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); + + role.base.smep_andnot_wp = role.ext.cr4_smep && + !is_write_protection(vcpu); + role.base.smap_andnot_wp = role.ext.cr4_smap && + !is_write_protection(vcpu); + role.base.gpte_is_8_bytes = !!is_pae(vcpu); + + return role; +} + +static union kvm_mmu_role +kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) +{ + union kvm_mmu_role role = + kvm_calc_shadow_root_page_role_common(vcpu, base_only); + + role.base.direct = !is_paging(vcpu); + + if (!is_long_mode(vcpu)) + role.base.level = PT32E_ROOT_LEVEL; + else if (is_la57_mode(vcpu)) + role.base.level = PT64_ROOT_5LEVEL; + else + role.base.level = PT64_ROOT_4LEVEL; + + return role; +} + +static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, + u32 cr0, u32 cr4, u32 efer, + union kvm_mmu_role new_role) +{ + if (!(cr0 & X86_CR0_PG)) + nonpaging_init_context(vcpu, context); + else if (efer & EFER_LMA) + paging64_init_context(vcpu, context); + else if (cr4 & X86_CR4_PAE) + paging32E_init_context(vcpu, context); + else + paging32_init_context(vcpu, context); + + context->mmu_role.as_u64 = new_role.as_u64; + reset_shadow_zero_bits_mask(vcpu, context); +} + +static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) +{ + struct kvm_mmu *context = &vcpu->arch.root_mmu; + union kvm_mmu_role new_role = + kvm_calc_shadow_mmu_root_page_role(vcpu, false); + + if (new_role.as_u64 != context->mmu_role.as_u64) + shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); +} + +static union kvm_mmu_role +kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_role role = + kvm_calc_shadow_root_page_role_common(vcpu, false); + + role.base.direct = false; + role.base.level = kvm_mmu_get_tdp_level(vcpu); + + return role; +} + +void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, + gpa_t nested_cr3) +{ + struct kvm_mmu *context = &vcpu->arch.guest_mmu; + union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); + + __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); + + if (new_role.as_u64 != context->mmu_role.as_u64) { + shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); + + /* + * Override the level set by the common init helper, nested TDP + * always uses the host's TDP configuration. + */ + context->shadow_root_level = new_role.base.level; + } +} +EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); + +static union kvm_mmu_role +kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, + bool execonly, u8 level) +{ + union kvm_mmu_role role = {0}; + + /* SMM flag is inherited from root_mmu */ + role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; + + role.base.level = level; + role.base.gpte_is_8_bytes = true; + role.base.direct = false; + role.base.ad_disabled = !accessed_dirty; + role.base.guest_mode = true; + role.base.access = ACC_ALL; + + /* + * WP=1 and NOT_WP=1 is an impossible combination, use WP and the + * SMAP variation to denote shadow EPT entries. + */ + role.base.cr0_wp = true; + role.base.smap_andnot_wp = true; + + role.ext = kvm_calc_mmu_role_ext(vcpu); + role.ext.execonly = execonly; + + return role; +} + +void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, + bool accessed_dirty, gpa_t new_eptp) +{ + struct kvm_mmu *context = &vcpu->arch.guest_mmu; + u8 level = vmx_eptp_page_walk_level(new_eptp); + union kvm_mmu_role new_role = + kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, + execonly, level); + + __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); + + if (new_role.as_u64 == context->mmu_role.as_u64) + return; + + context->shadow_root_level = level; + + context->nx = true; + context->ept_ad = accessed_dirty; + context->page_fault = ept_page_fault; + context->gva_to_gpa = ept_gva_to_gpa; + context->sync_page = ept_sync_page; + context->invlpg = ept_invlpg; + context->root_level = level; + context->direct_map = false; + context->mmu_role.as_u64 = new_role.as_u64; + + update_permission_bitmask(vcpu, context, true); + update_pkru_bitmask(vcpu, context, true); + update_last_nonleaf_level(vcpu, context); + reset_rsvds_bits_mask_ept(vcpu, context, execonly); + reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); +} +EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); + +static void init_kvm_softmmu(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *context = &vcpu->arch.root_mmu; + + kvm_init_shadow_mmu(vcpu, + kvm_read_cr0_bits(vcpu, X86_CR0_PG), + kvm_read_cr4_bits(vcpu, X86_CR4_PAE), + vcpu->arch.efer); + + context->get_guest_pgd = get_cr3; + context->get_pdptr = kvm_pdptr_read; + context->inject_page_fault = kvm_inject_page_fault; +} + +static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false); + + /* + * Nested MMUs are used only for walking L2's gva->gpa, they never have + * shadow pages of their own and so "direct" has no meaning. Set it + * to "true" to try to detect bogus usage of the nested MMU. + */ + role.base.direct = true; + + if (!is_paging(vcpu)) + role.base.level = 0; + else if (is_long_mode(vcpu)) + role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL : + PT64_ROOT_4LEVEL; + else if (is_pae(vcpu)) + role.base.level = PT32E_ROOT_LEVEL; + else + role.base.level = PT32_ROOT_LEVEL; + + return role; +} + +static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu); + struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; + + if (new_role.as_u64 == g_context->mmu_role.as_u64) + return; + + g_context->mmu_role.as_u64 = new_role.as_u64; + g_context->get_guest_pgd = get_cr3; + g_context->get_pdptr = kvm_pdptr_read; + g_context->inject_page_fault = kvm_inject_page_fault; + + /* + * L2 page tables are never shadowed, so there is no need to sync + * SPTEs. + */ + g_context->invlpg = NULL; + + /* + * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using + * L1's nested page tables (e.g. EPT12). The nested translation + * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using + * L2's page tables as the first level of translation and L1's + * nested page tables as the second level of translation. Basically + * the gva_to_gpa functions between mmu and nested_mmu are swapped. + */ + if (!is_paging(vcpu)) { + g_context->nx = false; + g_context->root_level = 0; + g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; + } else if (is_long_mode(vcpu)) { + g_context->nx = is_nx(vcpu); + g_context->root_level = is_la57_mode(vcpu) ? + PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + } else if (is_pae(vcpu)) { + g_context->nx = is_nx(vcpu); + g_context->root_level = PT32E_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + } else { + g_context->nx = false; + g_context->root_level = PT32_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging32_gva_to_gpa_nested; + } + + update_permission_bitmask(vcpu, g_context, false); + update_pkru_bitmask(vcpu, g_context, false); + update_last_nonleaf_level(vcpu, g_context); +} + +void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) +{ + if (reset_roots) { + uint i; + + vcpu->arch.mmu->root_hpa = INVALID_PAGE; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; + } + + if (mmu_is_nested(vcpu)) + init_kvm_nested_mmu(vcpu); + else if (tdp_enabled) + init_kvm_tdp_mmu(vcpu); + else + init_kvm_softmmu(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_init_mmu); + +static union kvm_mmu_page_role +kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_role role; + + if (tdp_enabled) + role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); + else + role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); + + return role.base; +} + +void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) +{ + kvm_mmu_unload(vcpu); + kvm_init_mmu(vcpu, true); +} +EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); + +int kvm_mmu_load(struct kvm_vcpu *vcpu) +{ + int r; + + r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); + if (r) + goto out; + r = mmu_alloc_roots(vcpu); + kvm_mmu_sync_roots(vcpu); + if (r) + goto out; + kvm_mmu_load_pgd(vcpu); + kvm_x86_ops.tlb_flush_current(vcpu); +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_load); + +void kvm_mmu_unload(struct kvm_vcpu *vcpu) +{ + kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); + WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); + kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); +} +EXPORT_SYMBOL_GPL(kvm_mmu_unload); + +static bool need_remote_flush(u64 old, u64 new) +{ + if (!is_shadow_present_pte(old)) + return false; + if (!is_shadow_present_pte(new)) + return true; + if ((old ^ new) & PT64_BASE_ADDR_MASK) + return true; + old ^= shadow_nx_mask; + new ^= shadow_nx_mask; + return (old & ~new & PT64_PERM_MASK) != 0; +} + +static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, + int *bytes) +{ + u64 gentry = 0; + int r; + + /* + * Assume that the pte write on a page table of the same type + * as the current vcpu paging mode since we update the sptes only + * when they have the same mode. + */ + if (is_pae(vcpu) && *bytes == 4) { + /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ + *gpa &= ~(gpa_t)7; + *bytes = 8; + } + + if (*bytes == 4 || *bytes == 8) { + r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); + if (r) + gentry = 0; + } + + return gentry; +} + +/* + * If we're seeing too many writes to a page, it may no longer be a page table, + * or we may be forking, in which case it is better to unmap the page. + */ +static bool detect_write_flooding(struct kvm_mmu_page *sp) +{ + /* + * Skip write-flooding detected for the sp whose level is 1, because + * it can become unsync, then the guest page is not write-protected. + */ + if (sp->role.level == PG_LEVEL_4K) + return false; + + atomic_inc(&sp->write_flooding_count); + return atomic_read(&sp->write_flooding_count) >= 3; +} + +/* + * Misaligned accesses are too much trouble to fix up; also, they usually + * indicate a page is not used as a page table. + */ +static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, + int bytes) +{ + unsigned offset, pte_size, misaligned; + + pgprintk("misaligned: gpa %llx bytes %d role %x\n", + gpa, bytes, sp->role.word); + + offset = offset_in_page(gpa); + pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; + + /* + * Sometimes, the OS only writes the last one bytes to update status + * bits, for example, in linux, andb instruction is used in clear_bit(). + */ + if (!(offset & (pte_size - 1)) && bytes == 1) + return false; + + misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); + misaligned |= bytes < 4; + + return misaligned; +} + +static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) +{ + unsigned page_offset, quadrant; + u64 *spte; + int level; + + page_offset = offset_in_page(gpa); + level = sp->role.level; + *nspte = 1; + if (!sp->role.gpte_is_8_bytes) { + page_offset <<= 1; /* 32->64 */ + /* + * A 32-bit pde maps 4MB while the shadow pdes map + * only 2MB. So we need to double the offset again + * and zap two pdes instead of one. + */ + if (level == PT32_ROOT_LEVEL) { + page_offset &= ~7; /* kill rounding error */ + page_offset <<= 1; + *nspte = 2; + } + quadrant = page_offset >> PAGE_SHIFT; + page_offset &= ~PAGE_MASK; + if (quadrant != sp->role.quadrant) + return NULL; + } + + spte = &sp->spt[page_offset / sizeof(*spte)]; + return spte; +} + +static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, + const u8 *new, int bytes, + struct kvm_page_track_notifier_node *node) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + struct kvm_mmu_page *sp; + LIST_HEAD(invalid_list); + u64 entry, gentry, *spte; + int npte; + bool remote_flush, local_flush; + + /* + * If we don't have indirect shadow pages, it means no page is + * write-protected, so we can exit simply. + */ + if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) + return; + + remote_flush = local_flush = false; + + pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); + + /* + * No need to care whether allocation memory is successful + * or not since pte prefetch is skiped if it does not have + * enough objects in the cache. + */ + mmu_topup_memory_caches(vcpu, true); + + spin_lock(&vcpu->kvm->mmu_lock); + + gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); + + ++vcpu->kvm->stat.mmu_pte_write; + kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); + + for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { + if (detect_write_misaligned(sp, gpa, bytes) || + detect_write_flooding(sp)) { + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); + ++vcpu->kvm->stat.mmu_flooded; + continue; + } + + spte = get_written_sptes(sp, gpa, &npte); + if (!spte) + continue; + + local_flush = true; + while (npte--) { + entry = *spte; + mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); + if (gentry && sp->role.level != PG_LEVEL_4K) + ++vcpu->kvm->stat.mmu_pde_zapped; + if (need_remote_flush(entry, *spte)) + remote_flush = true; + ++spte; + } + } + kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); + kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); + spin_unlock(&vcpu->kvm->mmu_lock); +} + +int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) +{ + gpa_t gpa; + int r; + + if (vcpu->arch.mmu->direct_map) + return 0; + + gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); + + r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); + + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); + +int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, + void *insn, int insn_len) +{ + int r, emulation_type = EMULTYPE_PF; + bool direct = vcpu->arch.mmu->direct_map; + + if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) + return RET_PF_RETRY; + + r = RET_PF_INVALID; + if (unlikely(error_code & PFERR_RSVD_MASK)) { + r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); + if (r == RET_PF_EMULATE) + goto emulate; + } + + if (r == RET_PF_INVALID) { + r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, + lower_32_bits(error_code), false); + if (WARN_ON_ONCE(r == RET_PF_INVALID)) + return -EIO; + } + + if (r < 0) + return r; + if (r != RET_PF_EMULATE) + return 1; + + /* + * Before emulating the instruction, check if the error code + * was due to a RO violation while translating the guest page. + * This can occur when using nested virtualization with nested + * paging in both guests. If true, we simply unprotect the page + * and resume the guest. + */ + if (vcpu->arch.mmu->direct_map && + (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); + return 1; + } + + /* + * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still + * optimistically try to just unprotect the page and let the processor + * re-execute the instruction that caused the page fault. Do not allow + * retrying MMIO emulation, as it's not only pointless but could also + * cause us to enter an infinite loop because the processor will keep + * faulting on the non-existent MMIO address. Retrying an instruction + * from a nested guest is also pointless and dangerous as we are only + * explicitly shadowing L1's page tables, i.e. unprotecting something + * for L1 isn't going to magically fix whatever issue cause L2 to fail. + */ + if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) + emulation_type |= EMULTYPE_ALLOW_RETRY_PF; +emulate: + return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, + insn_len); +} +EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); + +void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gva_t gva, hpa_t root_hpa) +{ + int i; + + /* It's actually a GPA for vcpu->arch.guest_mmu. */ + if (mmu != &vcpu->arch.guest_mmu) { + /* INVLPG on a non-canonical address is a NOP according to the SDM. */ + if (is_noncanonical_address(gva, vcpu)) + return; + + kvm_x86_ops.tlb_flush_gva(vcpu, gva); + } + + if (!mmu->invlpg) + return; + + if (root_hpa == INVALID_PAGE) { + mmu->invlpg(vcpu, gva, mmu->root_hpa); + + /* + * INVLPG is required to invalidate any global mappings for the VA, + * irrespective of PCID. Since it would take us roughly similar amount + * of work to determine whether any of the prev_root mappings of the VA + * is marked global, or to just sync it blindly, so we might as well + * just always sync it. + * + * Mappings not reachable via the current cr3 or the prev_roots will be + * synced when switching to that cr3, so nothing needs to be done here + * for them. + */ + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (VALID_PAGE(mmu->prev_roots[i].hpa)) + mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); + } else { + mmu->invlpg(vcpu, gva, root_hpa); + } +} +EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); + +void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) +{ + kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); + ++vcpu->stat.invlpg; +} +EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); + + +void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) +{ + struct kvm_mmu *mmu = vcpu->arch.mmu; + bool tlb_flush = false; + uint i; + + if (pcid == kvm_get_active_pcid(vcpu)) { + if (mmu->invlpg) + mmu->invlpg(vcpu, gva, mmu->root_hpa); + tlb_flush = true; + } + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { + if (VALID_PAGE(mmu->prev_roots[i].hpa) && + pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { + if (mmu->invlpg) + mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); + tlb_flush = true; + } + } + + if (tlb_flush) + kvm_x86_ops.tlb_flush_gva(vcpu, gva); + + ++vcpu->stat.invlpg; + + /* + * Mappings not reachable via the current cr3 or the prev_roots will be + * synced when switching to that cr3, so nothing needs to be done here + * for them. + */ +} +EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); + +void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, + int tdp_huge_page_level) +{ + tdp_enabled = enable_tdp; + max_tdp_level = tdp_max_root_level; + + /* + * max_huge_page_level reflects KVM's MMU capabilities irrespective + * of kernel support, e.g. KVM may be capable of using 1GB pages when + * the kernel is not. But, KVM never creates a page size greater than + * what is used by the kernel for any given HVA, i.e. the kernel's + * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). + */ + if (tdp_enabled) + max_huge_page_level = tdp_huge_page_level; + else if (boot_cpu_has(X86_FEATURE_GBPAGES)) + max_huge_page_level = PG_LEVEL_1G; + else + max_huge_page_level = PG_LEVEL_2M; +} +EXPORT_SYMBOL_GPL(kvm_configure_mmu); + +/* The return value indicates if tlb flush on all vcpus is needed. */ +typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); + +/* The caller should hold mmu-lock before calling this function. */ +static __always_inline bool +slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, + slot_level_handler fn, int start_level, int end_level, + gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) +{ + struct slot_rmap_walk_iterator iterator; + bool flush = false; + + for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, + end_gfn, &iterator) { + if (iterator.rmap) + flush |= fn(kvm, iterator.rmap); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { + if (flush && lock_flush_tlb) { + kvm_flush_remote_tlbs_with_address(kvm, + start_gfn, + iterator.gfn - start_gfn + 1); + flush = false; + } + cond_resched_lock(&kvm->mmu_lock); + } + } + + if (flush && lock_flush_tlb) { + kvm_flush_remote_tlbs_with_address(kvm, start_gfn, + end_gfn - start_gfn + 1); + flush = false; + } + + return flush; +} + +static __always_inline bool +slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, + slot_level_handler fn, int start_level, int end_level, + bool lock_flush_tlb) +{ + return slot_handle_level_range(kvm, memslot, fn, start_level, + end_level, memslot->base_gfn, + memslot->base_gfn + memslot->npages - 1, + lock_flush_tlb); +} + +static __always_inline bool +slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, + slot_level_handler fn, bool lock_flush_tlb) +{ + return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, + KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); +} + +static __always_inline bool +slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, + slot_level_handler fn, bool lock_flush_tlb) +{ + return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, + KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); +} + +static __always_inline bool +slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, + slot_level_handler fn, bool lock_flush_tlb) +{ + return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, + PG_LEVEL_4K, lock_flush_tlb); +} + +static void free_mmu_pages(struct kvm_mmu *mmu) +{ + free_page((unsigned long)mmu->pae_root); + free_page((unsigned long)mmu->lm_root); +} + +static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) +{ + struct page *page; + int i; + + mmu->root_hpa = INVALID_PAGE; + mmu->root_pgd = 0; + mmu->translate_gpa = translate_gpa; + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; + + /* + * When using PAE paging, the four PDPTEs are treated as 'root' pages, + * while the PDP table is a per-vCPU construct that's allocated at MMU + * creation. When emulating 32-bit mode, cr3 is only 32 bits even on + * x86_64. Therefore we need to allocate the PDP table in the first + * 4GB of memory, which happens to fit the DMA32 zone. TDP paging + * generally doesn't use PAE paging and can skip allocating the PDP + * table. The main exception, handled here, is SVM's 32-bit NPT. The + * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit + * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). + */ + if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) + return 0; + + page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); + if (!page) + return -ENOMEM; + + mmu->pae_root = page_address(page); + for (i = 0; i < 4; ++i) + mmu->pae_root[i] = INVALID_PAGE; + + return 0; +} + +int kvm_mmu_create(struct kvm_vcpu *vcpu) +{ + int ret; + + vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; + vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; + + vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; + vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; + + vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; + + vcpu->arch.mmu = &vcpu->arch.root_mmu; + vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; + + vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; + + ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); + if (ret) + return ret; + + ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); + if (ret) + goto fail_allocate_root; + + return ret; + fail_allocate_root: + free_mmu_pages(&vcpu->arch.guest_mmu); + return ret; +} + +#define BATCH_ZAP_PAGES 10 +static void kvm_zap_obsolete_pages(struct kvm *kvm) +{ + struct kvm_mmu_page *sp, *node; + int nr_zapped, batch = 0; + bool unstable; + +restart: + list_for_each_entry_safe_reverse(sp, node, + &kvm->arch.active_mmu_pages, link) { + /* + * No obsolete valid page exists before a newly created page + * since active_mmu_pages is a FIFO list. + */ + if (!is_obsolete_sp(kvm, sp)) + break; + + /* + * Invalid pages should never land back on the list of active + * pages. Skip the bogus page, otherwise we'll get stuck in an + * infinite loop if the page gets put back on the list (again). + */ + if (WARN_ON(sp->role.invalid)) + continue; + + /* + * No need to flush the TLB since we're only zapping shadow + * pages with an obsolete generation number and all vCPUS have + * loaded a new root, i.e. the shadow pages being zapped cannot + * be in active use by the guest. + */ + if (batch >= BATCH_ZAP_PAGES && + cond_resched_lock(&kvm->mmu_lock)) { + batch = 0; + goto restart; + } + + unstable = __kvm_mmu_prepare_zap_page(kvm, sp, + &kvm->arch.zapped_obsolete_pages, &nr_zapped); + batch += nr_zapped; + + if (unstable) + goto restart; + } + + /* + * Trigger a remote TLB flush before freeing the page tables to ensure + * KVM is not in the middle of a lockless shadow page table walk, which + * may reference the pages. + */ + kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); +} + +/* + * Fast invalidate all shadow pages and use lock-break technique + * to zap obsolete pages. + * + * It's required when memslot is being deleted or VM is being + * destroyed, in these cases, we should ensure that KVM MMU does + * not use any resource of the being-deleted slot or all slots + * after calling the function. + */ +static void kvm_mmu_zap_all_fast(struct kvm *kvm) +{ + lockdep_assert_held(&kvm->slots_lock); + + spin_lock(&kvm->mmu_lock); + trace_kvm_mmu_zap_all_fast(kvm); + + /* + * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is + * held for the entire duration of zapping obsolete pages, it's + * impossible for there to be multiple invalid generations associated + * with *valid* shadow pages at any given time, i.e. there is exactly + * one valid generation and (at most) one invalid generation. + */ + kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; + + /* + * Notify all vcpus to reload its shadow page table and flush TLB. + * Then all vcpus will switch to new shadow page table with the new + * mmu_valid_gen. + * + * Note: we need to do this under the protection of mmu_lock, + * otherwise, vcpu would purge shadow page but miss tlb flush. + */ + kvm_reload_remote_mmus(kvm); + + kvm_zap_obsolete_pages(kvm); + + if (kvm->arch.tdp_mmu_enabled) + kvm_tdp_mmu_zap_all(kvm); + + spin_unlock(&kvm->mmu_lock); +} + +static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) +{ + return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); +} + +static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot, + struct kvm_page_track_notifier_node *node) +{ + kvm_mmu_zap_all_fast(kvm); +} + +void kvm_mmu_init_vm(struct kvm *kvm) +{ + struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; + + kvm_mmu_init_tdp_mmu(kvm); + + node->track_write = kvm_mmu_pte_write; + node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; + kvm_page_track_register_notifier(kvm, node); +} + +void kvm_mmu_uninit_vm(struct kvm *kvm) +{ + struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; + + kvm_page_track_unregister_notifier(kvm, node); + + kvm_mmu_uninit_tdp_mmu(kvm); +} + +void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int i; + bool flush; + + spin_lock(&kvm->mmu_lock); + for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { + slots = __kvm_memslots(kvm, i); + kvm_for_each_memslot(memslot, slots) { + gfn_t start, end; + + start = max(gfn_start, memslot->base_gfn); + end = min(gfn_end, memslot->base_gfn + memslot->npages); + if (start >= end) + continue; + + slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, + PG_LEVEL_4K, + KVM_MAX_HUGEPAGE_LEVEL, + start, end - 1, true); + } + } + + if (kvm->arch.tdp_mmu_enabled) { + flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); + if (flush) + kvm_flush_remote_tlbs(kvm); + } + + spin_unlock(&kvm->mmu_lock); +} + +static bool slot_rmap_write_protect(struct kvm *kvm, + struct kvm_rmap_head *rmap_head) +{ + return __rmap_write_protect(kvm, rmap_head, false); +} + +void kvm_mmu_slot_remove_write_access(struct kvm *kvm, + struct kvm_memory_slot *memslot, + int start_level) +{ + bool flush; + + spin_lock(&kvm->mmu_lock); + flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, + start_level, KVM_MAX_HUGEPAGE_LEVEL, false); + if (kvm->arch.tdp_mmu_enabled) + flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); + spin_unlock(&kvm->mmu_lock); + + /* + * We can flush all the TLBs out of the mmu lock without TLB + * corruption since we just change the spte from writable to + * readonly so that we only need to care the case of changing + * spte from present to present (changing the spte from present + * to nonpresent will flush all the TLBs immediately), in other + * words, the only case we care is mmu_spte_update() where we + * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE + * instead of PT_WRITABLE_MASK, that means it does not depend + * on PT_WRITABLE_MASK anymore. + */ + if (flush) + kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); +} + +static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, + struct kvm_rmap_head *rmap_head) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_tlb_flush = 0; + kvm_pfn_t pfn; + struct kvm_mmu_page *sp; + +restart: + for_each_rmap_spte(rmap_head, &iter, sptep) { + sp = sptep_to_sp(sptep); + pfn = spte_to_pfn(*sptep); + + /* + * We cannot do huge page mapping for indirect shadow pages, + * which are found on the last rmap (level = 1) when not using + * tdp; such shadow pages are synced with the page table in + * the guest, and the guest page table is using 4K page size + * mapping if the indirect sp has level = 1. + */ + if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && + (kvm_is_zone_device_pfn(pfn) || + PageCompound(pfn_to_page(pfn)))) { + pte_list_remove(rmap_head, sptep); + + if (kvm_available_flush_tlb_with_range()) + kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + else + need_tlb_flush = 1; + + goto restart; + } + } + + return need_tlb_flush; +} + +void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, + const struct kvm_memory_slot *memslot) +{ + /* FIXME: const-ify all uses of struct kvm_memory_slot. */ + spin_lock(&kvm->mmu_lock); + slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, + kvm_mmu_zap_collapsible_spte, true); + + if (kvm->arch.tdp_mmu_enabled) + kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot); + spin_unlock(&kvm->mmu_lock); +} + +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + /* + * All current use cases for flushing the TLBs for a specific memslot + * are related to dirty logging, and do the TLB flush out of mmu_lock. + * The interaction between the various operations on memslot must be + * serialized by slots_locks to ensure the TLB flush from one operation + * is observed by any other operation on the same memslot. + */ + lockdep_assert_held(&kvm->slots_lock); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); +} + +void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + bool flush; + + spin_lock(&kvm->mmu_lock); + flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); + if (kvm->arch.tdp_mmu_enabled) + flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); + spin_unlock(&kvm->mmu_lock); + + /* + * It's also safe to flush TLBs out of mmu lock here as currently this + * function is only used for dirty logging, in which case flushing TLB + * out of mmu lock also guarantees no dirty pages will be lost in + * dirty_bitmap. + */ + if (flush) + kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); + +void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + bool flush; + + spin_lock(&kvm->mmu_lock); + flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, + false); + if (kvm->arch.tdp_mmu_enabled) + flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M); + spin_unlock(&kvm->mmu_lock); + + if (flush) + kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); + +void kvm_mmu_slot_set_dirty(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + bool flush; + + spin_lock(&kvm->mmu_lock); + flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); + if (kvm->arch.tdp_mmu_enabled) + flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot); + spin_unlock(&kvm->mmu_lock); + + if (flush) + kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); + +void kvm_mmu_zap_all(struct kvm *kvm) +{ + struct kvm_mmu_page *sp, *node; + LIST_HEAD(invalid_list); + int ign; + + spin_lock(&kvm->mmu_lock); +restart: + list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { + if (WARN_ON(sp->role.invalid)) + continue; + if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) + goto restart; + if (cond_resched_lock(&kvm->mmu_lock)) + goto restart; + } + + kvm_mmu_commit_zap_page(kvm, &invalid_list); + + if (kvm->arch.tdp_mmu_enabled) + kvm_tdp_mmu_zap_all(kvm); + + spin_unlock(&kvm->mmu_lock); +} + +void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) +{ + WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); + + gen &= MMIO_SPTE_GEN_MASK; + + /* + * Generation numbers are incremented in multiples of the number of + * address spaces in order to provide unique generations across all + * address spaces. Strip what is effectively the address space + * modifier prior to checking for a wrap of the MMIO generation so + * that a wrap in any address space is detected. + */ + gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); + + /* + * The very rare case: if the MMIO generation number has wrapped, + * zap all shadow pages. + */ + if (unlikely(gen == 0)) { + kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); + kvm_mmu_zap_all_fast(kvm); + } +} + +static unsigned long +mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) +{ + struct kvm *kvm; + int nr_to_scan = sc->nr_to_scan; + unsigned long freed = 0; + + mutex_lock(&kvm_lock); + + list_for_each_entry(kvm, &vm_list, vm_list) { + int idx; + LIST_HEAD(invalid_list); + + /* + * Never scan more than sc->nr_to_scan VM instances. + * Will not hit this condition practically since we do not try + * to shrink more than one VM and it is very unlikely to see + * !n_used_mmu_pages so many times. + */ + if (!nr_to_scan--) + break; + /* + * n_used_mmu_pages is accessed without holding kvm->mmu_lock + * here. We may skip a VM instance errorneosly, but we do not + * want to shrink a VM that only started to populate its MMU + * anyway. + */ + if (!kvm->arch.n_used_mmu_pages && + !kvm_has_zapped_obsolete_pages(kvm)) + continue; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + if (kvm_has_zapped_obsolete_pages(kvm)) { + kvm_mmu_commit_zap_page(kvm, + &kvm->arch.zapped_obsolete_pages); + goto unlock; + } + + freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); + +unlock: + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); + + /* + * unfair on small ones + * per-vm shrinkers cry out + * sadness comes quickly + */ + list_move_tail(&kvm->vm_list, &vm_list); + break; + } + + mutex_unlock(&kvm_lock); + return freed; +} + +static unsigned long +mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) +{ + return percpu_counter_read_positive(&kvm_total_used_mmu_pages); +} + +static struct shrinker mmu_shrinker = { + .count_objects = mmu_shrink_count, + .scan_objects = mmu_shrink_scan, + .seeks = DEFAULT_SEEKS * 10, +}; + +static void mmu_destroy_caches(void) +{ + kmem_cache_destroy(pte_list_desc_cache); + kmem_cache_destroy(mmu_page_header_cache); +} + +static void kvm_set_mmio_spte_mask(void) +{ + u64 mask; + + /* + * Set a reserved PA bit in MMIO SPTEs to generate page faults with + * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT + * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports + * 52-bit physical addresses then there are no reserved PA bits in the + * PTEs and so the reserved PA approach must be disabled. + */ + if (shadow_phys_bits < 52) + mask = BIT_ULL(51) | PT_PRESENT_MASK; + else + mask = 0; + + kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); +} + +static bool get_nx_auto_mode(void) +{ + /* Return true when CPU has the bug, and mitigations are ON */ + return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); +} + +static void __set_nx_huge_pages(bool val) +{ + nx_huge_pages = itlb_multihit_kvm_mitigation = val; +} + +static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) +{ + bool old_val = nx_huge_pages; + bool new_val; + + /* In "auto" mode deploy workaround only if CPU has the bug. */ + if (sysfs_streq(val, "off")) + new_val = 0; + else if (sysfs_streq(val, "force")) + new_val = 1; + else if (sysfs_streq(val, "auto")) + new_val = get_nx_auto_mode(); + else if (strtobool(val, &new_val) < 0) + return -EINVAL; + + __set_nx_huge_pages(new_val); + + if (new_val != old_val) { + struct kvm *kvm; + + mutex_lock(&kvm_lock); + + list_for_each_entry(kvm, &vm_list, vm_list) { + mutex_lock(&kvm->slots_lock); + kvm_mmu_zap_all_fast(kvm); + mutex_unlock(&kvm->slots_lock); + + wake_up_process(kvm->arch.nx_lpage_recovery_thread); + } + mutex_unlock(&kvm_lock); + } + + return 0; +} + +/* + * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as + * its default value of -1 is technically undefined behavior for a boolean. + */ +void __init kvm_mmu_x86_module_init(void) +{ + if (nx_huge_pages == -1) + __set_nx_huge_pages(get_nx_auto_mode()); +} + +/* + * The bulk of the MMU initialization is deferred until the vendor module is + * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need + * to be reset when a potentially different vendor module is loaded. + */ +int kvm_mmu_vendor_module_init(void) +{ + int ret = -ENOMEM; + + /* + * MMU roles use union aliasing which is, generally speaking, an + * undefined behavior. However, we supposedly know how compilers behave + * and the current status quo is unlikely to change. Guardians below are + * supposed to let us know if the assumption becomes false. + */ + BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); + BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); + BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); + + kvm_mmu_reset_all_pte_masks(); + + kvm_set_mmio_spte_mask(); + + pte_list_desc_cache = kmem_cache_create("pte_list_desc", + sizeof(struct pte_list_desc), + 0, SLAB_ACCOUNT, NULL); + if (!pte_list_desc_cache) + goto out; + + mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", + sizeof(struct kvm_mmu_page), + 0, SLAB_ACCOUNT, NULL); + if (!mmu_page_header_cache) + goto out; + + if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) + goto out; + + ret = register_shrinker(&mmu_shrinker); + if (ret) + goto out; + + return 0; + +out: + mmu_destroy_caches(); + return ret; +} + +/* + * Calculate mmu pages needed for kvm. + */ +unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) +{ + unsigned long nr_mmu_pages; + unsigned long nr_pages = 0; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int i; + + for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { + slots = __kvm_memslots(kvm, i); + + kvm_for_each_memslot(memslot, slots) + nr_pages += memslot->npages; + } + + nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; + nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); + + return nr_mmu_pages; +} + +void kvm_mmu_destroy(struct kvm_vcpu *vcpu) +{ + kvm_mmu_unload(vcpu); + free_mmu_pages(&vcpu->arch.root_mmu); + free_mmu_pages(&vcpu->arch.guest_mmu); + mmu_free_memory_caches(vcpu); +} + +void kvm_mmu_vendor_module_exit(void) +{ + mmu_destroy_caches(); + percpu_counter_destroy(&kvm_total_used_mmu_pages); + unregister_shrinker(&mmu_shrinker); + mmu_audit_disable(); +} + +static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) +{ + unsigned int old_val; + int err; + + old_val = nx_huge_pages_recovery_ratio; + err = param_set_uint(val, kp); + if (err) + return err; + + if (READ_ONCE(nx_huge_pages) && + !old_val && nx_huge_pages_recovery_ratio) { + struct kvm *kvm; + + mutex_lock(&kvm_lock); + + list_for_each_entry(kvm, &vm_list, vm_list) + wake_up_process(kvm->arch.nx_lpage_recovery_thread); + + mutex_unlock(&kvm_lock); + } + + return err; +} + +static void kvm_recover_nx_lpages(struct kvm *kvm) +{ + int rcu_idx; + struct kvm_mmu_page *sp; + unsigned int ratio; + LIST_HEAD(invalid_list); + bool flush = false; + ulong to_zap; + + rcu_idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + ratio = READ_ONCE(nx_huge_pages_recovery_ratio); + to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; + for ( ; to_zap; --to_zap) { + if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) + break; + + /* + * We use a separate list instead of just using active_mmu_pages + * because the number of lpage_disallowed pages is expected to + * be relatively small compared to the total. + */ + sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, + struct kvm_mmu_page, + lpage_disallowed_link); + WARN_ON_ONCE(!sp->lpage_disallowed); + if (sp->tdp_mmu_page) { + flush |= kvm_tdp_mmu_zap_sp(kvm, sp); + } else { + kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); + WARN_ON_ONCE(sp->lpage_disallowed); + } + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { + kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); + cond_resched_lock(&kvm->mmu_lock); + flush = false; + } + } + kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); + + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, rcu_idx); +} + +static long get_nx_lpage_recovery_timeout(u64 start_time) +{ + return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) + ? start_time + 60 * HZ - get_jiffies_64() + : MAX_SCHEDULE_TIMEOUT; +} + +static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) +{ + u64 start_time; + long remaining_time; + + while (true) { + start_time = get_jiffies_64(); + remaining_time = get_nx_lpage_recovery_timeout(start_time); + + set_current_state(TASK_INTERRUPTIBLE); + while (!kthread_should_stop() && remaining_time > 0) { + schedule_timeout(remaining_time); + remaining_time = get_nx_lpage_recovery_timeout(start_time); + set_current_state(TASK_INTERRUPTIBLE); + } + + set_current_state(TASK_RUNNING); + + if (kthread_should_stop()) + return 0; + + kvm_recover_nx_lpages(kvm); + } +} + +int kvm_mmu_post_init_vm(struct kvm *kvm) +{ + int err; + + err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, + "kvm-nx-lpage-recovery", + &kvm->arch.nx_lpage_recovery_thread); + if (!err) + kthread_unpark(kvm->arch.nx_lpage_recovery_thread); + + return err; +} + +void kvm_mmu_pre_destroy_vm(struct kvm *kvm) +{ + if (kvm->arch.nx_lpage_recovery_thread) + kthread_stop(kvm->arch.nx_lpage_recovery_thread); +} |