summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/vmx/vmx.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /arch/x86/kvm/vmx/vmx.c
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/vmx/vmx.c')
-rw-r--r--arch/x86/kvm/vmx/vmx.c8233
1 files changed, 8233 insertions, 0 deletions
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
new file mode 100644
index 000000000..2445c6103
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -0,0 +1,8233 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ */
+
+#include <linux/highmem.h>
+#include <linux/hrtimer.h>
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/mm.h>
+#include <linux/objtool.h>
+#include <linux/sched.h>
+#include <linux/sched/smt.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/trace_events.h>
+#include <linux/entry-kvm.h>
+
+#include <asm/apic.h>
+#include <asm/asm.h>
+#include <asm/cpu.h>
+#include <asm/cpu_device_id.h>
+#include <asm/debugreg.h>
+#include <asm/desc.h>
+#include <asm/fpu/internal.h>
+#include <asm/idtentry.h>
+#include <asm/io.h>
+#include <asm/irq_remapping.h>
+#include <asm/kexec.h>
+#include <asm/perf_event.h>
+#include <asm/mce.h>
+#include <asm/mmu_context.h>
+#include <asm/mshyperv.h>
+#include <asm/mwait.h>
+#include <asm/spec-ctrl.h>
+#include <asm/virtext.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "cpuid.h"
+#include "evmcs.h"
+#include "irq.h"
+#include "kvm_cache_regs.h"
+#include "lapic.h"
+#include "mmu.h"
+#include "nested.h"
+#include "pmu.h"
+#include "trace.h"
+#include "vmcs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+#include "x86.h"
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+#ifdef MODULE
+static const struct x86_cpu_id vmx_cpu_id[] = {
+ X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+#endif
+
+bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly enable_vnmi = 1;
+module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
+
+bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+ enable_unrestricted_guest, bool, S_IRUGO);
+
+bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 1;
+module_param(nested, bool, S_IRUGO);
+
+bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+static bool __read_mostly dump_invalid_vmcs = 0;
+module_param(dump_invalid_vmcs, bool, 0644);
+
+#define MSR_BITMAP_MODE_X2APIC 1
+#define MSR_BITMAP_MODE_X2APIC_APICV 2
+
+#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
+
+/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
+static int __read_mostly cpu_preemption_timer_multi;
+static bool __read_mostly enable_preemption_timer = 1;
+#ifdef CONFIG_X86_64
+module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
+#endif
+
+extern bool __read_mostly allow_smaller_maxphyaddr;
+module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
+
+#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
+#define KVM_VM_CR0_ALWAYS_ON \
+ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
+
+#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
+ RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
+ RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
+ RTIT_STATUS_BYTECNT))
+
+/*
+ * List of MSRs that can be directly passed to the guest.
+ * In addition to these x2apic and PT MSRs are handled specially.
+ */
+static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
+ MSR_IA32_SPEC_CTRL,
+ MSR_IA32_PRED_CMD,
+ MSR_IA32_TSC,
+#ifdef CONFIG_X86_64
+ MSR_FS_BASE,
+ MSR_GS_BASE,
+ MSR_KERNEL_GS_BASE,
+#endif
+ MSR_IA32_SYSENTER_CS,
+ MSR_IA32_SYSENTER_ESP,
+ MSR_IA32_SYSENTER_EIP,
+ MSR_CORE_C1_RES,
+ MSR_CORE_C3_RESIDENCY,
+ MSR_CORE_C6_RESIDENCY,
+ MSR_CORE_C7_RESIDENCY,
+};
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap: upper bound on the amount of time between two successive
+ * executions of PAUSE in a loop. Also indicate if ple enabled.
+ * According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ * in a PAUSE loop. Tests indicate that most spinlocks are held for
+ * less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
+module_param(ple_gap, uint, 0444);
+
+static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, uint, 0444);
+
+/* Default doubles per-vcpu window every exit. */
+static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, uint, 0444);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, uint, 0444);
+
+/* Default is to compute the maximum so we can never overflow. */
+static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, uint, 0444);
+
+/* Default is SYSTEM mode, 1 for host-guest mode */
+int __read_mostly pt_mode = PT_MODE_SYSTEM;
+module_param(pt_mode, int, S_IRUGO);
+
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
+static DEFINE_MUTEX(vmx_l1d_flush_mutex);
+
+/* Storage for pre module init parameter parsing */
+static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
+
+static const struct {
+ const char *option;
+ bool for_parse;
+} vmentry_l1d_param[] = {
+ [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
+ [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
+ [VMENTER_L1D_FLUSH_COND] = {"cond", true},
+ [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
+ [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
+ [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
+};
+
+#define L1D_CACHE_ORDER 4
+static void *vmx_l1d_flush_pages;
+
+/* Control for disabling CPU Fill buffer clear */
+static bool __read_mostly vmx_fb_clear_ctrl_available;
+
+static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+{
+ struct page *page;
+ unsigned int i;
+
+ if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+ return 0;
+ }
+
+ if (!enable_ept) {
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
+ return 0;
+ }
+
+ if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+ u64 msr;
+
+ rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+ if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+ return 0;
+ }
+ }
+
+ /* If set to auto use the default l1tf mitigation method */
+ if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
+ switch (l1tf_mitigation) {
+ case L1TF_MITIGATION_OFF:
+ l1tf = VMENTER_L1D_FLUSH_NEVER;
+ break;
+ case L1TF_MITIGATION_FLUSH_NOWARN:
+ case L1TF_MITIGATION_FLUSH:
+ case L1TF_MITIGATION_FLUSH_NOSMT:
+ l1tf = VMENTER_L1D_FLUSH_COND;
+ break;
+ case L1TF_MITIGATION_FULL:
+ case L1TF_MITIGATION_FULL_FORCE:
+ l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+ break;
+ }
+ } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
+ l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+ }
+
+ if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
+ !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+ /*
+ * This allocation for vmx_l1d_flush_pages is not tied to a VM
+ * lifetime and so should not be charged to a memcg.
+ */
+ page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
+ if (!page)
+ return -ENOMEM;
+ vmx_l1d_flush_pages = page_address(page);
+
+ /*
+ * Initialize each page with a different pattern in
+ * order to protect against KSM in the nested
+ * virtualization case.
+ */
+ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
+ memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
+ PAGE_SIZE);
+ }
+ }
+
+ l1tf_vmx_mitigation = l1tf;
+
+ if (l1tf != VMENTER_L1D_FLUSH_NEVER)
+ static_branch_enable(&vmx_l1d_should_flush);
+ else
+ static_branch_disable(&vmx_l1d_should_flush);
+
+ if (l1tf == VMENTER_L1D_FLUSH_COND)
+ static_branch_enable(&vmx_l1d_flush_cond);
+ else
+ static_branch_disable(&vmx_l1d_flush_cond);
+ return 0;
+}
+
+static int vmentry_l1d_flush_parse(const char *s)
+{
+ unsigned int i;
+
+ if (s) {
+ for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
+ if (vmentry_l1d_param[i].for_parse &&
+ sysfs_streq(s, vmentry_l1d_param[i].option))
+ return i;
+ }
+ }
+ return -EINVAL;
+}
+
+static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+{
+ int l1tf, ret;
+
+ l1tf = vmentry_l1d_flush_parse(s);
+ if (l1tf < 0)
+ return l1tf;
+
+ if (!boot_cpu_has(X86_BUG_L1TF))
+ return 0;
+
+ /*
+ * Has vmx_init() run already? If not then this is the pre init
+ * parameter parsing. In that case just store the value and let
+ * vmx_init() do the proper setup after enable_ept has been
+ * established.
+ */
+ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
+ vmentry_l1d_flush_param = l1tf;
+ return 0;
+ }
+
+ mutex_lock(&vmx_l1d_flush_mutex);
+ ret = vmx_setup_l1d_flush(l1tf);
+ mutex_unlock(&vmx_l1d_flush_mutex);
+ return ret;
+}
+
+static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+{
+ if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
+ return sprintf(s, "???\n");
+
+ return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
+}
+
+static void vmx_setup_fb_clear_ctrl(void)
+{
+ u64 msr;
+
+ if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
+ !boot_cpu_has_bug(X86_BUG_MDS) &&
+ !boot_cpu_has_bug(X86_BUG_TAA)) {
+ rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+ if (msr & ARCH_CAP_FB_CLEAR_CTRL)
+ vmx_fb_clear_ctrl_available = true;
+ }
+}
+
+static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
+{
+ u64 msr;
+
+ if (!vmx->disable_fb_clear)
+ return;
+
+ msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
+ msr |= FB_CLEAR_DIS;
+ native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
+ /* Cache the MSR value to avoid reading it later */
+ vmx->msr_ia32_mcu_opt_ctrl = msr;
+}
+
+static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
+{
+ if (!vmx->disable_fb_clear)
+ return;
+
+ vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
+ native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
+}
+
+static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
+{
+ vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
+
+ /*
+ * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
+ * at VMEntry. Skip the MSR read/write when a guest has no use case to
+ * execute VERW.
+ */
+ if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
+ ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
+ (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
+ (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
+ (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
+ (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
+ vmx->disable_fb_clear = false;
+}
+
+static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+ .set = vmentry_l1d_flush_set,
+ .get = vmentry_l1d_flush_get,
+};
+module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type);
+
+void vmx_vmexit(void);
+
+#define vmx_insn_failed(fmt...) \
+do { \
+ WARN_ONCE(1, fmt); \
+ pr_warn_ratelimited(fmt); \
+} while (0)
+
+asmlinkage void vmread_error(unsigned long field, bool fault)
+{
+ if (fault)
+ kvm_spurious_fault();
+ else
+ vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
+}
+
+noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+ vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
+ field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+}
+
+noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
+{
+ vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
+}
+
+noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
+{
+ vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
+}
+
+noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
+{
+ vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
+ ext, vpid, gva);
+}
+
+noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
+{
+ vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
+ ext, eptp, gpa);
+}
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+struct vmcs_config vmcs_config;
+struct vmx_capability vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg) \
+ [VCPU_SREG_##seg] = { \
+ .selector = GUEST_##seg##_SELECTOR, \
+ .base = GUEST_##seg##_BASE, \
+ .limit = GUEST_##seg##_LIMIT, \
+ .ar_bytes = GUEST_##seg##_AR_BYTES, \
+ }
+
+static const struct kvm_vmx_segment_field {
+ unsigned selector;
+ unsigned base;
+ unsigned limit;
+ unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+ VMX_SEGMENT_FIELD(CS),
+ VMX_SEGMENT_FIELD(DS),
+ VMX_SEGMENT_FIELD(ES),
+ VMX_SEGMENT_FIELD(FS),
+ VMX_SEGMENT_FIELD(GS),
+ VMX_SEGMENT_FIELD(SS),
+ VMX_SEGMENT_FIELD(TR),
+ VMX_SEGMENT_FIELD(LDTR),
+};
+
+static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+{
+ vmx->segment_cache.bitmask = 0;
+}
+
+static unsigned long host_idt_base;
+
+/*
+ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
+ * will emulate SYSCALL in legacy mode if the vendor string in guest
+ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
+ * support this emulation, IA32_STAR must always be included in
+ * vmx_uret_msrs_list[], even in i386 builds.
+ */
+static const u32 vmx_uret_msrs_list[] = {
+#ifdef CONFIG_X86_64
+ MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+ MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+ MSR_IA32_TSX_CTRL,
+};
+
+#if IS_ENABLED(CONFIG_HYPERV)
+static bool __read_mostly enlightened_vmcs = true;
+module_param(enlightened_vmcs, bool, 0444);
+
+/* check_ept_pointer() should be under protection of ept_pointer_lock. */
+static void check_ept_pointer_match(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ u64 tmp_eptp = INVALID_PAGE;
+ int i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!VALID_PAGE(tmp_eptp)) {
+ tmp_eptp = to_vmx(vcpu)->ept_pointer;
+ } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
+ to_kvm_vmx(kvm)->ept_pointers_match
+ = EPT_POINTERS_MISMATCH;
+ return;
+ }
+ }
+
+ to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
+}
+
+static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
+ void *data)
+{
+ struct kvm_tlb_range *range = data;
+
+ return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
+ range->pages);
+}
+
+static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
+ struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
+{
+ u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
+
+ /*
+ * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
+ * of the base of EPT PML4 table, strip off EPT configuration
+ * information.
+ */
+ if (range)
+ return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
+ kvm_fill_hv_flush_list_func, (void *)range);
+ else
+ return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
+}
+
+static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
+ struct kvm_tlb_range *range)
+{
+ struct kvm_vcpu *vcpu;
+ int ret = 0, i;
+
+ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+ if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
+ check_ept_pointer_match(kvm);
+
+ if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ /* If ept_pointer is invalid pointer, bypass flush request. */
+ if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
+ ret |= __hv_remote_flush_tlb_with_range(
+ kvm, vcpu, range);
+ }
+ } else {
+ ret = __hv_remote_flush_tlb_with_range(kvm,
+ kvm_get_vcpu(kvm, 0), range);
+ }
+
+ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ return ret;
+}
+static int hv_remote_flush_tlb(struct kvm *kvm)
+{
+ return hv_remote_flush_tlb_with_range(kvm, NULL);
+}
+
+static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
+{
+ struct hv_enlightened_vmcs *evmcs;
+ struct hv_partition_assist_pg **p_hv_pa_pg =
+ &vcpu->kvm->arch.hyperv.hv_pa_pg;
+ /*
+ * Synthetic VM-Exit is not enabled in current code and so All
+ * evmcs in singe VM shares same assist page.
+ */
+ if (!*p_hv_pa_pg)
+ *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
+
+ if (!*p_hv_pa_pg)
+ return -ENOMEM;
+
+ evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
+
+ evmcs->partition_assist_page =
+ __pa(*p_hv_pa_pg);
+ evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
+ evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
+
+ return 0;
+}
+
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+/*
+ * Comment's format: document - errata name - stepping - processor name.
+ * Refer from
+ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
+ */
+static u32 vmx_preemption_cpu_tfms[] = {
+/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
+0x000206E6,
+/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
+/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
+/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020652,
+/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020655,
+/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
+/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
+/*
+ * 320767.pdf - AAP86 - B1 -
+ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
+ */
+0x000106E5,
+/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
+0x000106A0,
+/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
+0x000106A1,
+/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
+0x000106A4,
+ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
+ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
+ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
+0x000106A5,
+ /* Xeon E3-1220 V2 */
+0x000306A8,
+};
+
+static inline bool cpu_has_broken_vmx_preemption_timer(void)
+{
+ u32 eax = cpuid_eax(0x00000001), i;
+
+ /* Clear the reserved bits */
+ eax &= ~(0x3U << 14 | 0xfU << 28);
+ for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
+ if (eax == vmx_preemption_cpu_tfms[i])
+ return true;
+
+ return false;
+}
+
+static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
+{
+ return flexpriority_enabled && lapic_in_kernel(vcpu);
+}
+
+static inline bool report_flexpriority(void)
+{
+ return flexpriority_enabled;
+}
+
+static int possible_passthrough_msr_slot(u32 msr)
+{
+ u32 i;
+
+ for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
+ if (vmx_possible_passthrough_msrs[i] == msr)
+ return i;
+
+ return -ENOENT;
+}
+
+static bool is_valid_passthrough_msr(u32 msr)
+{
+ bool r;
+
+ switch (msr) {
+ case 0x800 ... 0x8ff:
+ /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
+ return true;
+ case MSR_IA32_RTIT_STATUS:
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ case MSR_IA32_RTIT_CR3_MATCH:
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
+ return true;
+ }
+
+ r = possible_passthrough_msr_slot(msr) != -ENOENT;
+
+ WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
+
+ return r;
+}
+
+static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ for (i = 0; i < vmx->nr_uret_msrs; ++i)
+ if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
+ return i;
+ return -1;
+}
+
+struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ i = __vmx_find_uret_msr(vmx, msr);
+ if (i >= 0)
+ return &vmx->guest_uret_msrs[i];
+ return NULL;
+}
+
+static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
+ struct vmx_uret_msr *msr, u64 data)
+{
+ int ret = 0;
+
+ u64 old_msr_data = msr->data;
+ msr->data = data;
+ if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
+ preempt_disable();
+ ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
+ preempt_enable();
+ if (ret)
+ msr->data = old_msr_data;
+ }
+ return ret;
+}
+
+#ifdef CONFIG_KEXEC_CORE
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v;
+
+ list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ vmcs_clear(v->vmcs);
+}
+#endif /* CONFIG_KEXEC_CORE */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+ struct loaded_vmcs *loaded_vmcs = arg;
+ int cpu = raw_smp_processor_id();
+
+ if (loaded_vmcs->cpu != cpu)
+ return; /* vcpu migration can race with cpu offline */
+ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+ per_cpu(current_vmcs, cpu) = NULL;
+
+ vmcs_clear(loaded_vmcs->vmcs);
+ if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+ vmcs_clear(loaded_vmcs->shadow_vmcs);
+
+ list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+ /*
+ * Ensure all writes to loaded_vmcs, including deleting it from its
+ * current percpu list, complete before setting loaded_vmcs->vcpu to
+ * -1, otherwise a different cpu can see vcpu == -1 first and add
+ * loaded_vmcs to its percpu list before it's deleted from this cpu's
+ * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
+ */
+ smp_wmb();
+
+ loaded_vmcs->cpu = -1;
+ loaded_vmcs->launched = 0;
+}
+
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+ int cpu = loaded_vmcs->cpu;
+
+ if (cpu != -1)
+ smp_call_function_single(cpu,
+ __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+ unsigned field)
+{
+ bool ret;
+ u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+ if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
+ kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
+ vmx->segment_cache.bitmask = 0;
+ }
+ ret = vmx->segment_cache.bitmask & mask;
+ vmx->segment_cache.bitmask |= mask;
+ return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+ *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+ return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+ ulong *p = &vmx->segment_cache.seg[seg].base;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+ *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+ return *p;
+}
+
+void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+ u32 eb;
+
+ eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+ (1u << DB_VECTOR) | (1u << AC_VECTOR);
+ /*
+ * Guest access to VMware backdoor ports could legitimately
+ * trigger #GP because of TSS I/O permission bitmap.
+ * We intercept those #GP and allow access to them anyway
+ * as VMware does.
+ */
+ if (enable_vmware_backdoor)
+ eb |= (1u << GP_VECTOR);
+ if ((vcpu->guest_debug &
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+ eb |= 1u << BP_VECTOR;
+ if (to_vmx(vcpu)->rmode.vm86_active)
+ eb = ~0;
+ if (!vmx_need_pf_intercept(vcpu))
+ eb &= ~(1u << PF_VECTOR);
+
+ /* When we are running a nested L2 guest and L1 specified for it a
+ * certain exception bitmap, we must trap the same exceptions and pass
+ * them to L1. When running L2, we will only handle the exceptions
+ * specified above if L1 did not want them.
+ */
+ if (is_guest_mode(vcpu))
+ eb |= get_vmcs12(vcpu)->exception_bitmap;
+ else {
+ /*
+ * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
+ * between guest and host. In that case we only care about present
+ * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
+ * prepare_vmcs02_rare.
+ */
+ bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
+ int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
+ }
+
+ vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+/*
+ * Check if MSR is intercepted for currently loaded MSR bitmap.
+ */
+static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
+{
+ unsigned long *msr_bitmap;
+ int f = sizeof(unsigned long);
+
+ if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
+ return true;
+
+ msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
+
+ if (msr <= 0x1fff) {
+ return !!test_bit(msr, msr_bitmap + 0x800 / f);
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+ }
+
+ return true;
+}
+
+unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
+{
+ unsigned int flags = 0;
+
+ if (vmx->loaded_vmcs->launched)
+ flags |= VMX_RUN_VMRESUME;
+
+ /*
+ * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
+ * to change it directly without causing a vmexit. In that case read
+ * it after vmexit and store it in vmx->spec_ctrl.
+ */
+ if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
+ flags |= VMX_RUN_SAVE_SPEC_CTRL;
+
+ return flags;
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit)
+{
+ vm_entry_controls_clearbit(vmx, entry);
+ vm_exit_controls_clearbit(vmx, exit);
+}
+
+int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
+{
+ unsigned int i;
+
+ for (i = 0; i < m->nr; ++i) {
+ if (m->val[i].index == msr)
+ return i;
+ }
+ return -ENOENT;
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+ int i;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer()) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl()) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+ return;
+ }
+ break;
+ }
+ i = vmx_find_loadstore_msr_slot(&m->guest, msr);
+ if (i < 0)
+ goto skip_guest;
+ --m->guest.nr;
+ m->guest.val[i] = m->guest.val[m->guest.nr];
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+
+skip_guest:
+ i = vmx_find_loadstore_msr_slot(&m->host, msr);
+ if (i < 0)
+ return;
+
+ --m->host.nr;
+ m->host.val[i] = m->host.val[m->host.nr];
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit,
+ unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+ u64 guest_val, u64 host_val)
+{
+ vmcs_write64(guest_val_vmcs, guest_val);
+ if (host_val_vmcs != HOST_IA32_EFER)
+ vmcs_write64(host_val_vmcs, host_val);
+ vm_entry_controls_setbit(vmx, entry);
+ vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+ u64 guest_val, u64 host_val, bool entry_only)
+{
+ int i, j = 0;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer()) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER,
+ GUEST_IA32_EFER,
+ HOST_IA32_EFER,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl()) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+ GUEST_IA32_PERF_GLOBAL_CTRL,
+ HOST_IA32_PERF_GLOBAL_CTRL,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ case MSR_IA32_PEBS_ENABLE:
+ /* PEBS needs a quiescent period after being disabled (to write
+ * a record). Disabling PEBS through VMX MSR swapping doesn't
+ * provide that period, so a CPU could write host's record into
+ * guest's memory.
+ */
+ wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
+ }
+
+ i = vmx_find_loadstore_msr_slot(&m->guest, msr);
+ if (!entry_only)
+ j = vmx_find_loadstore_msr_slot(&m->host, msr);
+
+ if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
+ (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
+ printk_once(KERN_WARNING "Not enough msr switch entries. "
+ "Can't add msr %x\n", msr);
+ return;
+ }
+ if (i < 0) {
+ i = m->guest.nr++;
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+ }
+ m->guest.val[i].index = msr;
+ m->guest.val[i].value = guest_val;
+
+ if (entry_only)
+ return;
+
+ if (j < 0) {
+ j = m->host.nr++;
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+ }
+ m->host.val[j].index = msr;
+ m->host.val[j].value = host_val;
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx)
+{
+ u64 guest_efer = vmx->vcpu.arch.efer;
+ u64 ignore_bits = 0;
+ int i;
+
+ /* Shadow paging assumes NX to be available. */
+ if (!enable_ept)
+ guest_efer |= EFER_NX;
+
+ /*
+ * LMA and LME handled by hardware; SCE meaningless outside long mode.
+ */
+ ignore_bits |= EFER_SCE;
+#ifdef CONFIG_X86_64
+ ignore_bits |= EFER_LMA | EFER_LME;
+ /* SCE is meaningful only in long mode on Intel */
+ if (guest_efer & EFER_LMA)
+ ignore_bits &= ~(u64)EFER_SCE;
+#endif
+
+ /*
+ * On EPT, we can't emulate NX, so we must switch EFER atomically.
+ * On CPUs that support "load IA32_EFER", always switch EFER
+ * atomically, since it's faster than switching it manually.
+ */
+ if (cpu_has_load_ia32_efer() ||
+ (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+ if (!(guest_efer & EFER_LMA))
+ guest_efer &= ~EFER_LME;
+ if (guest_efer != host_efer)
+ add_atomic_switch_msr(vmx, MSR_EFER,
+ guest_efer, host_efer, false);
+ else
+ clear_atomic_switch_msr(vmx, MSR_EFER);
+ return false;
+ }
+
+ i = __vmx_find_uret_msr(vmx, MSR_EFER);
+ if (i < 0)
+ return false;
+
+ clear_atomic_switch_msr(vmx, MSR_EFER);
+
+ guest_efer &= ~ignore_bits;
+ guest_efer |= host_efer & ignore_bits;
+
+ vmx->guest_uret_msrs[i].data = guest_efer;
+ vmx->guest_uret_msrs[i].mask = ~ignore_bits;
+
+ return true;
+}
+
+#ifdef CONFIG_X86_32
+/*
+ * On 32-bit kernels, VM exits still load the FS and GS bases from the
+ * VMCS rather than the segment table. KVM uses this helper to figure
+ * out the current bases to poke them into the VMCS before entry.
+ */
+static unsigned long segment_base(u16 selector)
+{
+ struct desc_struct *table;
+ unsigned long v;
+
+ if (!(selector & ~SEGMENT_RPL_MASK))
+ return 0;
+
+ table = get_current_gdt_ro();
+
+ if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
+ u16 ldt_selector = kvm_read_ldt();
+
+ if (!(ldt_selector & ~SEGMENT_RPL_MASK))
+ return 0;
+
+ table = (struct desc_struct *)segment_base(ldt_selector);
+ }
+ v = get_desc_base(&table[selector >> 3]);
+ return v;
+}
+#endif
+
+static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
+{
+ return vmx_pt_mode_is_host_guest() &&
+ !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
+}
+
+static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
+{
+ /* The base must be 128-byte aligned and a legal physical address. */
+ return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
+}
+
+static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+ u32 i;
+
+ wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+ wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+ wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+ wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+ for (i = 0; i < addr_range; i++) {
+ wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+ wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+ }
+}
+
+static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+ u32 i;
+
+ rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+ rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+ rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+ rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+ for (i = 0; i < addr_range; i++) {
+ rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+ rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+ }
+}
+
+static void pt_guest_enter(struct vcpu_vmx *vmx)
+{
+ if (vmx_pt_mode_is_system())
+ return;
+
+ /*
+ * GUEST_IA32_RTIT_CTL is already set in the VMCS.
+ * Save host state before VM entry.
+ */
+ rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+ wrmsrl(MSR_IA32_RTIT_CTL, 0);
+ pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+ pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+ }
+}
+
+static void pt_guest_exit(struct vcpu_vmx *vmx)
+{
+ if (vmx_pt_mode_is_system())
+ return;
+
+ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+ pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+ pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+ }
+
+ /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
+ wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+}
+
+void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
+ unsigned long fs_base, unsigned long gs_base)
+{
+ if (unlikely(fs_sel != host->fs_sel)) {
+ if (!(fs_sel & 7))
+ vmcs_write16(HOST_FS_SELECTOR, fs_sel);
+ else
+ vmcs_write16(HOST_FS_SELECTOR, 0);
+ host->fs_sel = fs_sel;
+ }
+ if (unlikely(gs_sel != host->gs_sel)) {
+ if (!(gs_sel & 7))
+ vmcs_write16(HOST_GS_SELECTOR, gs_sel);
+ else
+ vmcs_write16(HOST_GS_SELECTOR, 0);
+ host->gs_sel = gs_sel;
+ }
+ if (unlikely(fs_base != host->fs_base)) {
+ vmcs_writel(HOST_FS_BASE, fs_base);
+ host->fs_base = fs_base;
+ }
+ if (unlikely(gs_base != host->gs_base)) {
+ vmcs_writel(HOST_GS_BASE, gs_base);
+ host->gs_base = gs_base;
+ }
+}
+
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs_host_state *host_state;
+#ifdef CONFIG_X86_64
+ int cpu = raw_smp_processor_id();
+#endif
+ unsigned long fs_base, gs_base;
+ u16 fs_sel, gs_sel;
+ int i;
+
+ vmx->req_immediate_exit = false;
+
+ /*
+ * Note that guest MSRs to be saved/restored can also be changed
+ * when guest state is loaded. This happens when guest transitions
+ * to/from long-mode by setting MSR_EFER.LMA.
+ */
+ if (!vmx->guest_uret_msrs_loaded) {
+ vmx->guest_uret_msrs_loaded = true;
+ for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
+ kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
+ vmx->guest_uret_msrs[i].data,
+ vmx->guest_uret_msrs[i].mask);
+
+ }
+
+ if (vmx->nested.need_vmcs12_to_shadow_sync)
+ nested_sync_vmcs12_to_shadow(vcpu);
+
+ if (vmx->guest_state_loaded)
+ return;
+
+ host_state = &vmx->loaded_vmcs->host_state;
+
+ /*
+ * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
+ * allow segment selectors with cpl > 0 or ti == 1.
+ */
+ host_state->ldt_sel = kvm_read_ldt();
+
+#ifdef CONFIG_X86_64
+ savesegment(ds, host_state->ds_sel);
+ savesegment(es, host_state->es_sel);
+
+ gs_base = cpu_kernelmode_gs_base(cpu);
+ if (likely(is_64bit_mm(current->mm))) {
+ current_save_fsgs();
+ fs_sel = current->thread.fsindex;
+ gs_sel = current->thread.gsindex;
+ fs_base = current->thread.fsbase;
+ vmx->msr_host_kernel_gs_base = current->thread.gsbase;
+ } else {
+ savesegment(fs, fs_sel);
+ savesegment(gs, gs_sel);
+ fs_base = read_msr(MSR_FS_BASE);
+ vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+ }
+
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#else
+ savesegment(fs, fs_sel);
+ savesegment(gs, gs_sel);
+ fs_base = segment_base(fs_sel);
+ gs_base = segment_base(gs_sel);
+#endif
+
+ vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
+ vmx->guest_state_loaded = true;
+}
+
+static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
+{
+ struct vmcs_host_state *host_state;
+
+ if (!vmx->guest_state_loaded)
+ return;
+
+ host_state = &vmx->loaded_vmcs->host_state;
+
+ ++vmx->vcpu.stat.host_state_reload;
+
+#ifdef CONFIG_X86_64
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+ if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
+ kvm_load_ldt(host_state->ldt_sel);
+#ifdef CONFIG_X86_64
+ load_gs_index(host_state->gs_sel);
+#else
+ loadsegment(gs, host_state->gs_sel);
+#endif
+ }
+ if (host_state->fs_sel & 7)
+ loadsegment(fs, host_state->fs_sel);
+#ifdef CONFIG_X86_64
+ if (unlikely(host_state->ds_sel | host_state->es_sel)) {
+ loadsegment(ds, host_state->ds_sel);
+ loadsegment(es, host_state->es_sel);
+ }
+#endif
+ invalidate_tss_limit();
+#ifdef CONFIG_X86_64
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+ load_fixmap_gdt(raw_smp_processor_id());
+ vmx->guest_state_loaded = false;
+ vmx->guest_uret_msrs_loaded = false;
+}
+
+#ifdef CONFIG_X86_64
+static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
+{
+ preempt_disable();
+ if (vmx->guest_state_loaded)
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+ preempt_enable();
+ return vmx->msr_guest_kernel_gs_base;
+}
+
+static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
+{
+ preempt_disable();
+ if (vmx->guest_state_loaded)
+ wrmsrl(MSR_KERNEL_GS_BASE, data);
+ preempt_enable();
+ vmx->msr_guest_kernel_gs_base = data;
+}
+#endif
+
+void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
+ struct loaded_vmcs *buddy)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
+ struct vmcs *prev;
+
+ if (!already_loaded) {
+ loaded_vmcs_clear(vmx->loaded_vmcs);
+ local_irq_disable();
+
+ /*
+ * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
+ * this cpu's percpu list, otherwise it may not yet be deleted
+ * from its previous cpu's percpu list. Pairs with the
+ * smb_wmb() in __loaded_vmcs_clear().
+ */
+ smp_rmb();
+
+ list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+ &per_cpu(loaded_vmcss_on_cpu, cpu));
+ local_irq_enable();
+ }
+
+ prev = per_cpu(current_vmcs, cpu);
+ if (prev != vmx->loaded_vmcs->vmcs) {
+ per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+
+ /*
+ * No indirect branch prediction barrier needed when switching
+ * the active VMCS within a vCPU, unless IBRS is advertised to
+ * the vCPU. To minimize the number of IBPBs executed, KVM
+ * performs IBPB on nested VM-Exit (a single nested transition
+ * may switch the active VMCS multiple times).
+ */
+ if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
+ indirect_branch_prediction_barrier();
+ }
+
+ if (!already_loaded) {
+ void *gdt = get_current_gdt_ro();
+ unsigned long sysenter_esp;
+
+ /*
+ * Flush all EPTP/VPID contexts, the new pCPU may have stale
+ * TLB entries from its previous association with the vCPU.
+ */
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+
+ /*
+ * Linux uses per-cpu TSS and GDT, so set these when switching
+ * processors. See 22.2.4.
+ */
+ vmcs_writel(HOST_TR_BASE,
+ (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
+ vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
+
+ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+ vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+
+ vmx->loaded_vmcs->cpu = cpu;
+ }
+
+ /* Setup TSC multiplier */
+ if (kvm_has_tsc_control &&
+ vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
+ decache_tsc_multiplier(vmx);
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
+
+ vmx_vcpu_pi_load(vcpu, cpu);
+
+ vmx->host_debugctlmsr = get_debugctlmsr();
+}
+
+static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ vmx_vcpu_pi_put(vcpu);
+
+ vmx_prepare_switch_to_host(to_vmx(vcpu));
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+ return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
+}
+
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long rflags, save_rflags;
+
+ if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
+ kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
+ rflags = vmcs_readl(GUEST_RFLAGS);
+ if (vmx->rmode.vm86_active) {
+ rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ save_rflags = vmx->rmode.save_rflags;
+ rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ }
+ vmx->rflags = rflags;
+ }
+ return vmx->rflags;
+}
+
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long old_rflags;
+
+ /*
+ * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
+ * is an unrestricted guest in order to mark L2 as needing emulation
+ * if L1 runs L2 as a restricted guest.
+ */
+ if (is_unrestricted_guest(vcpu)) {
+ kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
+ vmx->rflags = rflags;
+ vmcs_writel(GUEST_RFLAGS, rflags);
+ return;
+ }
+
+ old_rflags = vmx_get_rflags(vcpu);
+ vmx->rflags = rflags;
+ if (vmx->rmode.vm86_active) {
+ vmx->rmode.save_rflags = rflags;
+ rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+ }
+ vmcs_writel(GUEST_RFLAGS, rflags);
+
+ if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+ u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ int ret = 0;
+
+ if (interruptibility & GUEST_INTR_STATE_STI)
+ ret |= KVM_X86_SHADOW_INT_STI;
+ if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+ ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+ return ret;
+}
+
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+ u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ u32 interruptibility = interruptibility_old;
+
+ interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+ if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+ interruptibility |= GUEST_INTR_STATE_MOV_SS;
+ else if (mask & KVM_X86_SHADOW_INT_STI)
+ interruptibility |= GUEST_INTR_STATE_STI;
+
+ if ((interruptibility != interruptibility_old))
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long value;
+
+ /*
+ * Any MSR write that attempts to change bits marked reserved will
+ * case a #GP fault.
+ */
+ if (data & vmx->pt_desc.ctl_bitmask)
+ return 1;
+
+ /*
+ * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
+ * result in a #GP unless the same write also clears TraceEn.
+ */
+ if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
+ ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
+ return 1;
+
+ /*
+ * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
+ * and FabricEn would cause #GP, if
+ * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
+ */
+ if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
+ !(data & RTIT_CTL_FABRIC_EN) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output))
+ return 1;
+
+ /*
+ * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
+ * utilize encodings marked reserved will casue a #GP fault.
+ */
+ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
+ !test_bit((data & RTIT_CTL_MTC_RANGE) >>
+ RTIT_CTL_MTC_RANGE_OFFSET, &value))
+ return 1;
+ value = intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cycle_thresholds);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+ !test_bit((data & RTIT_CTL_CYC_THRESH) >>
+ RTIT_CTL_CYC_THRESH_OFFSET, &value))
+ return 1;
+ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+ !test_bit((data & RTIT_CTL_PSB_FREQ) >>
+ RTIT_CTL_PSB_FREQ_OFFSET, &value))
+ return 1;
+
+ /*
+ * If ADDRx_CFG is reserved or the encodings is >2 will
+ * cause a #GP fault.
+ */
+ value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
+ return 1;
+
+ return 0;
+}
+
+static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
+{
+ return true;
+}
+
+static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ unsigned long rip, orig_rip;
+
+ /*
+ * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
+ * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
+ * set when EPT misconfig occurs. In practice, real hardware updates
+ * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
+ * (namely Hyper-V) don't set it due to it being undefined behavior,
+ * i.e. we end up advancing IP with some random value.
+ */
+ if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
+ to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
+ orig_rip = kvm_rip_read(vcpu);
+ rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+#ifdef CONFIG_X86_64
+ /*
+ * We need to mask out the high 32 bits of RIP if not in 64-bit
+ * mode, but just finding out that we are in 64-bit mode is
+ * quite expensive. Only do it if there was a carry.
+ */
+ if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
+ rip = (u32)rip;
+#endif
+ kvm_rip_write(vcpu, rip);
+ } else {
+ if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
+ return 0;
+ }
+
+ /* skipping an emulated instruction also counts */
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ return 1;
+}
+
+/*
+ * Recognizes a pending MTF VM-exit and records the nested state for later
+ * delivery.
+ */
+static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!is_guest_mode(vcpu))
+ return;
+
+ /*
+ * Per the SDM, MTF takes priority over debug-trap exceptions besides
+ * T-bit traps. As instruction emulation is completed (i.e. at the
+ * instruction boundary), any #DB exception pending delivery must be a
+ * debug-trap. Record the pending MTF state to be delivered in
+ * vmx_check_nested_events().
+ */
+ if (nested_cpu_has_mtf(vmcs12) &&
+ (!vcpu->arch.exception.pending ||
+ vcpu->arch.exception.nr == DB_VECTOR))
+ vmx->nested.mtf_pending = true;
+ else
+ vmx->nested.mtf_pending = false;
+}
+
+static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ vmx_update_emulated_instruction(vcpu);
+ return skip_emulated_instruction(vcpu);
+}
+
+static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Ensure that we clear the HLT state in the VMCS. We don't need to
+ * explicitly skip the instruction because if the HLT state is set,
+ * then the instruction is already executing and RIP has already been
+ * advanced.
+ */
+ if (kvm_hlt_in_guest(vcpu->kvm) &&
+ vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
+ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned nr = vcpu->arch.exception.nr;
+ bool has_error_code = vcpu->arch.exception.has_error_code;
+ u32 error_code = vcpu->arch.exception.error_code;
+ u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+ kvm_deliver_exception_payload(vcpu);
+
+ if (has_error_code) {
+ /*
+ * Despite the error code being architecturally defined as 32
+ * bits, and the VMCS field being 32 bits, Intel CPUs and thus
+ * VMX don't actually supporting setting bits 31:16. Hardware
+ * will (should) never provide a bogus error code, but AMD CPUs
+ * do generate error codes with bits 31:16 set, and so KVM's
+ * ABI lets userspace shove in arbitrary 32-bit values. Drop
+ * the upper bits to avoid VM-Fail, losing information that
+ * does't really exist is preferable to killing the VM.
+ */
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
+ intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+ }
+
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (kvm_exception_is_soft(nr))
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
+ return;
+ }
+
+ WARN_ON_ONCE(vmx->emulation_required);
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+
+ vmx_clear_hlt(vcpu);
+}
+
+static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
+{
+ struct vmx_uret_msr tmp;
+ int from, to;
+
+ from = __vmx_find_uret_msr(vmx, msr);
+ if (from < 0)
+ return;
+ to = vmx->nr_active_uret_msrs++;
+
+ tmp = vmx->guest_uret_msrs[to];
+ vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
+ vmx->guest_uret_msrs[from] = tmp;
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs. Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+ vmx->guest_uret_msrs_loaded = false;
+ vmx->nr_active_uret_msrs = 0;
+#ifdef CONFIG_X86_64
+ /*
+ * The SYSCALL MSRs are only needed on long mode guests, and only
+ * when EFER.SCE is set.
+ */
+ if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
+ vmx_setup_uret_msr(vmx, MSR_STAR);
+ vmx_setup_uret_msr(vmx, MSR_LSTAR);
+ vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
+ }
+#endif
+ if (update_transition_efer(vmx))
+ vmx_setup_uret_msr(vmx, MSR_EFER);
+
+ if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
+ vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
+
+ vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(&vmx->vcpu);
+}
+
+static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ u64 g_tsc_offset = 0;
+
+ /*
+ * We're here if L1 chose not to trap WRMSR to TSC. According
+ * to the spec, this should set L1's TSC; The offset that L1
+ * set for L2 remains unchanged, and still needs to be added
+ * to the newly set TSC to get L2's TSC.
+ */
+ if (is_guest_mode(vcpu) &&
+ (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
+ g_tsc_offset = vmcs12->tsc_offset;
+
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ vcpu->arch.tsc_offset - g_tsc_offset,
+ offset);
+ vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
+ return offset + g_tsc_offset;
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+ return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
+}
+
+static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
+ uint64_t val)
+{
+ uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
+
+ return !(val & ~valid_bits);
+}
+
+static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
+{
+ switch (msr->index) {
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!nested)
+ return 1;
+ return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
+ case MSR_IA32_PERF_CAPABILITIES:
+ msr->data = vmx_get_perf_capabilities();
+ return 0;
+ default:
+ return KVM_MSR_RET_INVALID;
+ }
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmx_uret_msr *msr;
+ u32 index;
+
+ switch (msr_info->index) {
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ msr_info->data = vmcs_readl(GUEST_FS_BASE);
+ break;
+ case MSR_GS_BASE:
+ msr_info->data = vmcs_readl(GUEST_GS_BASE);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
+ break;
+#endif
+ case MSR_EFER:
+ return kvm_get_msr_common(vcpu, msr_info);
+ case MSR_IA32_TSX_CTRL:
+ if (!msr_info->host_initiated &&
+ !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
+ return 1;
+ goto find_uret_msr;
+ case MSR_IA32_UMWAIT_CONTROL:
+ if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
+ return 1;
+
+ msr_info->data = vmx->msr_ia32_umwait_control;
+ break;
+ case MSR_IA32_SPEC_CTRL:
+ if (!msr_info->host_initiated &&
+ !guest_has_spec_ctrl_msr(vcpu))
+ return 1;
+
+ msr_info->data = to_vmx(vcpu)->spec_ctrl;
+ break;
+ case MSR_IA32_SYSENTER_CS:
+ msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
+ break;
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_mpx_supported() ||
+ (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+ return 1;
+ msr_info->data = vmcs_read64(GUEST_BNDCFGS);
+ break;
+ case MSR_IA32_MCG_EXT_CTL:
+ if (!msr_info->host_initiated &&
+ !(vmx->msr_ia32_feature_control &
+ FEAT_CTL_LMCE_ENABLED))
+ return 1;
+ msr_info->data = vcpu->arch.mcg_ext_ctl;
+ break;
+ case MSR_IA32_FEAT_CTL:
+ msr_info->data = vmx->msr_ia32_feature_control;
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
+ &msr_info->data))
+ return 1;
+ /*
+ * Enlightened VMCS v1 doesn't have certain VMCS fields but
+ * instead of just ignoring the features, different Hyper-V
+ * versions are either trying to use them and fail or do some
+ * sanity checking and refuse to boot. Filter all unsupported
+ * features out.
+ */
+ if (!msr_info->host_initiated &&
+ vmx->nested.enlightened_vmcs_enabled)
+ nested_evmcs_filter_control_msr(msr_info->index,
+ &msr_info->data);
+ break;
+ case MSR_IA32_RTIT_CTL:
+ if (!vmx_pt_mode_is_host_guest())
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.ctl;
+ break;
+ case MSR_IA32_RTIT_STATUS:
+ if (!vmx_pt_mode_is_host_guest())
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.status;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if (!vmx_pt_mode_is_host_guest() ||
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cr3_filtering))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.cr3_match;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ if (!vmx_pt_mode_is_host_guest() ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.output_base;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if (!vmx_pt_mode_is_host_guest() ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.output_mask;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+ if (!vmx_pt_mode_is_host_guest() ||
+ (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges)))
+ return 1;
+ if (index % 2)
+ msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
+ else
+ msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
+ break;
+ case MSR_TSC_AUX:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+ return 1;
+ goto find_uret_msr;
+ default:
+ find_uret_msr:
+ msr = vmx_find_uret_msr(vmx, msr_info->index);
+ if (msr) {
+ msr_info->data = msr->data;
+ break;
+ }
+ return kvm_get_msr_common(vcpu, msr_info);
+ }
+
+ return 0;
+}
+
+static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
+ u64 data)
+{
+#ifdef CONFIG_X86_64
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ return (u32)data;
+#endif
+ return (unsigned long)data;
+}
+
+/*
+ * Writes msr value into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmx_uret_msr *msr;
+ int ret = 0;
+ u32 msr_index = msr_info->index;
+ u64 data = msr_info->data;
+ u32 index;
+
+ switch (msr_index) {
+ case MSR_EFER:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_FS_BASE, data);
+ break;
+ case MSR_GS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_GS_BASE, data);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ vmx_write_guest_kernel_gs_base(vmx, data);
+ break;
+#endif
+ case MSR_IA32_SYSENTER_CS:
+ if (is_guest_mode(vcpu))
+ get_vmcs12(vcpu)->guest_sysenter_cs = data;
+ vmcs_write32(GUEST_SYSENTER_CS, data);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ if (is_guest_mode(vcpu)) {
+ data = nested_vmx_truncate_sysenter_addr(vcpu, data);
+ get_vmcs12(vcpu)->guest_sysenter_eip = data;
+ }
+ vmcs_writel(GUEST_SYSENTER_EIP, data);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ if (is_guest_mode(vcpu)) {
+ data = nested_vmx_truncate_sysenter_addr(vcpu, data);
+ get_vmcs12(vcpu)->guest_sysenter_esp = data;
+ }
+ vmcs_writel(GUEST_SYSENTER_ESP, data);
+ break;
+ case MSR_IA32_DEBUGCTLMSR:
+ if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
+ VM_EXIT_SAVE_DEBUG_CONTROLS)
+ get_vmcs12(vcpu)->guest_ia32_debugctl = data;
+
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_mpx_supported() ||
+ (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+ return 1;
+ if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
+ (data & MSR_IA32_BNDCFGS_RSVD))
+ return 1;
+ vmcs_write64(GUEST_BNDCFGS, data);
+ break;
+ case MSR_IA32_UMWAIT_CONTROL:
+ if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
+ return 1;
+
+ /* The reserved bit 1 and non-32 bit [63:32] should be zero */
+ if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
+ return 1;
+
+ vmx->msr_ia32_umwait_control = data;
+ break;
+ case MSR_IA32_SPEC_CTRL:
+ if (!msr_info->host_initiated &&
+ !guest_has_spec_ctrl_msr(vcpu))
+ return 1;
+
+ if (kvm_spec_ctrl_test_value(data))
+ return 1;
+
+ vmx->spec_ctrl = data;
+ if (!data)
+ break;
+
+ /*
+ * For non-nested:
+ * When it's written (to non-zero) for the first time, pass
+ * it through.
+ *
+ * For nested:
+ * The handling of the MSR bitmap for L2 guests is done in
+ * nested_vmx_prepare_msr_bitmap. We should not touch the
+ * vmcs02.msr_bitmap here since it gets completely overwritten
+ * in the merging. We update the vmcs01 here for L1 as well
+ * since it will end up touching the MSR anyway now.
+ */
+ vmx_disable_intercept_for_msr(vcpu,
+ MSR_IA32_SPEC_CTRL,
+ MSR_TYPE_RW);
+ break;
+ case MSR_IA32_TSX_CTRL:
+ if (!msr_info->host_initiated &&
+ !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
+ return 1;
+ if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
+ return 1;
+ goto find_uret_msr;
+ case MSR_IA32_PRED_CMD:
+ if (!msr_info->host_initiated &&
+ !guest_has_pred_cmd_msr(vcpu))
+ return 1;
+
+ if (data & ~PRED_CMD_IBPB)
+ return 1;
+ if (!boot_cpu_has(X86_FEATURE_IBPB))
+ return 1;
+ if (!data)
+ break;
+
+ wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+
+ /*
+ * For non-nested:
+ * When it's written (to non-zero) for the first time, pass
+ * it through.
+ *
+ * For nested:
+ * The handling of the MSR bitmap for L2 guests is done in
+ * nested_vmx_prepare_msr_bitmap. We should not touch the
+ * vmcs02.msr_bitmap here since it gets completely overwritten
+ * in the merging.
+ */
+ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
+ break;
+ case MSR_IA32_CR_PAT:
+ if (!kvm_pat_valid(data))
+ return 1;
+
+ if (is_guest_mode(vcpu) &&
+ get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+ get_vmcs12(vcpu)->guest_ia32_pat = data;
+
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, data);
+ vcpu->arch.pat = data;
+ break;
+ }
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_MCG_EXT_CTL:
+ if ((!msr_info->host_initiated &&
+ !(to_vmx(vcpu)->msr_ia32_feature_control &
+ FEAT_CTL_LMCE_ENABLED)) ||
+ (data & ~MCG_EXT_CTL_LMCE_EN))
+ return 1;
+ vcpu->arch.mcg_ext_ctl = data;
+ break;
+ case MSR_IA32_FEAT_CTL:
+ if (!vmx_feature_control_msr_valid(vcpu, data) ||
+ (to_vmx(vcpu)->msr_ia32_feature_control &
+ FEAT_CTL_LOCKED && !msr_info->host_initiated))
+ return 1;
+ vmx->msr_ia32_feature_control = data;
+ if (msr_info->host_initiated && data == 0)
+ vmx_leave_nested(vcpu);
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!msr_info->host_initiated)
+ return 1; /* they are read-only */
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ return vmx_set_vmx_msr(vcpu, msr_index, data);
+ case MSR_IA32_RTIT_CTL:
+ if (!vmx_pt_mode_is_host_guest() ||
+ vmx_rtit_ctl_check(vcpu, data) ||
+ vmx->nested.vmxon)
+ return 1;
+ vmcs_write64(GUEST_IA32_RTIT_CTL, data);
+ vmx->pt_desc.guest.ctl = data;
+ pt_update_intercept_for_msr(vcpu);
+ break;
+ case MSR_IA32_RTIT_STATUS:
+ if (!pt_can_write_msr(vmx))
+ return 1;
+ if (data & MSR_IA32_RTIT_STATUS_MASK)
+ return 1;
+ vmx->pt_desc.guest.status = data;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if (!pt_can_write_msr(vmx))
+ return 1;
+ if (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cr3_filtering))
+ return 1;
+ vmx->pt_desc.guest.cr3_match = data;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ if (!pt_can_write_msr(vmx))
+ return 1;
+ if (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output))
+ return 1;
+ if (!pt_output_base_valid(vcpu, data))
+ return 1;
+ vmx->pt_desc.guest.output_base = data;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if (!pt_can_write_msr(vmx))
+ return 1;
+ if (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output))
+ return 1;
+ vmx->pt_desc.guest.output_mask = data;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ if (!pt_can_write_msr(vmx))
+ return 1;
+ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+ if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges))
+ return 1;
+ if (is_noncanonical_address(data, vcpu))
+ return 1;
+ if (index % 2)
+ vmx->pt_desc.guest.addr_b[index / 2] = data;
+ else
+ vmx->pt_desc.guest.addr_a[index / 2] = data;
+ break;
+ case MSR_TSC_AUX:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+ return 1;
+ /* Check reserved bit, higher 32 bits should be zero */
+ if ((data >> 32) != 0)
+ return 1;
+ goto find_uret_msr;
+
+ default:
+ find_uret_msr:
+ msr = vmx_find_uret_msr(vmx, msr_index);
+ if (msr)
+ ret = vmx_set_guest_uret_msr(vmx, msr, data);
+ else
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ }
+
+ /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
+ if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
+ vmx_update_fb_clear_dis(vcpu, vmx);
+
+ return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+ unsigned long guest_owned_bits;
+
+ kvm_register_mark_available(vcpu, reg);
+
+ switch (reg) {
+ case VCPU_REGS_RSP:
+ vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+ break;
+ case VCPU_REGS_RIP:
+ vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+ break;
+ case VCPU_EXREG_PDPTR:
+ if (enable_ept)
+ ept_save_pdptrs(vcpu);
+ break;
+ case VCPU_EXREG_CR0:
+ guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+ vcpu->arch.cr0 &= ~guest_owned_bits;
+ vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
+ break;
+ case VCPU_EXREG_CR3:
+ if (is_unrestricted_guest(vcpu) ||
+ (enable_ept && is_paging(vcpu)))
+ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+ break;
+ case VCPU_EXREG_CR4:
+ guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+ vcpu->arch.cr4 &= ~guest_owned_bits;
+ vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ break;
+ }
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+ return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+ return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
+ !boot_cpu_has(X86_FEATURE_VMX);
+}
+
+static int kvm_cpu_vmxon(u64 vmxon_pointer)
+{
+ u64 msr;
+
+ cr4_set_bits(X86_CR4_VMXE);
+ intel_pt_handle_vmx(1);
+
+ asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
+ _ASM_EXTABLE(1b, %l[fault])
+ : : [vmxon_pointer] "m"(vmxon_pointer)
+ : : fault);
+ return 0;
+
+fault:
+ WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
+ rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
+ intel_pt_handle_vmx(0);
+ cr4_clear_bits(X86_CR4_VMXE);
+
+ return -EFAULT;
+}
+
+static int hardware_enable(void)
+{
+ int cpu = raw_smp_processor_id();
+ u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+ int r;
+
+ if (cr4_read_shadow() & X86_CR4_VMXE)
+ return -EBUSY;
+
+ /*
+ * This can happen if we hot-added a CPU but failed to allocate
+ * VP assist page for it.
+ */
+ if (static_branch_unlikely(&enable_evmcs) &&
+ !hv_get_vp_assist_page(cpu))
+ return -EFAULT;
+
+ r = kvm_cpu_vmxon(phys_addr);
+ if (r)
+ return r;
+
+ if (enable_ept)
+ ept_sync_global();
+
+ return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v, *n;
+
+ list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ __loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+ asm volatile (__ex("vmxoff"));
+
+ intel_pt_handle_vmx(0);
+ cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static void hardware_disable(void)
+{
+ vmclear_local_loaded_vmcss();
+ kvm_cpu_vmxoff();
+}
+
+/*
+ * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
+ * directly instead of going through cpu_has(), to ensure KVM is trapping
+ * ENCLS whenever it's supported in hardware. It does not matter whether
+ * the host OS supports or has enabled SGX.
+ */
+static bool cpu_has_sgx(void)
+{
+ return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+ u32 msr, u32 *result)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 ctl = ctl_min | ctl_opt;
+
+ rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+ ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
+
+ /* Ensure minimum (required) set of control bits are supported. */
+ if (ctl_min & ~ctl)
+ return -EIO;
+
+ *result = ctl;
+ return 0;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
+ struct vmx_capability *vmx_cap)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 min, opt, min2, opt2;
+ u32 _pin_based_exec_control = 0;
+ u32 _cpu_based_exec_control = 0;
+ u32 _cpu_based_2nd_exec_control = 0;
+ u32 _vmexit_control = 0;
+ u32 _vmentry_control = 0;
+
+ memset(vmcs_conf, 0, sizeof(*vmcs_conf));
+ min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING |
+ CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_MOV_DR_EXITING |
+ CPU_BASED_USE_TSC_OFFSETTING |
+ CPU_BASED_MWAIT_EXITING |
+ CPU_BASED_MONITOR_EXITING |
+ CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_RDPMC_EXITING;
+
+ opt = CPU_BASED_TPR_SHADOW |
+ CPU_BASED_USE_MSR_BITMAPS |
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+ &_cpu_based_exec_control) < 0)
+ return -EIO;
+#ifdef CONFIG_X86_64
+ if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+ ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+ if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+ min2 = 0;
+ opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_WBINVD_EXITING |
+ SECONDARY_EXEC_ENABLE_VPID |
+ SECONDARY_EXEC_ENABLE_EPT |
+ SECONDARY_EXEC_UNRESTRICTED_GUEST |
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+ SECONDARY_EXEC_DESC |
+ SECONDARY_EXEC_ENABLE_RDTSCP |
+ SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_SHADOW_VMCS |
+ SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_RDSEED_EXITING |
+ SECONDARY_EXEC_RDRAND_EXITING |
+ SECONDARY_EXEC_ENABLE_PML |
+ SECONDARY_EXEC_TSC_SCALING |
+ SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
+ SECONDARY_EXEC_PT_USE_GPA |
+ SECONDARY_EXEC_PT_CONCEAL_VMX |
+ SECONDARY_EXEC_ENABLE_VMFUNC;
+ if (cpu_has_sgx())
+ opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
+ if (adjust_vmx_controls(min2, opt2,
+ MSR_IA32_VMX_PROCBASED_CTLS2,
+ &_cpu_based_2nd_exec_control) < 0)
+ return -EIO;
+ }
+#ifndef CONFIG_X86_64
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+ if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_2nd_exec_control &= ~(
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+ rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
+ &vmx_cap->ept, &vmx_cap->vpid);
+
+ if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+ /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+ enabled */
+ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_INVLPG_EXITING);
+ } else if (vmx_cap->ept) {
+ vmx_cap->ept = 0;
+ pr_warn_once("EPT CAP should not exist if not support "
+ "1-setting enable EPT VM-execution control\n");
+ }
+ if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
+ vmx_cap->vpid) {
+ vmx_cap->vpid = 0;
+ pr_warn_once("VPID CAP should not exist if not support "
+ "1-setting enable VPID VM-execution control\n");
+ }
+
+ min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
+#ifdef CONFIG_X86_64
+ min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+ opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
+ VM_EXIT_LOAD_IA32_PAT |
+ VM_EXIT_LOAD_IA32_EFER |
+ VM_EXIT_CLEAR_BNDCFGS |
+ VM_EXIT_PT_CONCEAL_PIP |
+ VM_EXIT_CLEAR_IA32_RTIT_CTL;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+ &_vmexit_control) < 0)
+ return -EIO;
+
+ min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+ opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+ &_pin_based_exec_control) < 0)
+ return -EIO;
+
+ if (cpu_has_broken_vmx_preemption_timer())
+ _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
+ _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+ min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+ opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
+ VM_ENTRY_LOAD_IA32_PAT |
+ VM_ENTRY_LOAD_IA32_EFER |
+ VM_ENTRY_LOAD_BNDCFGS |
+ VM_ENTRY_PT_CONCEAL_PIP |
+ VM_ENTRY_LOAD_IA32_RTIT_CTL;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+ &_vmentry_control) < 0)
+ return -EIO;
+
+ /*
+ * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
+ * can't be used due to an errata where VM Exit may incorrectly clear
+ * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
+ * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+ */
+ if (boot_cpu_data.x86 == 0x6) {
+ switch (boot_cpu_data.x86_model) {
+ case 26: /* AAK155 */
+ case 30: /* AAP115 */
+ case 37: /* AAT100 */
+ case 44: /* BC86,AAY89,BD102 */
+ case 46: /* BA97 */
+ _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+ _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+ pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+ "does not work properly. Using workaround\n");
+ break;
+ default:
+ break;
+ }
+ }
+
+
+ rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+ /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+ return -EIO;
+
+#ifdef CONFIG_X86_64
+ /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+ if (vmx_msr_high & (1u<<16))
+ return -EIO;
+#endif
+
+ /* Require Write-Back (WB) memory type for VMCS accesses. */
+ if (((vmx_msr_high >> 18) & 15) != 6)
+ return -EIO;
+
+ vmcs_conf->size = vmx_msr_high & 0x1fff;
+ vmcs_conf->order = get_order(vmcs_conf->size);
+ vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
+
+ vmcs_conf->revision_id = vmx_msr_low;
+
+ vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+ vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+ vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+ vmcs_conf->vmexit_ctrl = _vmexit_control;
+ vmcs_conf->vmentry_ctrl = _vmentry_control;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ if (enlightened_vmcs)
+ evmcs_sanitize_exec_ctrls(vmcs_conf);
+#endif
+
+ return 0;
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
+{
+ int node = cpu_to_node(cpu);
+ struct page *pages;
+ struct vmcs *vmcs;
+
+ pages = __alloc_pages_node(node, flags, vmcs_config.order);
+ if (!pages)
+ return NULL;
+ vmcs = page_address(pages);
+ memset(vmcs, 0, vmcs_config.size);
+
+ /* KVM supports Enlightened VMCS v1 only */
+ if (static_branch_unlikely(&enable_evmcs))
+ vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
+ else
+ vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+ if (shadow)
+ vmcs->hdr.shadow_vmcs = 1;
+ return vmcs;
+}
+
+void free_vmcs(struct vmcs *vmcs)
+{
+ free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ if (!loaded_vmcs->vmcs)
+ return;
+ loaded_vmcs_clear(loaded_vmcs);
+ free_vmcs(loaded_vmcs->vmcs);
+ loaded_vmcs->vmcs = NULL;
+ if (loaded_vmcs->msr_bitmap)
+ free_page((unsigned long)loaded_vmcs->msr_bitmap);
+ WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
+}
+
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ loaded_vmcs->vmcs = alloc_vmcs(false);
+ if (!loaded_vmcs->vmcs)
+ return -ENOMEM;
+
+ vmcs_clear(loaded_vmcs->vmcs);
+
+ loaded_vmcs->shadow_vmcs = NULL;
+ loaded_vmcs->hv_timer_soft_disabled = false;
+ loaded_vmcs->cpu = -1;
+ loaded_vmcs->launched = 0;
+
+ if (cpu_has_vmx_msr_bitmap()) {
+ loaded_vmcs->msr_bitmap = (unsigned long *)
+ __get_free_page(GFP_KERNEL_ACCOUNT);
+ if (!loaded_vmcs->msr_bitmap)
+ goto out_vmcs;
+ memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
+ }
+
+ memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
+ memset(&loaded_vmcs->controls_shadow, 0,
+ sizeof(struct vmcs_controls_shadow));
+
+ return 0;
+
+out_vmcs:
+ free_loaded_vmcs(loaded_vmcs);
+ return -ENOMEM;
+}
+
+static void free_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ free_vmcs(per_cpu(vmxarea, cpu));
+ per_cpu(vmxarea, cpu) = NULL;
+ }
+}
+
+static __init int alloc_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct vmcs *vmcs;
+
+ vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
+ if (!vmcs) {
+ free_kvm_area();
+ return -ENOMEM;
+ }
+
+ /*
+ * When eVMCS is enabled, alloc_vmcs_cpu() sets
+ * vmcs->revision_id to KVM_EVMCS_VERSION instead of
+ * revision_id reported by MSR_IA32_VMX_BASIC.
+ *
+ * However, even though not explicitly documented by
+ * TLFS, VMXArea passed as VMXON argument should
+ * still be marked with revision_id reported by
+ * physical CPU.
+ */
+ if (static_branch_unlikely(&enable_evmcs))
+ vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+ per_cpu(vmxarea, cpu) = vmcs;
+ }
+ return 0;
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+ struct kvm_segment *save)
+{
+ if (!emulate_invalid_guest_state) {
+ /*
+ * CS and SS RPL should be equal during guest entry according
+ * to VMX spec, but in reality it is not always so. Since vcpu
+ * is in the middle of the transition from real mode to
+ * protected mode it is safe to assume that RPL 0 is a good
+ * default value.
+ */
+ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+ save->selector &= ~SEGMENT_RPL_MASK;
+ save->dpl = save->selector & SEGMENT_RPL_MASK;
+ save->s = 1;
+ }
+ vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Update real mode segment cache. It may be not up-to-date if sement
+ * register was written while vcpu was in a guest mode.
+ */
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 0;
+
+ vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ vmcs_writel(GUEST_RFLAGS, flags);
+
+ vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+ (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+ update_exception_bitmap(vcpu);
+
+ fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ struct kvm_segment var = *save;
+
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+
+ if (!emulate_invalid_guest_state) {
+ var.selector = var.base >> 4;
+ var.base = var.base & 0xffff0;
+ var.limit = 0xffff;
+ var.g = 0;
+ var.db = 0;
+ var.present = 1;
+ var.s = 1;
+ var.l = 0;
+ var.unusable = 0;
+ var.type = 0x3;
+ var.avl = 0;
+ if (save->base & 0xf)
+ printk_once(KERN_WARNING "kvm: segment base is not "
+ "paragraph aligned when entering "
+ "protected mode (seg=%d)", seg);
+ }
+
+ vmcs_write16(sf->selector, var.selector);
+ vmcs_writel(sf->base, var.base);
+ vmcs_write32(sf->limit, var.limit);
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
+
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 1;
+
+ /*
+ * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+ * vcpu. Warn the user that an update is overdue.
+ */
+ if (!kvm_vmx->tss_addr)
+ printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+ "called before entering vcpu\n");
+
+ vmx_segment_cache_clear(vmx);
+
+ vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
+ vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ vmx->rmode.save_rflags = flags;
+
+ flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+ vmcs_writel(GUEST_RFLAGS, flags);
+ vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+ update_exception_bitmap(vcpu);
+
+ fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+ fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+ kvm_mmu_reset_context(vcpu);
+}
+
+int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
+
+ /* Nothing to do if hardware doesn't support EFER. */
+ if (!msr)
+ return 0;
+
+ vcpu->arch.efer = efer;
+ if (efer & EFER_LMA) {
+ vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ msr->data = efer;
+ } else {
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+ msr->data = efer & ~EFER_LME;
+ }
+ setup_msrs(vmx);
+ return 0;
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+ u32 guest_tr_ar;
+
+ vmx_segment_cache_clear(to_vmx(vcpu));
+
+ guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+ if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
+ pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+ __func__);
+ vmcs_write32(GUEST_TR_AR_BYTES,
+ (guest_tr_ar & ~VMX_AR_TYPE_MASK)
+ | VMX_AR_TYPE_BUSY_64_TSS);
+ }
+ vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
+ * the CPU is not required to invalidate guest-physical mappings on
+ * VM-Entry, even if VPID is disabled. Guest-physical mappings are
+ * associated with the root EPT structure and not any particular VPID
+ * (INVVPID also isn't required to invalidate guest-physical mappings).
+ */
+ if (enable_ept) {
+ ept_sync_global();
+ } else if (enable_vpid) {
+ if (cpu_has_vmx_invvpid_global()) {
+ vpid_sync_vcpu_global();
+ } else {
+ vpid_sync_vcpu_single(vmx->vpid);
+ vpid_sync_vcpu_single(vmx->nested.vpid02);
+ }
+ }
+}
+
+static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu))
+ return nested_get_vpid02(vcpu);
+ return to_vmx(vcpu)->vpid;
+}
+
+static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ u64 root_hpa = mmu->root_hpa;
+
+ /* No flush required if the current context is invalid. */
+ if (!VALID_PAGE(root_hpa))
+ return;
+
+ if (enable_ept)
+ ept_sync_context(construct_eptp(vcpu, root_hpa,
+ mmu->shadow_root_level));
+ else
+ vpid_sync_context(vmx_get_current_vpid(vcpu));
+}
+
+static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
+{
+ /*
+ * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
+ * vmx_flush_tlb_guest() for an explanation of why this is ok.
+ */
+ vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
+}
+
+static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
+{
+ /*
+ * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
+ * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
+ * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
+ * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
+ * i.e. no explicit INVVPID is necessary.
+ */
+ vpid_sync_context(vmx_get_current_vpid(vcpu));
+}
+
+void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
+ return;
+
+ if (is_pae_paging(vcpu)) {
+ vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+ vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+ vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+ vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+ }
+}
+
+void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
+ return;
+
+ mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+ mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+ mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+ mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+
+ kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
+}
+
+#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
+ CPU_BASED_CR3_STORE_EXITING)
+
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long hw_cr0;
+ u32 tmp;
+
+ hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
+ if (enable_unrestricted_guest)
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+ else {
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+ if (!enable_ept)
+ hw_cr0 |= X86_CR0_WP;
+
+ if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+ enter_pmode(vcpu);
+
+ if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+ enter_rmode(vcpu);
+ }
+
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.efer & EFER_LME) {
+ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+ enter_lmode(vcpu);
+ if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+ exit_lmode(vcpu);
+ }
+#endif
+
+ if (enable_ept && !enable_unrestricted_guest) {
+ /*
+ * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
+ * the below code _enables_ CR3 exiting, vmx_cache_reg() will
+ * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
+ * KVM's CR3 is installed.
+ */
+ if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
+ vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
+
+ /*
+ * When running with EPT but not unrestricted guest, KVM must
+ * intercept CR3 accesses when paging is _disabled_. This is
+ * necessary because restricted guests can't actually run with
+ * paging disabled, and so KVM stuffs its own CR3 in order to
+ * run the guest when identity mapped page tables.
+ *
+ * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
+ * update, it may be stale with respect to CR3 interception,
+ * e.g. after nested VM-Enter.
+ *
+ * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
+ * stores to forward them to L1, even if KVM does not need to
+ * intercept them to preserve its identity mapped page tables.
+ */
+ if (!(cr0 & X86_CR0_PG)) {
+ exec_controls_setbit(vmx, CR3_EXITING_BITS);
+ } else if (!is_guest_mode(vcpu)) {
+ exec_controls_clearbit(vmx, CR3_EXITING_BITS);
+ } else {
+ tmp = exec_controls_get(vmx);
+ tmp &= ~CR3_EXITING_BITS;
+ tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
+ exec_controls_set(vmx, tmp);
+ }
+
+ if (!is_paging(vcpu) != !(cr0 & X86_CR0_PG)) {
+ vcpu->arch.cr0 = cr0;
+ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ }
+ }
+
+ vmcs_writel(CR0_READ_SHADOW, cr0);
+ vmcs_writel(GUEST_CR0, hw_cr0);
+ vcpu->arch.cr0 = cr0;
+ kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
+
+ /* depends on vcpu->arch.cr0 to be set to a new value */
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static int vmx_get_max_tdp_level(void)
+{
+ if (cpu_has_vmx_ept_5levels())
+ return 5;
+ return 4;
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
+ int root_level)
+{
+ u64 eptp = VMX_EPTP_MT_WB;
+
+ eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
+
+ if (enable_ept_ad_bits &&
+ (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
+ eptp |= VMX_EPTP_AD_ENABLE_BIT;
+ eptp |= (root_hpa & PAGE_MASK);
+
+ return eptp;
+}
+
+static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
+ int pgd_level)
+{
+ struct kvm *kvm = vcpu->kvm;
+ bool update_guest_cr3 = true;
+ unsigned long guest_cr3;
+ u64 eptp;
+
+ if (enable_ept) {
+ eptp = construct_eptp(vcpu, pgd, pgd_level);
+ vmcs_write64(EPT_POINTER, eptp);
+
+ if (kvm_x86_ops.tlb_remote_flush) {
+ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ to_vmx(vcpu)->ept_pointer = eptp;
+ to_kvm_vmx(kvm)->ept_pointers_match
+ = EPT_POINTERS_CHECK;
+ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ }
+
+ if (!enable_unrestricted_guest && !is_paging(vcpu))
+ guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
+ else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+ guest_cr3 = vcpu->arch.cr3;
+ else /* vmcs01.GUEST_CR3 is already up-to-date. */
+ update_guest_cr3 = false;
+ vmx_ept_load_pdptrs(vcpu);
+ } else {
+ guest_cr3 = pgd;
+ }
+
+ if (update_guest_cr3)
+ vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ /*
+ * We operate under the default treatment of SMM, so VMX cannot be
+ * enabled under SMM. Note, whether or not VMXE is allowed at all is
+ * handled by kvm_valid_cr4().
+ */
+ if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
+ return false;
+
+ if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
+ return false;
+
+ return true;
+}
+
+void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ /*
+ * Pass through host's Machine Check Enable value to hw_cr4, which
+ * is in force while we are in guest mode. Do not let guests control
+ * this bit, even if host CR4.MCE == 0.
+ */
+ unsigned long hw_cr4;
+
+ hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
+ if (enable_unrestricted_guest)
+ hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
+ else if (vmx->rmode.vm86_active)
+ hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
+ else
+ hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
+
+ if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
+ if (cr4 & X86_CR4_UMIP) {
+ secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
+ hw_cr4 &= ~X86_CR4_UMIP;
+ } else if (!is_guest_mode(vcpu) ||
+ !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
+ secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
+ }
+ }
+
+ vcpu->arch.cr4 = cr4;
+ kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
+
+ if (!enable_unrestricted_guest) {
+ if (enable_ept) {
+ if (!is_paging(vcpu)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ hw_cr4 |= X86_CR4_PSE;
+ } else if (!(cr4 & X86_CR4_PAE)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ }
+ }
+
+ /*
+ * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
+ * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
+ * to be manually disabled when guest switches to non-paging
+ * mode.
+ *
+ * If !enable_unrestricted_guest, the CPU is always running
+ * with CR0.PG=1 and CR4 needs to be modified.
+ * If enable_unrestricted_guest, the CPU automatically
+ * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
+ */
+ if (!is_paging(vcpu))
+ hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+ }
+
+ vmcs_writel(CR4_READ_SHADOW, cr4);
+ vmcs_writel(GUEST_CR4, hw_cr4);
+}
+
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 ar;
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ *var = vmx->rmode.segs[seg];
+ if (seg == VCPU_SREG_TR
+ || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+ return;
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ return;
+ }
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->limit = vmx_read_guest_seg_limit(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ ar = vmx_read_guest_seg_ar(vmx, seg);
+ var->unusable = (ar >> 16) & 1;
+ var->type = ar & 15;
+ var->s = (ar >> 4) & 1;
+ var->dpl = (ar >> 5) & 3;
+ /*
+ * Some userspaces do not preserve unusable property. Since usable
+ * segment has to be present according to VMX spec we can use present
+ * property to amend userspace bug by making unusable segment always
+ * nonpresent. vmx_segment_access_rights() already marks nonpresent
+ * segment as unusable.
+ */
+ var->present = !var->unusable;
+ var->avl = (ar >> 12) & 1;
+ var->l = (ar >> 13) & 1;
+ var->db = (ar >> 14) & 1;
+ var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment s;
+
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ vmx_get_segment(vcpu, &s, seg);
+ return s.base;
+ }
+ return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (unlikely(vmx->rmode.vm86_active))
+ return 0;
+ else {
+ int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+ return VMX_AR_DPL(ar);
+ }
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+ u32 ar;
+
+ ar = var->type & 15;
+ ar |= (var->s & 1) << 4;
+ ar |= (var->dpl & 3) << 5;
+ ar |= (var->present & 1) << 7;
+ ar |= (var->avl & 1) << 12;
+ ar |= (var->l & 1) << 13;
+ ar |= (var->db & 1) << 14;
+ ar |= (var->g & 1) << 15;
+ ar |= (var->unusable || !var->present) << 16;
+
+ return ar;
+}
+
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+ vmx_segment_cache_clear(vmx);
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ vmx->rmode.segs[seg] = *var;
+ if (seg == VCPU_SREG_TR)
+ vmcs_write16(sf->selector, var->selector);
+ else if (var->s)
+ fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+ goto out;
+ }
+
+ vmcs_writel(sf->base, var->base);
+ vmcs_write32(sf->limit, var->limit);
+ vmcs_write16(sf->selector, var->selector);
+
+ /*
+ * Fix the "Accessed" bit in AR field of segment registers for older
+ * qemu binaries.
+ * IA32 arch specifies that at the time of processor reset the
+ * "Accessed" bit in the AR field of segment registers is 1. And qemu
+ * is setting it to 0 in the userland code. This causes invalid guest
+ * state vmexit when "unrestricted guest" mode is turned on.
+ * Fix for this setup issue in cpu_reset is being pushed in the qemu
+ * tree. Newer qemu binaries with that qemu fix would not need this
+ * kvm hack.
+ */
+ if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
+ var->type |= 0x1; /* Accessed */
+
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+ *db = (ar >> 14) & 1;
+ *l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ u32 ar;
+
+ vmx_get_segment(vcpu, &var, seg);
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+ ar = vmx_segment_access_rights(&var);
+
+ if (var.base != (var.selector << 4))
+ return false;
+ if (var.limit != 0xffff)
+ return false;
+ if (ar != 0xf3)
+ return false;
+
+ return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ unsigned int cs_rpl;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+ if (cs.unusable)
+ return false;
+ if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
+ return false;
+ if (!cs.s)
+ return false;
+ if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
+ if (cs.dpl > cs_rpl)
+ return false;
+ } else {
+ if (cs.dpl != cs_rpl)
+ return false;
+ }
+ if (!cs.present)
+ return false;
+
+ /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+ return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ss;
+ unsigned int ss_rpl;
+
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+ ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+ if (ss.unusable)
+ return true;
+ if (ss.type != 3 && ss.type != 7)
+ return false;
+ if (!ss.s)
+ return false;
+ if (ss.dpl != ss_rpl) /* DPL != RPL */
+ return false;
+ if (!ss.present)
+ return false;
+
+ return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ unsigned int rpl;
+
+ vmx_get_segment(vcpu, &var, seg);
+ rpl = var.selector & SEGMENT_RPL_MASK;
+
+ if (var.unusable)
+ return true;
+ if (!var.s)
+ return false;
+ if (!var.present)
+ return false;
+ if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
+ if (var.dpl < rpl) /* DPL < RPL */
+ return false;
+ }
+
+ /* TODO: Add other members to kvm_segment_field to allow checking for other access
+ * rights flags
+ */
+ return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment tr;
+
+ vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+ if (tr.unusable)
+ return false;
+ if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+ return false;
+ if (!tr.present)
+ return false;
+
+ return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ldtr;
+
+ vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+ if (ldtr.unusable)
+ return true;
+ if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (ldtr.type != 2)
+ return false;
+ if (!ldtr.present)
+ return false;
+
+ return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs, ss;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+ return ((cs.selector & SEGMENT_RPL_MASK) ==
+ (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
+{
+ /* real mode guest state checks */
+ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ } else {
+ /* protected mode guest state checks */
+ if (!cs_ss_rpl_check(vcpu))
+ return false;
+ if (!code_segment_valid(vcpu))
+ return false;
+ if (!stack_segment_valid(vcpu))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ if (!tr_valid(vcpu))
+ return false;
+ if (!ldtr_valid(vcpu))
+ return false;
+ }
+ /* TODO:
+ * - Add checks on RIP
+ * - Add checks on RFLAGS
+ */
+
+ return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+ gfn_t fn;
+ u16 data = 0;
+ int idx, r;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+ r = kvm_write_guest_page(kvm, fn++, &data,
+ TSS_IOPB_BASE_OFFSET, sizeof(u16));
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = ~0;
+ r = kvm_write_guest_page(kvm, fn, &data,
+ RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+ sizeof(u8));
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+ return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+ struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
+ int i, r = 0;
+ kvm_pfn_t identity_map_pfn;
+ u32 tmp;
+
+ /* Protect kvm_vmx->ept_identity_pagetable_done. */
+ mutex_lock(&kvm->slots_lock);
+
+ if (likely(kvm_vmx->ept_identity_pagetable_done))
+ goto out;
+
+ if (!kvm_vmx->ept_identity_map_addr)
+ kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+ identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
+
+ r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+ kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+
+ r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ /* Set up identity-mapping pagetable for EPT in real mode */
+ for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+ tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+ _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+ r = kvm_write_guest_page(kvm, identity_map_pfn,
+ &tmp, i * sizeof(tmp), sizeof(tmp));
+ if (r < 0)
+ goto out;
+ }
+ kvm_vmx->ept_identity_pagetable_done = true;
+
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void seg_setup(int seg)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ unsigned int ar;
+
+ vmcs_write16(sf->selector, 0);
+ vmcs_writel(sf->base, 0);
+ vmcs_write32(sf->limit, 0xffff);
+ ar = 0x93;
+ if (seg == VCPU_SREG_CS)
+ ar |= 0x08; /* code segment */
+
+ vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+ struct page *page;
+ int r = 0;
+
+ mutex_lock(&kvm->slots_lock);
+ if (kvm->arch.apic_access_page_done)
+ goto out;
+ r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+ APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
+ if (r)
+ goto out;
+
+ page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (is_error_page(page)) {
+ r = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * Do not pin the page in memory, so that memory hot-unplug
+ * is able to migrate it.
+ */
+ put_page(page);
+ kvm->arch.apic_access_page_done = true;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+int allocate_vpid(void)
+{
+ int vpid;
+
+ if (!enable_vpid)
+ return 0;
+ spin_lock(&vmx_vpid_lock);
+ vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+ if (vpid < VMX_NR_VPIDS)
+ __set_bit(vpid, vmx_vpid_bitmap);
+ else
+ vpid = 0;
+ spin_unlock(&vmx_vpid_lock);
+ return vpid;
+}
+
+void free_vpid(int vpid)
+{
+ if (!enable_vpid || vpid == 0)
+ return;
+ spin_lock(&vmx_vpid_lock);
+ __clear_bit(vpid, vmx_vpid_bitmap);
+ spin_unlock(&vmx_vpid_lock);
+}
+
+static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
+{
+ int f = sizeof(unsigned long);
+
+ if (msr <= 0x1fff)
+ __clear_bit(msr, msr_bitmap + 0x000 / f);
+ else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
+ __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
+}
+
+static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
+{
+ int f = sizeof(unsigned long);
+
+ if (msr <= 0x1fff)
+ __clear_bit(msr, msr_bitmap + 0x800 / f);
+ else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
+ __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
+}
+
+static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
+{
+ int f = sizeof(unsigned long);
+
+ if (msr <= 0x1fff)
+ __set_bit(msr, msr_bitmap + 0x000 / f);
+ else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
+ __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
+}
+
+static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
+{
+ int f = sizeof(unsigned long);
+
+ if (msr <= 0x1fff)
+ __set_bit(msr, msr_bitmap + 0x800 / f);
+ else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
+ __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
+}
+
+static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
+{
+ /*
+ * When KVM is a nested hypervisor on top of Hyper-V and uses
+ * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
+ * bitmap has changed.
+ */
+ if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs)) {
+ struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
+
+ if (evmcs->hv_enlightenments_control.msr_bitmap)
+ evmcs->hv_clean_fields &=
+ ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
+ }
+}
+
+static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ vmx_msr_bitmap_l01_changed(vmx);
+
+ /*
+ * Mark the desired intercept state in shadow bitmap, this is needed
+ * for resync when the MSR filters change.
+ */
+ if (is_valid_passthrough_msr(msr)) {
+ int idx = possible_passthrough_msr_slot(msr);
+
+ if (idx != -ENOENT) {
+ if (type & MSR_TYPE_R)
+ clear_bit(idx, vmx->shadow_msr_intercept.read);
+ if (type & MSR_TYPE_W)
+ clear_bit(idx, vmx->shadow_msr_intercept.write);
+ }
+ }
+
+ if ((type & MSR_TYPE_R) &&
+ !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
+ vmx_set_msr_bitmap_read(msr_bitmap, msr);
+ type &= ~MSR_TYPE_R;
+ }
+
+ if ((type & MSR_TYPE_W) &&
+ !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
+ vmx_set_msr_bitmap_write(msr_bitmap, msr);
+ type &= ~MSR_TYPE_W;
+ }
+
+ if (type & MSR_TYPE_R)
+ vmx_clear_msr_bitmap_read(msr_bitmap, msr);
+
+ if (type & MSR_TYPE_W)
+ vmx_clear_msr_bitmap_write(msr_bitmap, msr);
+}
+
+static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ vmx_msr_bitmap_l01_changed(vmx);
+
+ /*
+ * Mark the desired intercept state in shadow bitmap, this is needed
+ * for resync when the MSR filter changes.
+ */
+ if (is_valid_passthrough_msr(msr)) {
+ int idx = possible_passthrough_msr_slot(msr);
+
+ if (idx != -ENOENT) {
+ if (type & MSR_TYPE_R)
+ set_bit(idx, vmx->shadow_msr_intercept.read);
+ if (type & MSR_TYPE_W)
+ set_bit(idx, vmx->shadow_msr_intercept.write);
+ }
+ }
+
+ if (type & MSR_TYPE_R)
+ vmx_set_msr_bitmap_read(msr_bitmap, msr);
+
+ if (type & MSR_TYPE_W)
+ vmx_set_msr_bitmap_write(msr_bitmap, msr);
+}
+
+static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type, bool value)
+{
+ if (value)
+ vmx_enable_intercept_for_msr(vcpu, msr, type);
+ else
+ vmx_disable_intercept_for_msr(vcpu, msr, type);
+}
+
+static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
+{
+ u8 mode = 0;
+
+ if (cpu_has_secondary_exec_ctrls() &&
+ (secondary_exec_controls_get(to_vmx(vcpu)) &
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
+ mode |= MSR_BITMAP_MODE_X2APIC;
+ if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
+ mode |= MSR_BITMAP_MODE_X2APIC_APICV;
+ }
+
+ return mode;
+}
+
+static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
+{
+ unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+ unsigned long read_intercept;
+ int msr;
+
+ read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
+
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned int read_idx = msr / BITS_PER_LONG;
+ unsigned int write_idx = read_idx + (0x800 / sizeof(long));
+
+ msr_bitmap[read_idx] = read_intercept;
+ msr_bitmap[write_idx] = ~0ul;
+ }
+}
+
+static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
+{
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ vmx_reset_x2apic_msrs(vcpu, mode);
+
+ /*
+ * TPR reads and writes can be virtualized even if virtual interrupt
+ * delivery is not in use.
+ */
+ vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
+ !(mode & MSR_BITMAP_MODE_X2APIC));
+
+ if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
+ vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
+ vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
+ }
+}
+
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u8 mode = vmx_msr_bitmap_mode(vcpu);
+ u8 changed = mode ^ vmx->msr_bitmap_mode;
+
+ if (!changed)
+ return;
+
+ if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
+ vmx_update_msr_bitmap_x2apic(vcpu, mode);
+
+ vmx->msr_bitmap_mode = mode;
+}
+
+void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
+ u32 i;
+
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
+ for (i = 0; i < vmx->pt_desc.addr_range; i++) {
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
+ }
+}
+
+static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ void *vapic_page;
+ u32 vppr;
+ int rvi;
+
+ if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
+ !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+ WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
+ return false;
+
+ rvi = vmx_get_rvi();
+
+ vapic_page = vmx->nested.virtual_apic_map.hva;
+ vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
+
+ return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 i;
+
+ /*
+ * Set intercept permissions for all potentially passed through MSRs
+ * again. They will automatically get filtered through the MSR filter,
+ * so we are back in sync after this.
+ */
+ for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
+ u32 msr = vmx_possible_passthrough_msrs[i];
+ bool read = test_bit(i, vmx->shadow_msr_intercept.read);
+ bool write = test_bit(i, vmx->shadow_msr_intercept.write);
+
+ vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
+ vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
+ }
+
+ pt_update_intercept_for_msr(vcpu);
+ vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
+ bool nested)
+{
+#ifdef CONFIG_SMP
+ int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
+
+ if (vcpu->mode == IN_GUEST_MODE) {
+ /*
+ * The vector of interrupt to be delivered to vcpu had
+ * been set in PIR before this function.
+ *
+ * Following cases will be reached in this block, and
+ * we always send a notification event in all cases as
+ * explained below.
+ *
+ * Case 1: vcpu keeps in non-root mode. Sending a
+ * notification event posts the interrupt to vcpu.
+ *
+ * Case 2: vcpu exits to root mode and is still
+ * runnable. PIR will be synced to vIRR before the
+ * next vcpu entry. Sending a notification event in
+ * this case has no effect, as vcpu is not in root
+ * mode.
+ *
+ * Case 3: vcpu exits to root mode and is blocked.
+ * vcpu_block() has already synced PIR to vIRR and
+ * never blocks vcpu if vIRR is not cleared. Therefore,
+ * a blocked vcpu here does not wait for any requested
+ * interrupts in PIR, and sending a notification event
+ * which has no effect is safe here.
+ */
+
+ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
+ return true;
+ }
+#endif
+ return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+ int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ vector == vmx->nested.posted_intr_nv) {
+ /*
+ * If a posted intr is not recognized by hardware,
+ * we will accomplish it in the next vmentry.
+ */
+ vmx->nested.pi_pending = true;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ /* the PIR and ON have been set by L1. */
+ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
+ kvm_vcpu_kick(vcpu);
+ return 0;
+ }
+ return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int r;
+
+ r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+ if (!r)
+ return 0;
+
+ if (!vcpu->arch.apicv_active)
+ return -1;
+
+ if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+ return 0;
+
+ /* If a previous notification has sent the IPI, nothing to do. */
+ if (pi_test_and_set_on(&vmx->pi_desc))
+ return 0;
+
+ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+ u32 low32, high32;
+ unsigned long tmpl;
+ unsigned long cr0, cr3, cr4;
+
+ cr0 = read_cr0();
+ WARN_ON(cr0 & X86_CR0_TS);
+ vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
+
+ /*
+ * Save the most likely value for this task's CR3 in the VMCS.
+ * We can't use __get_current_cr3_fast() because we're not atomic.
+ */
+ cr3 = __read_cr3();
+ vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+
+ /* Save the most likely value for this task's CR4 in the VMCS. */
+ cr4 = cr4_read_shadow();
+ vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+
+ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
+#ifdef CONFIG_X86_64
+ /*
+ * Load null selectors, so we can avoid reloading them in
+ * vmx_prepare_switch_to_host(), in case userspace uses
+ * the null selectors too (the expected case).
+ */
+ vmcs_write16(HOST_DS_SELECTOR, 0);
+ vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+#endif
+ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
+
+ vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
+
+ vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
+
+ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+ vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+ rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+ vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
+
+ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+ rdmsr(MSR_IA32_CR_PAT, low32, high32);
+ vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+ }
+
+ if (cpu_has_load_ia32_efer())
+ vmcs_write64(HOST_IA32_EFER, host_efer);
+}
+
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+ struct kvm_vcpu *vcpu = &vmx->vcpu;
+
+ vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
+ ~vcpu->arch.cr4_guest_rsvd_bits;
+ if (!enable_ept)
+ vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
+ if (is_guest_mode(&vmx->vcpu))
+ vcpu->arch.cr4_guest_owned_bits &=
+ ~get_vmcs12(vcpu)->cr4_guest_host_mask;
+ vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
+}
+
+u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+ u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+ if (!kvm_vcpu_apicv_active(&vmx->vcpu))
+ pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+
+ if (!enable_vnmi)
+ pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
+
+ if (!enable_preemption_timer)
+ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+
+ return pin_based_exec_ctrl;
+}
+
+static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
+ if (cpu_has_secondary_exec_ctrls()) {
+ if (kvm_vcpu_apicv_active(vcpu))
+ secondary_exec_controls_setbit(vmx,
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ else
+ secondary_exec_controls_clearbit(vmx,
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ }
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+ if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+ exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+ if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_STORE_EXITING |
+ CPU_BASED_CR8_LOAD_EXITING;
+#endif
+ }
+ if (!enable_ept)
+ exec_control |= CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_INVLPG_EXITING;
+ if (kvm_mwait_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~(CPU_BASED_MWAIT_EXITING |
+ CPU_BASED_MONITOR_EXITING);
+ if (kvm_hlt_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~CPU_BASED_HLT_EXITING;
+ return exec_control;
+}
+
+/*
+ * Adjust a single secondary execution control bit to intercept/allow an
+ * instruction in the guest. This is usually done based on whether or not a
+ * feature has been exposed to the guest in order to correctly emulate faults.
+ */
+static inline void
+vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
+ u32 control, bool enabled, bool exiting)
+{
+ /*
+ * If the control is for an opt-in feature, clear the control if the
+ * feature is not exposed to the guest, i.e. not enabled. If the
+ * control is opt-out, i.e. an exiting control, clear the control if
+ * the feature _is_ exposed to the guest, i.e. exiting/interception is
+ * disabled for the associated instruction. Note, the caller is
+ * responsible presetting exec_control to set all supported bits.
+ */
+ if (enabled == exiting)
+ *exec_control &= ~control;
+
+ /*
+ * Update the nested MSR settings so that a nested VMM can/can't set
+ * controls for features that are/aren't exposed to the guest.
+ */
+ if (nested) {
+ if (enabled)
+ vmx->nested.msrs.secondary_ctls_high |= control;
+ else
+ vmx->nested.msrs.secondary_ctls_high &= ~control;
+ }
+}
+
+/*
+ * Wrapper macro for the common case of adjusting a secondary execution control
+ * based on a single guest CPUID bit, with a dedicated feature bit. This also
+ * verifies that the control is actually supported by KVM and hardware.
+ */
+#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
+({ \
+ bool __enabled; \
+ \
+ if (cpu_has_vmx_##name()) { \
+ __enabled = guest_cpuid_has(&(vmx)->vcpu, \
+ X86_FEATURE_##feat_name); \
+ vmx_adjust_secondary_exec_control(vmx, exec_control, \
+ SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
+ } \
+})
+
+/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
+#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
+ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
+
+#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
+ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
+
+static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+ struct kvm_vcpu *vcpu = &vmx->vcpu;
+
+ u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+
+ if (vmx_pt_mode_is_system())
+ exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
+ if (!cpu_need_virtualize_apic_accesses(vcpu))
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ if (vmx->vpid == 0)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+ if (!enable_ept) {
+ exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+ enable_unrestricted_guest = 0;
+ }
+ if (!enable_unrestricted_guest)
+ exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+ if (kvm_pause_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+ if (!kvm_vcpu_apicv_active(vcpu))
+ exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+
+ /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
+ * in vmx_set_cr4. */
+ exec_control &= ~SECONDARY_EXEC_DESC;
+
+ /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+ (handle_vmptrld).
+ We can NOT enable shadow_vmcs here because we don't have yet
+ a current VMCS12
+ */
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (!enable_pml)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+ if (cpu_has_vmx_xsaves()) {
+ /* Exposing XSAVES only when XSAVE is exposed */
+ bool xsaves_enabled =
+ boot_cpu_has(X86_FEATURE_XSAVE) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
+
+ vcpu->arch.xsaves_enabled = xsaves_enabled;
+
+ vmx_adjust_secondary_exec_control(vmx, &exec_control,
+ SECONDARY_EXEC_XSAVES,
+ xsaves_enabled, false);
+ }
+
+ vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
+
+ /*
+ * Expose INVPCID if and only if PCID is also exposed to the guest.
+ * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
+ * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
+ * behavior from the guest perspective (it would expect #GP or #PF).
+ */
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
+ guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
+ vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
+
+
+ vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
+ vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
+
+ vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
+ ENABLE_USR_WAIT_PAUSE, false);
+
+ vmx->secondary_exec_control = exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+ /*
+ * EPT Misconfigurations can be generated if the value of bits 2:0
+ * of an EPT paging-structure entry is 110b (write/execute).
+ */
+ kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+
+/*
+ * Noting that the initialization of Guest-state Area of VMCS is in
+ * vmx_vcpu_reset().
+ */
+static void init_vmcs(struct vcpu_vmx *vmx)
+{
+ if (nested)
+ nested_vmx_set_vmcs_shadowing_bitmap();
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+ /* Control */
+ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
+
+ exec_controls_set(vmx, vmx_exec_control(vmx));
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ vmx_compute_secondary_exec_control(vmx);
+ secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
+ }
+
+ if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
+ vmcs_write64(EOI_EXIT_BITMAP0, 0);
+ vmcs_write64(EOI_EXIT_BITMAP1, 0);
+ vmcs_write64(EOI_EXIT_BITMAP2, 0);
+ vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+ vmcs_write16(GUEST_INTR_STATUS, 0);
+
+ vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+ vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+ }
+
+ if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
+ vmcs_write32(PLE_GAP, ple_gap);
+ vmx->ple_window = ple_window;
+ vmx->ple_window_dirty = true;
+ }
+
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+ vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
+
+ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
+ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
+ vmx_set_constant_host_state(vmx);
+ vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+
+ if (cpu_has_vmx_vmfunc())
+ vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+ vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
+
+ /* 22.2.1, 20.8.1 */
+ vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
+
+ vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
+
+ set_cr4_guest_host_mask(vmx);
+
+ if (vmx->vpid != 0)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+ if (cpu_has_vmx_xsaves())
+ vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+ if (enable_pml) {
+ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+ }
+
+ if (cpu_has_vmx_encls_vmexit())
+ vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+ if (vmx_pt_mode_is_host_guest()) {
+ memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
+ /* Bit[6~0] are forced to 1, writes are ignored. */
+ vmx->pt_desc.guest.output_mask = 0x7F;
+ vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
+ }
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct msr_data apic_base_msr;
+ u64 cr0;
+
+ vmx->rmode.vm86_active = 0;
+ vmx->spec_ctrl = 0;
+
+ vmx->msr_ia32_umwait_control = 0;
+
+ vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+ vmx->hv_deadline_tsc = -1;
+ kvm_set_cr8(vcpu, 0);
+
+ if (!init_event) {
+ apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
+ MSR_IA32_APICBASE_ENABLE;
+ if (kvm_vcpu_is_reset_bsp(vcpu))
+ apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+ apic_base_msr.host_initiated = true;
+ kvm_set_apic_base(vcpu, &apic_base_msr);
+ }
+
+ vmx_segment_cache_clear(vmx);
+
+ seg_setup(VCPU_SREG_CS);
+ vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+ vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
+
+ seg_setup(VCPU_SREG_DS);
+ seg_setup(VCPU_SREG_ES);
+ seg_setup(VCPU_SREG_FS);
+ seg_setup(VCPU_SREG_GS);
+ seg_setup(VCPU_SREG_SS);
+
+ vmcs_write16(GUEST_TR_SELECTOR, 0);
+ vmcs_writel(GUEST_TR_BASE, 0);
+ vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+ vmcs_writel(GUEST_LDTR_BASE, 0);
+ vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+ if (!init_event) {
+ vmcs_write32(GUEST_SYSENTER_CS, 0);
+ vmcs_writel(GUEST_SYSENTER_ESP, 0);
+ vmcs_writel(GUEST_SYSENTER_EIP, 0);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+ }
+
+ kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ kvm_rip_write(vcpu, 0xfff0);
+
+ vmcs_writel(GUEST_GDTR_BASE, 0);
+ vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+ vmcs_writel(GUEST_IDTR_BASE, 0);
+ vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+ if (kvm_mpx_supported())
+ vmcs_write64(GUEST_BNDCFGS, 0);
+
+ setup_msrs(vmx);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
+
+ if (cpu_has_vmx_tpr_shadow() && !init_event) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+ if (cpu_need_tpr_shadow(vcpu))
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+ __pa(vcpu->arch.apic->regs));
+ vmcs_write32(TPR_THRESHOLD, 0);
+ }
+
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+ vmx->vcpu.arch.cr0 = cr0;
+ vmx_set_cr0(vcpu, cr0); /* enter rmode */
+ vmx_set_cr4(vcpu, 0);
+ vmx_set_efer(vcpu, 0);
+
+ update_exception_bitmap(vcpu);
+
+ vpid_sync_context(vmx->vpid);
+ if (init_event)
+ vmx_clear_hlt(vcpu);
+
+ vmx_update_fb_clear_dis(vcpu, vmx);
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+ if (!enable_vnmi ||
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+ enable_irq_window(vcpu);
+ return;
+ }
+
+ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ uint32_t intr;
+ int irq = vcpu->arch.interrupt.nr;
+
+ trace_kvm_inj_virq(irq);
+
+ ++vcpu->stat.irq_injections;
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (vcpu->arch.interrupt.soft)
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
+ return;
+ }
+ intr = irq | INTR_INFO_VALID_MASK;
+ if (vcpu->arch.interrupt.soft) {
+ intr |= INTR_TYPE_SOFT_INTR;
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ } else
+ intr |= INTR_TYPE_EXT_INTR;
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+
+ vmx_clear_hlt(vcpu);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!enable_vnmi) {
+ /*
+ * Tracking the NMI-blocked state in software is built upon
+ * finding the next open IRQ window. This, in turn, depends on
+ * well-behaving guests: They have to keep IRQs disabled at
+ * least as long as the NMI handler runs. Otherwise we may
+ * cause NMI nesting, maybe breaking the guest. But as this is
+ * highly unlikely, we can live with the residual risk.
+ */
+ vmx->loaded_vmcs->soft_vnmi_blocked = 1;
+ vmx->loaded_vmcs->vnmi_blocked_time = 0;
+ }
+
+ ++vcpu->stat.nmi_injections;
+ vmx->loaded_vmcs->nmi_known_unmasked = false;
+
+ if (vmx->rmode.vm86_active) {
+ kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
+ return;
+ }
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+
+ vmx_clear_hlt(vcpu);
+}
+
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool masked;
+
+ if (!enable_vnmi)
+ return vmx->loaded_vmcs->soft_vnmi_blocked;
+ if (vmx->loaded_vmcs->nmi_known_unmasked)
+ return false;
+ masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+ vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+ return masked;
+}
+
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!enable_vnmi) {
+ if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
+ vmx->loaded_vmcs->soft_vnmi_blocked = masked;
+ vmx->loaded_vmcs->vnmi_blocked_time = 0;
+ }
+ } else {
+ vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+ if (masked)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ }
+}
+
+bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
+ return false;
+
+ if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
+ return true;
+
+ return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
+ GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return -EBUSY;
+
+ /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
+ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
+ return -EBUSY;
+
+ return !vmx_nmi_blocked(vcpu);
+}
+
+bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
+ return false;
+
+ return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
+ (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return -EBUSY;
+
+ /*
+ * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
+ * e.g. if the IRQ arrived asynchronously after checking nested events.
+ */
+ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
+ return -EBUSY;
+
+ return !vmx_interrupt_blocked(vcpu);
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+ int ret;
+
+ if (enable_unrestricted_guest)
+ return 0;
+
+ mutex_lock(&kvm->slots_lock);
+ ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
+ PAGE_SIZE * 3);
+ mutex_unlock(&kvm->slots_lock);
+
+ if (ret)
+ return ret;
+ to_kvm_vmx(kvm)->tss_addr = addr;
+ return init_rmode_tss(kvm);
+}
+
+static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+{
+ to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
+ return 0;
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+ switch (vec) {
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject the exception
+ * from user space while in guest debugging mode.
+ */
+ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ return false;
+ fallthrough;
+ case DB_VECTOR:
+ return !(vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
+ case DE_VECTOR:
+ case OF_VECTOR:
+ case BR_VECTOR:
+ case UD_VECTOR:
+ case DF_VECTOR:
+ case SS_VECTOR:
+ case GP_VECTOR:
+ case MF_VECTOR:
+ return true;
+ }
+ return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+ int vec, u32 err_code)
+{
+ /*
+ * Instruction with address size override prefix opcode 0x67
+ * Cause the #SS fault with 0 error code in VM86 mode.
+ */
+ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+ if (kvm_emulate_instruction(vcpu, 0)) {
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+ return 1;
+ }
+ return 0;
+ }
+
+ /*
+ * Forward all other exceptions that are valid in real mode.
+ * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+ * the required debugging infrastructure rework.
+ */
+ kvm_queue_exception(vcpu, vec);
+ return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE)
+ struct pt_regs regs = {
+ .cs = 3, /* Fake ring 3 no matter what the guest ran on */
+ .flags = X86_EFLAGS_IF,
+ };
+
+ do_machine_check(&regs);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+ /* handled by vmx_vcpu_run() */
+ return 1;
+}
+
+/*
+ * If the host has split lock detection disabled, then #AC is
+ * unconditionally injected into the guest, which is the pre split lock
+ * detection behaviour.
+ *
+ * If the host has split lock detection enabled then #AC is
+ * only injected into the guest when:
+ * - Guest CPL == 3 (user mode)
+ * - Guest has #AC detection enabled in CR0
+ * - Guest EFLAGS has AC bit set
+ */
+bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
+{
+ if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
+ return true;
+
+ return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
+ (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
+}
+
+static int handle_exception_nmi(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_run *kvm_run = vcpu->run;
+ u32 intr_info, ex_no, error_code;
+ unsigned long cr2, rip, dr6;
+ u32 vect_info;
+
+ vect_info = vmx->idt_vectoring_info;
+ intr_info = vmx_get_intr_info(vcpu);
+
+ if (is_machine_check(intr_info) || is_nmi(intr_info))
+ return 1; /* handled by handle_exception_nmi_irqoff() */
+
+ if (is_invalid_opcode(intr_info))
+ return handle_ud(vcpu);
+
+ error_code = 0;
+ if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+ error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+ if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
+ WARN_ON_ONCE(!enable_vmware_backdoor);
+
+ /*
+ * VMware backdoor emulation on #GP interception only handles
+ * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
+ * error code on #GP.
+ */
+ if (error_code) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+ return 1;
+ }
+ return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
+ }
+
+ /*
+ * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+ * MMIO, it is better to report an internal error.
+ * See the comments in vmx_handle_exit.
+ */
+ if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+ !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+ vcpu->run->internal.ndata = 4;
+ vcpu->run->internal.data[0] = vect_info;
+ vcpu->run->internal.data[1] = intr_info;
+ vcpu->run->internal.data[2] = error_code;
+ vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
+ return 0;
+ }
+
+ if (is_page_fault(intr_info)) {
+ cr2 = vmx_get_exit_qual(vcpu);
+ if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
+ /*
+ * EPT will cause page fault only if we need to
+ * detect illegal GPAs.
+ */
+ WARN_ON_ONCE(!allow_smaller_maxphyaddr);
+ kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
+ return 1;
+ } else
+ return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
+ }
+
+ ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+ if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+ return handle_rmode_exception(vcpu, ex_no, error_code);
+
+ switch (ex_no) {
+ case DB_VECTOR:
+ dr6 = vmx_get_exit_qual(vcpu);
+ if (!(vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+ /*
+ * If the #DB was due to ICEBP, a.k.a. INT1, skip the
+ * instruction. ICEBP generates a trap-like #DB, but
+ * despite its interception control being tied to #DB,
+ * is an instruction intercept, i.e. the VM-Exit occurs
+ * on the ICEBP itself. Note, skipping ICEBP also
+ * clears STI and MOVSS blocking.
+ *
+ * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
+ * if single-step is enabled in RFLAGS and STI or MOVSS
+ * blocking is active, as the CPU doesn't set the bit
+ * on VM-Exit due to #DB interception. VM-Entry has a
+ * consistency check that a single-step #DB is pending
+ * in this scenario as the previous instruction cannot
+ * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
+ * don't modify RFLAGS), therefore the one instruction
+ * delay when activating single-step breakpoints must
+ * have already expired. Note, the CPU sets/clears BS
+ * as appropriate for all other VM-Exits types.
+ */
+ if (is_icebp(intr_info))
+ WARN_ON(!skip_emulated_instruction(vcpu));
+ else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
+ (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
+
+ kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
+ return 1;
+ }
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
+ kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+ fallthrough;
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject #BP from
+ * user space while in guest debugging mode. Reading it for
+ * #DB as well causes no harm, it is not used in that case.
+ */
+ vmx->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ rip = kvm_rip_read(vcpu);
+ kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+ kvm_run->debug.arch.exception = ex_no;
+ break;
+ case AC_VECTOR:
+ if (vmx_guest_inject_ac(vcpu)) {
+ kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
+ return 1;
+ }
+
+ /*
+ * Handle split lock. Depending on detection mode this will
+ * either warn and disable split lock detection for this
+ * task or force SIGBUS on it.
+ */
+ if (handle_guest_split_lock(kvm_rip_read(vcpu)))
+ return 1;
+ fallthrough;
+ default:
+ kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+ kvm_run->ex.exception = ex_no;
+ kvm_run->ex.error_code = error_code;
+ break;
+ }
+ return 0;
+}
+
+static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.irq_exits;
+ return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+ vcpu->mmio_needed = 0;
+ return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int size, in, string;
+ unsigned port;
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+ string = (exit_qualification & 16) != 0;
+
+ ++vcpu->stat.io_exits;
+
+ if (string)
+ return kvm_emulate_instruction(vcpu, 0);
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+ in = (exit_qualification & 8) != 0;
+
+ return kvm_fast_pio(vcpu, size, port, in);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+ /*
+ * Patch in the VMCALL instruction:
+ */
+ hypercall[0] = 0x0f;
+ hypercall[1] = 0x01;
+ hypercall[2] = 0xc1;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /*
+ * We get here when L2 changed cr0 in a way that did not change
+ * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+ * but did change L0 shadowed bits. So we first calculate the
+ * effective cr0 value that L1 would like to write into the
+ * hardware. It consists of the L2-owned bits from the new
+ * value combined with the L1-owned bits from L1's guest_cr0.
+ */
+ val = (val & ~vmcs12->cr0_guest_host_mask) |
+ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+ if (!nested_guest_cr0_valid(vcpu, val))
+ return 1;
+
+ if (kvm_set_cr0(vcpu, val))
+ return 1;
+ vmcs_writel(CR0_READ_SHADOW, orig_val);
+ return 0;
+ } else {
+ if (to_vmx(vcpu)->nested.vmxon &&
+ !nested_host_cr0_valid(vcpu, val))
+ return 1;
+
+ return kvm_set_cr0(vcpu, val);
+ }
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /* analogously to handle_set_cr0 */
+ val = (val & ~vmcs12->cr4_guest_host_mask) |
+ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+ if (kvm_set_cr4(vcpu, val))
+ return 1;
+ vmcs_writel(CR4_READ_SHADOW, orig_val);
+ return 0;
+ } else
+ return kvm_set_cr4(vcpu, val);
+}
+
+static int handle_desc(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
+ return kvm_emulate_instruction(vcpu, 0);
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification, val;
+ int cr;
+ int reg;
+ int err;
+ int ret;
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+ cr = exit_qualification & 15;
+ reg = (exit_qualification >> 8) & 15;
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ val = kvm_register_readl(vcpu, reg);
+ trace_kvm_cr_write(cr, val);
+ switch (cr) {
+ case 0:
+ err = handle_set_cr0(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 3:
+ WARN_ON_ONCE(enable_unrestricted_guest);
+ err = kvm_set_cr3(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 4:
+ err = handle_set_cr4(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 8: {
+ u8 cr8_prev = kvm_get_cr8(vcpu);
+ u8 cr8 = (u8)val;
+ err = kvm_set_cr8(vcpu, cr8);
+ ret = kvm_complete_insn_gp(vcpu, err);
+ if (lapic_in_kernel(vcpu))
+ return ret;
+ if (cr8_prev <= cr8)
+ return ret;
+ /*
+ * TODO: we might be squashing a
+ * KVM_GUESTDBG_SINGLESTEP-triggered
+ * KVM_EXIT_DEBUG here.
+ */
+ vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+ return 0;
+ }
+ }
+ break;
+ case 2: /* clts */
+ WARN_ONCE(1, "Guest should always own CR0.TS");
+ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+ trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+ return kvm_skip_emulated_instruction(vcpu);
+ case 1: /*mov from cr*/
+ switch (cr) {
+ case 3:
+ WARN_ON_ONCE(enable_unrestricted_guest);
+ val = kvm_read_cr3(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ return kvm_skip_emulated_instruction(vcpu);
+ case 8:
+ val = kvm_get_cr8(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ break;
+ case 3: /* lmsw */
+ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+ trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+ kvm_lmsw(vcpu, val);
+
+ return kvm_skip_emulated_instruction(vcpu);
+ default:
+ break;
+ }
+ vcpu->run->exit_reason = 0;
+ vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+ (int)(exit_qualification >> 4) & 3, cr);
+ return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int dr, dr7, reg;
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+ dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+ /* First, if DR does not exist, trigger UD */
+ if (!kvm_require_dr(vcpu, dr))
+ return 1;
+
+ /* Do not handle if the CPL > 0, will trigger GP on re-entry */
+ if (!kvm_require_cpl(vcpu, 0))
+ return 1;
+ dr7 = vmcs_readl(GUEST_DR7);
+ if (dr7 & DR7_GD) {
+ /*
+ * As the vm-exit takes precedence over the debug trap, we
+ * need to emulate the latter, either for the host or the
+ * guest debugging itself.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+ vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
+ vcpu->run->debug.arch.dr7 = dr7;
+ vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+ vcpu->run->debug.arch.exception = DB_VECTOR;
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ return 0;
+ } else {
+ kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
+ return 1;
+ }
+ }
+
+ if (vcpu->guest_debug == 0) {
+ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
+
+ /*
+ * No more DR vmexits; force a reload of the debug registers
+ * and reenter on this instruction. The next vmexit will
+ * retrieve the full state of the debug registers.
+ */
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+ return 1;
+ }
+
+ reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+ if (exit_qualification & TYPE_MOV_FROM_DR) {
+ unsigned long val;
+
+ if (kvm_get_dr(vcpu, dr, &val))
+ return 1;
+ kvm_register_write(vcpu, reg, val);
+ } else
+ if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+ return 1;
+
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+ get_debugreg(vcpu->arch.db[0], 0);
+ get_debugreg(vcpu->arch.db[1], 1);
+ get_debugreg(vcpu->arch.db[2], 2);
+ get_debugreg(vcpu->arch.db[3], 3);
+ get_debugreg(vcpu->arch.dr6, 6);
+ vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+ kvm_apic_update_ppr(vcpu);
+ return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ ++vcpu->stat.irq_window_exits;
+ return 1;
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_hypercall(vcpu);
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+ /* Treat an INVD instruction as a NOP and just skip it. */
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
+
+ kvm_mmu_invlpg(vcpu, exit_qualification);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ err = kvm_rdpmc(vcpu);
+ return kvm_complete_insn_gp(vcpu, err);
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_wbinvd(vcpu);
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+ u64 new_bv = kvm_read_edx_eax(vcpu);
+ u32 index = kvm_rcx_read(vcpu);
+
+ if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+ return kvm_skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+ if (likely(fasteoi)) {
+ unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
+ int access_type, offset;
+
+ access_type = exit_qualification & APIC_ACCESS_TYPE;
+ offset = exit_qualification & APIC_ACCESS_OFFSET;
+ /*
+ * Sane guest uses MOV to write EOI, with written value
+ * not cared. So make a short-circuit here by avoiding
+ * heavy instruction emulation.
+ */
+ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+ (offset == APIC_EOI)) {
+ kvm_lapic_set_eoi(vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ }
+ return kvm_emulate_instruction(vcpu, 0);
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
+ int vector = exit_qualification & 0xff;
+
+ /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_set_eoi_accelerated(vcpu, vector);
+ return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
+ u32 offset = exit_qualification & 0xfff;
+
+ /* APIC-write VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_write_nodecode(vcpu, offset);
+ return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification;
+ bool has_error_code = false;
+ u32 error_code = 0;
+ u16 tss_selector;
+ int reason, type, idt_v, idt_index;
+
+ idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+ idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+ type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+
+ reason = (u32)exit_qualification >> 30;
+ if (reason == TASK_SWITCH_GATE && idt_v) {
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = false;
+ vmx_set_nmi_mask(vcpu, true);
+ break;
+ case INTR_TYPE_EXT_INTR:
+ case INTR_TYPE_SOFT_INTR:
+ kvm_clear_interrupt_queue(vcpu);
+ break;
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (vmx->idt_vectoring_info &
+ VECTORING_INFO_DELIVER_CODE_MASK) {
+ has_error_code = true;
+ error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ }
+ fallthrough;
+ case INTR_TYPE_SOFT_EXCEPTION:
+ kvm_clear_exception_queue(vcpu);
+ break;
+ default:
+ break;
+ }
+ }
+ tss_selector = exit_qualification;
+
+ if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+ type != INTR_TYPE_EXT_INTR &&
+ type != INTR_TYPE_NMI_INTR))
+ WARN_ON(!skip_emulated_instruction(vcpu));
+
+ /*
+ * TODO: What about debug traps on tss switch?
+ * Are we supposed to inject them and update dr6?
+ */
+ return kvm_task_switch(vcpu, tss_selector,
+ type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
+ reason, has_error_code, error_code);
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ gpa_t gpa;
+ u64 error_code;
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+
+ /*
+ * EPT violation happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ * There are errata that may cause this bit to not be set:
+ * AAK134, BY25.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ enable_vnmi &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ trace_kvm_page_fault(gpa, exit_qualification);
+
+ /* Is it a read fault? */
+ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+ ? PFERR_USER_MASK : 0;
+ /* Is it a write fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+ ? PFERR_WRITE_MASK : 0;
+ /* Is it a fetch fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+ ? PFERR_FETCH_MASK : 0;
+ /* ept page table entry is present? */
+ error_code |= (exit_qualification &
+ (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+ EPT_VIOLATION_EXECUTABLE))
+ ? PFERR_PRESENT_MASK : 0;
+
+ error_code |= (exit_qualification & 0x100) != 0 ?
+ PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
+
+ vcpu->arch.exit_qualification = exit_qualification;
+
+ /*
+ * Check that the GPA doesn't exceed physical memory limits, as that is
+ * a guest page fault. We have to emulate the instruction here, because
+ * if the illegal address is that of a paging structure, then
+ * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
+ * would also use advanced VM-exit information for EPT violations to
+ * reconstruct the page fault error code.
+ */
+ if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
+ return kvm_emulate_instruction(vcpu, 0);
+
+ return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+ gpa_t gpa;
+
+ /*
+ * A nested guest cannot optimize MMIO vmexits, because we have an
+ * nGPA here instead of the required GPA.
+ */
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ if (!is_guest_mode(vcpu) &&
+ !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+ trace_kvm_fast_mmio(gpa);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+
+ return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+ WARN_ON_ONCE(!enable_vnmi);
+ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
+ ++vcpu->stat.nmi_window_exits;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool intr_window_requested;
+ unsigned count = 130;
+
+ intr_window_requested = exec_controls_get(vmx) &
+ CPU_BASED_INTR_WINDOW_EXITING;
+
+ while (vmx->emulation_required && count-- != 0) {
+ if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
+ return handle_interrupt_window(&vmx->vcpu);
+
+ if (kvm_test_request(KVM_REQ_EVENT, vcpu))
+ return 1;
+
+ if (!kvm_emulate_instruction(vcpu, 0))
+ return 0;
+
+ if (vmx->emulation_required && !vmx->rmode.vm86_active &&
+ vcpu->arch.exception.pending) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror =
+ KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+
+ /*
+ * Note, return 1 and not 0, vcpu_run() will invoke
+ * xfer_to_guest_mode() which will create a proper return
+ * code.
+ */
+ if (__xfer_to_guest_mode_work_pending())
+ return 1;
+ }
+
+ return 1;
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned int old = vmx->ple_window;
+
+ vmx->ple_window = __grow_ple_window(old, ple_window,
+ ple_window_grow,
+ ple_window_max);
+
+ if (vmx->ple_window != old) {
+ vmx->ple_window_dirty = true;
+ trace_kvm_ple_window_update(vcpu->vcpu_id,
+ vmx->ple_window, old);
+ }
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned int old = vmx->ple_window;
+
+ vmx->ple_window = __shrink_ple_window(old, ple_window,
+ ple_window_shrink,
+ ple_window);
+
+ if (vmx->ple_window != old) {
+ vmx->ple_window_dirty = true;
+ trace_kvm_ple_window_update(vcpu->vcpu_id,
+ vmx->ple_window, old);
+ }
+}
+
+static void vmx_enable_tdp(void)
+{
+ kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+ enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+ enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+ 0ull, VMX_EPT_EXECUTABLE_MASK,
+ cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+ VMX_EPT_RWX_MASK, 0ull);
+
+ ept_set_mmio_spte_mask();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_pause_in_guest(vcpu->kvm))
+ grow_ple_window(vcpu);
+
+ /*
+ * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
+ * VM-execution control is ignored if CPL > 0. OTOH, KVM
+ * never set PAUSE_EXITING and just set PLE if supported,
+ * so the vcpu must be CPL=0 if it gets a PAUSE exit.
+ */
+ kvm_vcpu_on_spin(vcpu, true);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_invalid_op(struct kvm_vcpu *vcpu)
+{
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int handle_monitor_trap(struct kvm_vcpu *vcpu)
+{
+ return 1;
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_invpcid(struct kvm_vcpu *vcpu)
+{
+ u32 vmx_instruction_info;
+ unsigned long type;
+ gva_t gva;
+ struct {
+ u64 pcid;
+ u64 gla;
+ } operand;
+
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ if (type > 3) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ /* According to the Intel instruction reference, the memory operand
+ * is read even if it isn't needed (e.g., for type==all)
+ */
+ if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
+ vmx_instruction_info, false,
+ sizeof(operand), &gva))
+ return 1;
+
+ return kvm_handle_invpcid(vcpu, type, gva);
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+
+ trace_kvm_pml_full(vcpu->vcpu_id);
+
+ exit_qualification = vmx_get_exit_qual(vcpu);
+
+ /*
+ * PML buffer FULL happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ enable_vnmi &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+
+ /*
+ * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+ * here.., and there's no userspace involvement needed for PML.
+ */
+ return 1;
+}
+
+static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->req_immediate_exit &&
+ !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
+ kvm_lapic_expired_hv_timer(vcpu);
+ return EXIT_FASTPATH_REENTER_GUEST;
+ }
+
+ return EXIT_FASTPATH_NONE;
+}
+
+static int handle_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ handle_fastpath_preemption_timer(vcpu);
+ return 1;
+}
+
+/*
+ * When nested=0, all VMX instruction VM Exits filter here. The handlers
+ * are overwritten by nested_vmx_setup() when nested=1.
+ */
+static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
+{
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int handle_encls(struct kvm_vcpu *vcpu)
+{
+ /*
+ * SGX virtualization is not yet supported. There is no software
+ * enable bit for SGX, so we have to trap ENCLS and inject a #UD
+ * to prevent the guest from executing ENCLS.
+ */
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume. Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+ [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
+ [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
+ [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
+ [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
+ [EXIT_REASON_IO_INSTRUCTION] = handle_io,
+ [EXIT_REASON_CR_ACCESS] = handle_cr,
+ [EXIT_REASON_DR_ACCESS] = handle_dr,
+ [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
+ [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
+ [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
+ [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
+ [EXIT_REASON_HLT] = kvm_emulate_halt,
+ [EXIT_REASON_INVD] = handle_invd,
+ [EXIT_REASON_INVLPG] = handle_invlpg,
+ [EXIT_REASON_RDPMC] = handle_rdpmc,
+ [EXIT_REASON_VMCALL] = handle_vmcall,
+ [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
+ [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
+ [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
+ [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
+ [EXIT_REASON_VMREAD] = handle_vmx_instruction,
+ [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
+ [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
+ [EXIT_REASON_VMOFF] = handle_vmx_instruction,
+ [EXIT_REASON_VMON] = handle_vmx_instruction,
+ [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
+ [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
+ [EXIT_REASON_APIC_WRITE] = handle_apic_write,
+ [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
+ [EXIT_REASON_WBINVD] = handle_wbinvd,
+ [EXIT_REASON_XSETBV] = handle_xsetbv,
+ [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
+ [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
+ [EXIT_REASON_GDTR_IDTR] = handle_desc,
+ [EXIT_REASON_LDTR_TR] = handle_desc,
+ [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
+ [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
+ [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
+ [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
+ [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
+ [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
+ [EXIT_REASON_INVEPT] = handle_vmx_instruction,
+ [EXIT_REASON_INVVPID] = handle_vmx_instruction,
+ [EXIT_REASON_RDRAND] = handle_invalid_op,
+ [EXIT_REASON_RDSEED] = handle_invalid_op,
+ [EXIT_REASON_PML_FULL] = handle_pml_full,
+ [EXIT_REASON_INVPCID] = handle_invpcid,
+ [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
+ [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
+ [EXIT_REASON_ENCLS] = handle_encls,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+ ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
+ u32 *intr_info, u32 *error_code)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ *info1 = vmx_get_exit_qual(vcpu);
+ if (!(vmx->exit_reason.failed_vmentry)) {
+ *info2 = vmx->idt_vectoring_info;
+ *intr_info = vmx_get_intr_info(vcpu);
+ if (is_exception_with_error_code(*intr_info))
+ *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ else
+ *error_code = 0;
+ } else {
+ *info2 = 0;
+ *intr_info = 0;
+ *error_code = 0;
+ }
+}
+
+static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
+{
+ if (vmx->pml_pg) {
+ __free_page(vmx->pml_pg);
+ vmx->pml_pg = NULL;
+ }
+}
+
+static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 *pml_buf;
+ u16 pml_idx;
+
+ pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+ /* Do nothing if PML buffer is empty */
+ if (pml_idx == (PML_ENTITY_NUM - 1))
+ return;
+
+ /* PML index always points to next available PML buffer entity */
+ if (pml_idx >= PML_ENTITY_NUM)
+ pml_idx = 0;
+ else
+ pml_idx++;
+
+ pml_buf = page_address(vmx->pml_pg);
+ for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+ u64 gpa;
+
+ gpa = pml_buf[pml_idx];
+ WARN_ON(gpa & (PAGE_SIZE - 1));
+ kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
+ }
+
+ /* reset PML index */
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+ /*
+ * We only need to kick vcpu out of guest mode here, as PML buffer
+ * is flushed at beginning of all VMEXITs, and it's obvious that only
+ * vcpus running in guest are possible to have unflushed GPAs in PML
+ * buffer.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_dump_sel(char *name, uint32_t sel)
+{
+ pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
+ name, vmcs_read16(sel),
+ vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
+ vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
+ vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
+}
+
+static void vmx_dump_dtsel(char *name, uint32_t limit)
+{
+ pr_err("%s limit=0x%08x, base=0x%016lx\n",
+ name, vmcs_read32(limit),
+ vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
+}
+
+void dump_vmcs(void)
+{
+ u32 vmentry_ctl, vmexit_ctl;
+ u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
+ unsigned long cr4;
+
+ if (!dump_invalid_vmcs) {
+ pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
+ return;
+ }
+
+ vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
+ vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
+ cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
+ cr4 = vmcs_readl(GUEST_CR4);
+ secondary_exec_control = 0;
+ if (cpu_has_secondary_exec_ctrls())
+ secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+ pr_err("*** Guest State ***\n");
+ pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+ vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
+ vmcs_readl(CR0_GUEST_HOST_MASK));
+ pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+ cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
+ pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
+ if (cpu_has_vmx_ept()) {
+ pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
+ vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
+ pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
+ vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
+ }
+ pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
+ vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
+ pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
+ vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
+ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+ vmcs_readl(GUEST_SYSENTER_ESP),
+ vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
+ vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
+ vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
+ vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
+ vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
+ vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
+ vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
+ vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
+ vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
+ vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
+ vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
+ if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
+ (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
+ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
+ vmcs_read64(GUEST_IA32_EFER),
+ vmcs_read64(GUEST_IA32_PAT));
+ pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
+ vmcs_read64(GUEST_IA32_DEBUGCTL),
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
+ if (cpu_has_load_perf_global_ctrl() &&
+ vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+ pr_err("PerfGlobCtl = 0x%016llx\n",
+ vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
+ if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
+ pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
+ pr_err("Interruptibility = %08x ActivityState = %08x\n",
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
+ vmcs_read32(GUEST_ACTIVITY_STATE));
+ if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+ pr_err("InterruptStatus = %04x\n",
+ vmcs_read16(GUEST_INTR_STATUS));
+
+ pr_err("*** Host State ***\n");
+ pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
+ vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
+ pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
+ vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
+ vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
+ vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
+ vmcs_read16(HOST_TR_SELECTOR));
+ pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
+ vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
+ vmcs_readl(HOST_TR_BASE));
+ pr_err("GDTBase=%016lx IDTBase=%016lx\n",
+ vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
+ pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
+ vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
+ vmcs_readl(HOST_CR4));
+ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+ vmcs_readl(HOST_IA32_SYSENTER_ESP),
+ vmcs_read32(HOST_IA32_SYSENTER_CS),
+ vmcs_readl(HOST_IA32_SYSENTER_EIP));
+ if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
+ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
+ vmcs_read64(HOST_IA32_EFER),
+ vmcs_read64(HOST_IA32_PAT));
+ if (cpu_has_load_perf_global_ctrl() &&
+ vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ pr_err("PerfGlobCtl = 0x%016llx\n",
+ vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
+
+ pr_err("*** Control State ***\n");
+ pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
+ pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
+ pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
+ pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
+ vmcs_read32(EXCEPTION_BITMAP),
+ vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
+ vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
+ pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+ vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
+ vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
+ pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
+ pr_err(" reason=%08x qualification=%016lx\n",
+ vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
+ pr_err("IDTVectoring: info=%08x errcode=%08x\n",
+ vmcs_read32(IDT_VECTORING_INFO_FIELD),
+ vmcs_read32(IDT_VECTORING_ERROR_CODE));
+ pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
+ if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
+ pr_err("TSC Multiplier = 0x%016llx\n",
+ vmcs_read64(TSC_MULTIPLIER));
+ if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
+ if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
+ u16 status = vmcs_read16(GUEST_INTR_STATUS);
+ pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
+ }
+ pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
+ if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+ pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
+ pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
+ }
+ if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
+ pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
+ if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
+ pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
+ if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+ pr_err("PLE Gap=%08x Window=%08x\n",
+ vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
+ if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
+ pr_err("Virtual processor ID = 0x%04x\n",
+ vmcs_read16(VIRTUAL_PROCESSOR_ID));
+}
+
+/*
+ * The guest has exited. See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ union vmx_exit_reason exit_reason = vmx->exit_reason;
+ u32 vectoring_info = vmx->idt_vectoring_info;
+ u16 exit_handler_index;
+
+ /*
+ * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+ * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+ * querying dirty_bitmap, we only need to kick all vcpus out of guest
+ * mode as if vcpus is in root mode, the PML buffer must has been
+ * flushed already.
+ */
+ if (enable_pml)
+ vmx_flush_pml_buffer(vcpu);
+
+ /*
+ * We should never reach this point with a pending nested VM-Enter, and
+ * more specifically emulation of L2 due to invalid guest state (see
+ * below) should never happen as that means we incorrectly allowed a
+ * nested VM-Enter with an invalid vmcs12.
+ */
+ WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+ /* If guest state is invalid, start emulating */
+ if (vmx->emulation_required)
+ return handle_invalid_guest_state(vcpu);
+
+ if (is_guest_mode(vcpu)) {
+ /*
+ * The host physical addresses of some pages of guest memory
+ * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+ * Page). The CPU may write to these pages via their host
+ * physical address while L2 is running, bypassing any
+ * address-translation-based dirty tracking (e.g. EPT write
+ * protection).
+ *
+ * Mark them dirty on every exit from L2 to prevent them from
+ * getting out of sync with dirty tracking.
+ */
+ nested_mark_vmcs12_pages_dirty(vcpu);
+
+ if (nested_vmx_reflect_vmexit(vcpu))
+ return 1;
+ }
+
+ if (exit_reason.failed_vmentry) {
+ dump_vmcs();
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = exit_reason.full;
+ vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
+ return 0;
+ }
+
+ if (unlikely(vmx->fail)) {
+ dump_vmcs();
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = vmcs_read32(VM_INSTRUCTION_ERROR);
+ vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
+ return 0;
+ }
+
+ /*
+ * Note:
+ * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+ * delivery event since it indicates guest is accessing MMIO.
+ * The vm-exit can be triggered again after return to guest that
+ * will cause infinite loop.
+ */
+ if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
+ exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
+ exit_reason.basic != EXIT_REASON_PML_FULL &&
+ exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
+ exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
+ int ndata = 3;
+
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+ vcpu->run->internal.data[0] = vectoring_info;
+ vcpu->run->internal.data[1] = exit_reason.full;
+ vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
+ if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
+ vcpu->run->internal.data[ndata++] =
+ vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ }
+ vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
+ vcpu->run->internal.ndata = ndata;
+ return 0;
+ }
+
+ if (unlikely(!enable_vnmi &&
+ vmx->loaded_vmcs->soft_vnmi_blocked)) {
+ if (!vmx_interrupt_blocked(vcpu)) {
+ vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+ } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
+ vcpu->arch.nmi_pending) {
+ /*
+ * This CPU don't support us in finding the end of an
+ * NMI-blocked window if the guest runs with IRQs
+ * disabled. So we pull the trigger after 1 s of
+ * futile waiting, but inform the user about this.
+ */
+ printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+ "state on VCPU %d after 1 s timeout\n",
+ __func__, vcpu->vcpu_id);
+ vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+ }
+ }
+
+ if (exit_fastpath != EXIT_FASTPATH_NONE)
+ return 1;
+
+ if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
+ goto unexpected_vmexit;
+#ifdef CONFIG_RETPOLINE
+ if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
+ return kvm_emulate_wrmsr(vcpu);
+ else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
+ return handle_preemption_timer(vcpu);
+ else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
+ return handle_interrupt_window(vcpu);
+ else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
+ return handle_external_interrupt(vcpu);
+ else if (exit_reason.basic == EXIT_REASON_HLT)
+ return kvm_emulate_halt(vcpu);
+ else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
+ return handle_ept_misconfig(vcpu);
+#endif
+
+ exit_handler_index = array_index_nospec((u16)exit_reason.basic,
+ kvm_vmx_max_exit_handlers);
+ if (!kvm_vmx_exit_handlers[exit_handler_index])
+ goto unexpected_vmexit;
+
+ return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
+
+unexpected_vmexit:
+ vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
+ exit_reason.full);
+ dump_vmcs();
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror =
+ KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
+ vcpu->run->internal.ndata = 2;
+ vcpu->run->internal.data[0] = exit_reason.full;
+ vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+ return 0;
+}
+
+/*
+ * Software based L1D cache flush which is used when microcode providing
+ * the cache control MSR is not loaded.
+ *
+ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+ * flush it is required to read in 64 KiB because the replacement algorithm
+ * is not exactly LRU. This could be sized at runtime via topology
+ * information but as all relevant affected CPUs have 32KiB L1D cache size
+ * there is no point in doing so.
+ */
+static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+ int size = PAGE_SIZE << L1D_CACHE_ORDER;
+
+ /*
+ * This code is only executed when the the flush mode is 'cond' or
+ * 'always'
+ */
+ if (static_branch_likely(&vmx_l1d_flush_cond)) {
+ bool flush_l1d;
+
+ /*
+ * Clear the per-vcpu flush bit, it gets set again
+ * either from vcpu_run() or from one of the unsafe
+ * VMEXIT handlers.
+ */
+ flush_l1d = vcpu->arch.l1tf_flush_l1d;
+ vcpu->arch.l1tf_flush_l1d = false;
+
+ /*
+ * Clear the per-cpu flush bit, it gets set again from
+ * the interrupt handlers.
+ */
+ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
+ kvm_clear_cpu_l1tf_flush_l1d();
+
+ if (!flush_l1d)
+ return;
+ }
+
+ vcpu->stat.l1d_flush++;
+
+ if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+ native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+ return;
+ }
+
+ asm volatile(
+ /* First ensure the pages are in the TLB */
+ "xorl %%eax, %%eax\n"
+ ".Lpopulate_tlb:\n\t"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $4096, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lpopulate_tlb\n\t"
+ "xorl %%eax, %%eax\n\t"
+ "cpuid\n\t"
+ /* Now fill the cache */
+ "xorl %%eax, %%eax\n"
+ ".Lfill_cache:\n"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $64, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lfill_cache\n\t"
+ "lfence\n"
+ :: [flush_pages] "r" (vmx_l1d_flush_pages),
+ [size] "r" (size)
+ : "eax", "ebx", "ecx", "edx");
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ int tpr_threshold;
+
+ if (is_guest_mode(vcpu) &&
+ nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return;
+
+ tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
+ if (is_guest_mode(vcpu))
+ to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
+ else
+ vmcs_write32(TPR_THRESHOLD, tpr_threshold);
+}
+
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 sec_exec_control;
+
+ if (!lapic_in_kernel(vcpu))
+ return;
+
+ if (!flexpriority_enabled &&
+ !cpu_has_vmx_virtualize_x2apic_mode())
+ return;
+
+ /* Postpone execution until vmcs01 is the current VMCS. */
+ if (is_guest_mode(vcpu)) {
+ vmx->nested.change_vmcs01_virtual_apic_mode = true;
+ return;
+ }
+
+ sec_exec_control = secondary_exec_controls_get(vmx);
+ sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+
+ switch (kvm_get_apic_mode(vcpu)) {
+ case LAPIC_MODE_INVALID:
+ WARN_ONCE(true, "Invalid local APIC state");
+ case LAPIC_MODE_DISABLED:
+ break;
+ case LAPIC_MODE_XAPIC:
+ if (flexpriority_enabled) {
+ sec_exec_control |=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ /*
+ * Flush the TLB, reloading the APIC access page will
+ * only do so if its physical address has changed, but
+ * the guest may have inserted a non-APIC mapping into
+ * the TLB while the APIC access page was disabled.
+ */
+ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
+ }
+ break;
+ case LAPIC_MODE_X2APIC:
+ if (cpu_has_vmx_virtualize_x2apic_mode())
+ sec_exec_control |=
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+ break;
+ }
+ secondary_exec_controls_set(vmx, sec_exec_control);
+
+ vmx_update_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
+{
+ struct page *page;
+
+ /* Defer reload until vmcs01 is the current VMCS. */
+ if (is_guest_mode(vcpu)) {
+ to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
+ return;
+ }
+
+ if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ return;
+
+ page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (is_error_page(page))
+ return;
+
+ vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
+ vmx_flush_tlb_current(vcpu);
+
+ /*
+ * Do not pin apic access page in memory, the MMU notifier
+ * will call us again if it is migrated or swapped out.
+ */
+ put_page(page);
+}
+
+static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+ u16 status;
+ u8 old;
+
+ if (max_isr == -1)
+ max_isr = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = status >> 8;
+ if (max_isr != old) {
+ status &= 0xff;
+ status |= max_isr << 8;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_set_rvi(int vector)
+{
+ u16 status;
+ u8 old;
+
+ if (vector == -1)
+ vector = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = (u8)status & 0xff;
+ if ((u8)vector != old) {
+ status &= ~0xff;
+ status |= (u8)vector;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+ /*
+ * When running L2, updating RVI is only relevant when
+ * vmcs12 virtual-interrupt-delivery enabled.
+ * However, it can be enabled only when L1 also
+ * intercepts external-interrupts and in that case
+ * we should not update vmcs02 RVI but instead intercept
+ * interrupt. Therefore, do nothing when running L2.
+ */
+ if (!is_guest_mode(vcpu))
+ vmx_set_rvi(max_irr);
+}
+
+static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+ bool max_irr_updated;
+
+ WARN_ON(!vcpu->arch.apicv_active);
+ if (pi_test_on(&vmx->pi_desc)) {
+ pi_clear_on(&vmx->pi_desc);
+ /*
+ * IOMMU can write to PID.ON, so the barrier matters even on UP.
+ * But on x86 this is just a compiler barrier anyway.
+ */
+ smp_mb__after_atomic();
+ max_irr_updated =
+ kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
+
+ /*
+ * If we are running L2 and L1 has a new pending interrupt
+ * which can be injected, this may cause a vmexit or it may
+ * be injected into L2. Either way, this interrupt will be
+ * processed via KVM_REQ_EVENT, not RVI, because we do not use
+ * virtual interrupt delivery to inject L1 interrupts into L2.
+ */
+ if (is_guest_mode(vcpu) && max_irr_updated)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ } else {
+ max_irr = kvm_lapic_find_highest_irr(vcpu);
+ }
+ vmx_hwapic_irr_update(vcpu, max_irr);
+ return max_irr;
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+ if (!kvm_vcpu_apicv_active(vcpu))
+ return;
+
+ vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+ vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+ vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+ vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ pi_clear_on(&vmx->pi_desc);
+ memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+}
+
+void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
+
+static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
+ unsigned long entry)
+{
+ kvm_before_interrupt(vcpu);
+ vmx_do_interrupt_nmi_irqoff(entry);
+ kvm_after_interrupt(vcpu);
+}
+
+static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
+{
+ const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
+ u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
+
+ /* if exit due to PF check for async PF */
+ if (is_page_fault(intr_info))
+ vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
+ /* Handle machine checks before interrupts are enabled */
+ else if (is_machine_check(intr_info))
+ kvm_machine_check();
+ /* We need to handle NMIs before interrupts are enabled */
+ else if (is_nmi(intr_info))
+ handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
+}
+
+static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
+{
+ u32 intr_info = vmx_get_intr_info(vcpu);
+ unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
+ gate_desc *desc = (gate_desc *)host_idt_base + vector;
+
+ if (WARN_ONCE(!is_external_intr(intr_info),
+ "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
+ return;
+
+ handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
+ vcpu->arch.at_instruction_boundary = true;
+}
+
+static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (vmx->emulation_required)
+ return;
+
+ if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
+ handle_external_interrupt_irqoff(vcpu);
+ else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
+ handle_exception_nmi_irqoff(vmx);
+}
+
+static bool vmx_has_emulated_msr(u32 index)
+{
+ switch (index) {
+ case MSR_IA32_SMBASE:
+ /*
+ * We cannot do SMM unless we can run the guest in big
+ * real mode.
+ */
+ return enable_unrestricted_guest || emulate_invalid_guest_state;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ return nested;
+ case MSR_AMD64_VIRT_SPEC_CTRL:
+ /* This is AMD only. */
+ return false;
+ default:
+ return true;
+ }
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+ u32 exit_intr_info;
+ bool unblock_nmi;
+ u8 vector;
+ bool idtv_info_valid;
+
+ idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ if (enable_vnmi) {
+ if (vmx->loaded_vmcs->nmi_known_unmasked)
+ return;
+
+ exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
+ unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+ vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Re-set bit "block by NMI" before VM entry if vmexit caused by
+ * a guest IRET fault.
+ * SDM 3: 23.2.2 (September 2008)
+ * Bit 12 is undefined in any of the following cases:
+ * If the VM exit sets the valid bit in the IDT-vectoring
+ * information field.
+ * If the VM exit is due to a double fault.
+ */
+ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+ vector != DF_VECTOR && !idtv_info_valid)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmx->loaded_vmcs->nmi_known_unmasked =
+ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+ & GUEST_INTR_STATE_NMI);
+ } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
+ vmx->loaded_vmcs->vnmi_blocked_time +=
+ ktime_to_ns(ktime_sub(ktime_get(),
+ vmx->loaded_vmcs->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+ u32 idt_vectoring_info,
+ int instr_len_field,
+ int error_code_field)
+{
+ u8 vector;
+ int type;
+ bool idtv_info_valid;
+
+ idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+
+ if (!idtv_info_valid)
+ return;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+ type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = true;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Clear bit "block by NMI" before VM entry if a NMI
+ * delivery faulted.
+ */
+ vmx_set_nmi_mask(vcpu, false);
+ break;
+ case INTR_TYPE_SOFT_EXCEPTION:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ fallthrough;
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+ u32 err = vmcs_read32(error_code_field);
+ kvm_requeue_exception_e(vcpu, vector, err);
+ } else
+ kvm_requeue_exception(vcpu, vector);
+ break;
+ case INTR_TYPE_SOFT_INTR:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ fallthrough;
+ case INTR_TYPE_EXT_INTR:
+ kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+ break;
+ default:
+ break;
+ }
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+ __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+ VM_EXIT_INSTRUCTION_LEN,
+ IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+ __vmx_complete_interrupts(vcpu,
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+ VM_ENTRY_INSTRUCTION_LEN,
+ VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+ int i, nr_msrs;
+ struct perf_guest_switch_msr *msrs;
+
+ msrs = perf_guest_get_msrs(&nr_msrs);
+
+ if (!msrs)
+ return;
+
+ for (i = 0; i < nr_msrs; i++)
+ if (msrs[i].host == msrs[i].guest)
+ clear_atomic_switch_msr(vmx, msrs[i].msr);
+ else
+ add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+ msrs[i].host, false);
+}
+
+static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 tscl;
+ u32 delta_tsc;
+
+ if (vmx->req_immediate_exit) {
+ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
+ vmx->loaded_vmcs->hv_timer_soft_disabled = false;
+ } else if (vmx->hv_deadline_tsc != -1) {
+ tscl = rdtsc();
+ if (vmx->hv_deadline_tsc > tscl)
+ /* set_hv_timer ensures the delta fits in 32-bits */
+ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
+ cpu_preemption_timer_multi);
+ else
+ delta_tsc = 0;
+
+ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
+ vmx->loaded_vmcs->hv_timer_soft_disabled = false;
+ } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
+ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
+ vmx->loaded_vmcs->hv_timer_soft_disabled = true;
+ }
+}
+
+void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
+{
+ if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
+ vmx->loaded_vmcs->host_state.rsp = host_rsp;
+ vmcs_writel(HOST_RSP, host_rsp);
+ }
+}
+
+void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
+ unsigned int flags)
+{
+ u64 hostval = this_cpu_read(x86_spec_ctrl_current);
+
+ if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
+ return;
+
+ if (flags & VMX_RUN_SAVE_SPEC_CTRL)
+ vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
+
+ /*
+ * If the guest/host SPEC_CTRL values differ, restore the host value.
+ *
+ * For legacy IBRS, the IBRS bit always needs to be written after
+ * transitioning from a less privileged predictor mode, regardless of
+ * whether the guest/host values differ.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
+ vmx->spec_ctrl != hostval)
+ native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
+
+ barrier_nospec();
+}
+
+static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
+{
+ switch (to_vmx(vcpu)->exit_reason.basic) {
+ case EXIT_REASON_MSR_WRITE:
+ return handle_fastpath_set_msr_irqoff(vcpu);
+ case EXIT_REASON_PREEMPTION_TIMER:
+ return handle_fastpath_preemption_timer(vcpu);
+ default:
+ return EXIT_FASTPATH_NONE;
+ }
+}
+
+static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
+ struct vcpu_vmx *vmx,
+ unsigned long flags)
+{
+ /*
+ * VMENTER enables interrupts (host state), but the kernel state is
+ * interrupts disabled when this is invoked. Also tell RCU about
+ * it. This is the same logic as for exit_to_user_mode().
+ *
+ * This ensures that e.g. latency analysis on the host observes
+ * guest mode as interrupt enabled.
+ *
+ * guest_enter_irqoff() informs context tracking about the
+ * transition to guest mode and if enabled adjusts RCU state
+ * accordingly.
+ */
+ instrumentation_begin();
+ trace_hardirqs_on_prepare();
+ lockdep_hardirqs_on_prepare(CALLER_ADDR0);
+ instrumentation_end();
+
+ guest_enter_irqoff();
+ lockdep_hardirqs_on(CALLER_ADDR0);
+
+ /* L1D Flush includes CPU buffer clear to mitigate MDS */
+ if (static_branch_unlikely(&vmx_l1d_should_flush))
+ vmx_l1d_flush(vcpu);
+ else if (static_branch_unlikely(&mds_user_clear))
+ mds_clear_cpu_buffers();
+ else if (static_branch_unlikely(&mmio_stale_data_clear) &&
+ kvm_arch_has_assigned_device(vcpu->kvm))
+ mds_clear_cpu_buffers();
+
+ vmx_disable_fb_clear(vmx);
+
+ if (vcpu->arch.cr2 != native_read_cr2())
+ native_write_cr2(vcpu->arch.cr2);
+
+ vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
+ flags);
+
+ vcpu->arch.cr2 = native_read_cr2();
+
+ vmx_enable_fb_clear(vmx);
+
+ /*
+ * VMEXIT disables interrupts (host state), but tracing and lockdep
+ * have them in state 'on' as recorded before entering guest mode.
+ * Same as enter_from_user_mode().
+ *
+ * context_tracking_guest_exit() restores host context and reinstates
+ * RCU if enabled and required.
+ *
+ * This needs to be done before the below as native_read_msr()
+ * contains a tracepoint and x86_spec_ctrl_restore_host() calls
+ * into world and some more.
+ */
+ lockdep_hardirqs_off(CALLER_ADDR0);
+ context_tracking_guest_exit();
+
+ instrumentation_begin();
+ trace_hardirqs_off_finish();
+ instrumentation_end();
+}
+
+static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ fastpath_t exit_fastpath;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long cr3, cr4;
+
+reenter_guest:
+ /* Record the guest's net vcpu time for enforced NMI injections. */
+ if (unlikely(!enable_vnmi &&
+ vmx->loaded_vmcs->soft_vnmi_blocked))
+ vmx->loaded_vmcs->entry_time = ktime_get();
+
+ /* Don't enter VMX if guest state is invalid, let the exit handler
+ start emulation until we arrive back to a valid state */
+ if (vmx->emulation_required)
+ return EXIT_FASTPATH_NONE;
+
+ if (vmx->ple_window_dirty) {
+ vmx->ple_window_dirty = false;
+ vmcs_write32(PLE_WINDOW, vmx->ple_window);
+ }
+
+ /*
+ * We did this in prepare_switch_to_guest, because it needs to
+ * be within srcu_read_lock.
+ */
+ WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
+
+ if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
+ vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+ if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
+ vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+ cr3 = __get_current_cr3_fast();
+ if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+ vmcs_writel(HOST_CR3, cr3);
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+ }
+
+ cr4 = cr4_read_shadow();
+ if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+ vmcs_writel(HOST_CR4, cr4);
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+ }
+
+ /* When single-stepping over STI and MOV SS, we must clear the
+ * corresponding interruptibility bits in the guest state. Otherwise
+ * vmentry fails as it then expects bit 14 (BS) in pending debug
+ * exceptions being set, but that's not correct for the guest debugging
+ * case. */
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ kvm_load_guest_xsave_state(vcpu);
+
+ pt_guest_enter(vmx);
+
+ atomic_switch_perf_msrs(vmx);
+
+ if (enable_preemption_timer)
+ vmx_update_hv_timer(vcpu);
+
+ kvm_wait_lapic_expire(vcpu);
+
+ /*
+ * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+ * it's non-zero. Since vmentry is serialising on affected CPUs, there
+ * is no need to worry about the conditional branch over the wrmsr
+ * being speculatively taken.
+ */
+ x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
+
+ /* The actual VMENTER/EXIT is in the .noinstr.text section. */
+ vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
+
+ /* All fields are clean at this point */
+ if (static_branch_unlikely(&enable_evmcs))
+ current_evmcs->hv_clean_fields |=
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+
+ if (static_branch_unlikely(&enable_evmcs))
+ current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
+
+ /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+ if (vmx->host_debugctlmsr)
+ update_debugctlmsr(vmx->host_debugctlmsr);
+
+#ifndef CONFIG_X86_64
+ /*
+ * The sysexit path does not restore ds/es, so we must set them to
+ * a reasonable value ourselves.
+ *
+ * We can't defer this to vmx_prepare_switch_to_host() since that
+ * function may be executed in interrupt context, which saves and
+ * restore segments around it, nullifying its effect.
+ */
+ loadsegment(ds, __USER_DS);
+ loadsegment(es, __USER_DS);
+#endif
+
+ vmx_register_cache_reset(vcpu);
+
+ pt_guest_exit(vmx);
+
+ kvm_load_host_xsave_state(vcpu);
+
+ vmx->nested.nested_run_pending = 0;
+ vmx->idt_vectoring_info = 0;
+
+ if (unlikely(vmx->fail)) {
+ vmx->exit_reason.full = 0xdead;
+ return EXIT_FASTPATH_NONE;
+ }
+
+ vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
+ if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
+ kvm_machine_check();
+
+ trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
+
+ if (unlikely(vmx->exit_reason.failed_vmentry))
+ return EXIT_FASTPATH_NONE;
+
+ vmx->loaded_vmcs->launched = 1;
+ vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+ vmx_recover_nmi_blocking(vmx);
+ vmx_complete_interrupts(vmx);
+
+ if (is_guest_mode(vcpu))
+ return EXIT_FASTPATH_NONE;
+
+ exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
+ if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
+ if (!kvm_vcpu_exit_request(vcpu)) {
+ /*
+ * FIXME: this goto should be a loop in vcpu_enter_guest,
+ * but it would incur the cost of a retpoline for now.
+ * Revisit once static calls are available.
+ */
+ if (vcpu->arch.apicv_active)
+ vmx_sync_pir_to_irr(vcpu);
+ goto reenter_guest;
+ }
+ exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
+ }
+
+ return exit_fastpath;
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (enable_pml)
+ vmx_destroy_pml_buffer(vmx);
+ free_vpid(vmx->vpid);
+ nested_vmx_free_vcpu(vcpu);
+ free_loaded_vmcs(vmx->loaded_vmcs);
+}
+
+static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx;
+ int i, cpu, err;
+
+ BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
+ vmx = to_vmx(vcpu);
+
+ err = -ENOMEM;
+
+ vmx->vpid = allocate_vpid();
+
+ /*
+ * If PML is turned on, failure on enabling PML just results in failure
+ * of creating the vcpu, therefore we can simplify PML logic (by
+ * avoiding dealing with cases, such as enabling PML partially on vcpus
+ * for the guest), etc.
+ */
+ if (enable_pml) {
+ vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+ if (!vmx->pml_pg)
+ goto free_vpid;
+ }
+
+ BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
+
+ for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
+ u32 index = vmx_uret_msrs_list[i];
+ int j = vmx->nr_uret_msrs;
+
+ if (kvm_probe_user_return_msr(index))
+ continue;
+
+ vmx->guest_uret_msrs[j].slot = i;
+ vmx->guest_uret_msrs[j].data = 0;
+ switch (index) {
+ case MSR_IA32_TSX_CTRL:
+ /*
+ * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
+ * interception. Keep the host value unchanged to avoid
+ * changing CPUID bits under the host kernel's feet.
+ *
+ * hle=0, rtm=0, tsx_ctrl=1 can be found with some
+ * combinations of new kernel and old userspace. If
+ * those guests run on a tsx=off host, do allow guests
+ * to use TSX_CTRL, but do not change the value on the
+ * host so that TSX remains always disabled.
+ */
+ if (boot_cpu_has(X86_FEATURE_RTM))
+ vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
+ else
+ vmx->guest_uret_msrs[j].mask = 0;
+ break;
+ default:
+ vmx->guest_uret_msrs[j].mask = -1ull;
+ break;
+ }
+ ++vmx->nr_uret_msrs;
+ }
+
+ err = alloc_loaded_vmcs(&vmx->vmcs01);
+ if (err < 0)
+ goto free_pml;
+
+ /*
+ * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
+ * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
+ * feature only for vmcs01, KVM currently isn't equipped to realize any
+ * performance benefits from enabling it for vmcs02.
+ */
+ if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
+ (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
+ struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
+
+ evmcs->hv_enlightenments_control.msr_bitmap = 1;
+ }
+
+ /* The MSR bitmap starts with all ones */
+ bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
+ bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
+
+ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
+#ifdef CONFIG_X86_64
+ vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+#endif
+ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
+ if (kvm_cstate_in_guest(vcpu->kvm)) {
+ vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
+ vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
+ vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
+ vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
+ }
+ vmx->msr_bitmap_mode = 0;
+
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ cpu = get_cpu();
+ vmx_vcpu_load(vcpu, cpu);
+ vcpu->cpu = cpu;
+ init_vmcs(vmx);
+ vmx_vcpu_put(vcpu);
+ put_cpu();
+ if (cpu_need_virtualize_apic_accesses(vcpu)) {
+ err = alloc_apic_access_page(vcpu->kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (enable_ept && !enable_unrestricted_guest) {
+ err = init_rmode_identity_map(vcpu->kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (nested)
+ memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
+ else
+ memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
+
+ vmx->nested.posted_intr_nv = -1;
+ vmx->nested.current_vmptr = -1ull;
+
+ vcpu->arch.microcode_version = 0x100000000ULL;
+ vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
+
+ /*
+ * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
+ * or POSTED_INTR_WAKEUP_VECTOR.
+ */
+ vmx->pi_desc.nv = POSTED_INTR_VECTOR;
+ vmx->pi_desc.sn = 1;
+
+ vmx->ept_pointer = INVALID_PAGE;
+
+ return 0;
+
+free_vmcs:
+ free_loaded_vmcs(vmx->loaded_vmcs);
+free_pml:
+ vmx_destroy_pml_buffer(vmx);
+free_vpid:
+ free_vpid(vmx->vpid);
+ return err;
+}
+
+#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+
+static int vmx_vm_init(struct kvm *kvm)
+{
+ spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+ if (!ple_gap)
+ kvm->arch.pause_in_guest = true;
+
+ if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
+ switch (l1tf_mitigation) {
+ case L1TF_MITIGATION_OFF:
+ case L1TF_MITIGATION_FLUSH_NOWARN:
+ /* 'I explicitly don't care' is set */
+ break;
+ case L1TF_MITIGATION_FLUSH:
+ case L1TF_MITIGATION_FLUSH_NOSMT:
+ case L1TF_MITIGATION_FULL:
+ /*
+ * Warn upon starting the first VM in a potentially
+ * insecure environment.
+ */
+ if (sched_smt_active())
+ pr_warn_once(L1TF_MSG_SMT);
+ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
+ pr_warn_once(L1TF_MSG_L1D);
+ break;
+ case L1TF_MITIGATION_FULL_FORCE:
+ /* Flush is enforced */
+ break;
+ }
+ }
+ kvm_apicv_init(kvm, enable_apicv);
+ return 0;
+}
+
+static int __init vmx_check_processor_compat(void)
+{
+ struct vmcs_config vmcs_conf;
+ struct vmx_capability vmx_cap;
+
+ if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
+ !this_cpu_has(X86_FEATURE_VMX)) {
+ pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
+ return -EIO;
+ }
+
+ if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
+ return -EIO;
+ if (nested)
+ nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
+ if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+ printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+ smp_processor_id());
+ return -EIO;
+ }
+ return 0;
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+ u8 cache;
+ u64 ipat = 0;
+
+ /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
+ * memory aliases with conflicting memory types and sometimes MCEs.
+ * We have to be careful as to what are honored and when.
+ *
+ * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
+ * UC. The effective memory type is UC or WC depending on guest PAT.
+ * This was historically the source of MCEs and we want to be
+ * conservative.
+ *
+ * When there is no need to deal with noncoherent DMA (e.g., no VT-d
+ * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
+ * EPT memory type is set to WB. The effective memory type is forced
+ * WB.
+ *
+ * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
+ * EPT memory type is used to emulate guest CD/MTRR.
+ */
+
+ if (is_mmio) {
+ cache = MTRR_TYPE_UNCACHABLE;
+ goto exit;
+ }
+
+ if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
+ ipat = VMX_EPT_IPAT_BIT;
+ cache = MTRR_TYPE_WRBACK;
+ goto exit;
+ }
+
+ if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
+ ipat = VMX_EPT_IPAT_BIT;
+ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+ cache = MTRR_TYPE_WRBACK;
+ else
+ cache = MTRR_TYPE_UNCACHABLE;
+ goto exit;
+ }
+
+ cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
+
+exit:
+ return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
+}
+
+static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+ /*
+ * These bits in the secondary execution controls field
+ * are dynamic, the others are mostly based on the hypervisor
+ * architecture and the guest's CPUID. Do not touch the
+ * dynamic bits.
+ */
+ u32 mask =
+ SECONDARY_EXEC_SHADOW_VMCS |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_DESC;
+
+ u32 new_ctl = vmx->secondary_exec_control;
+ u32 cur_ctl = secondary_exec_controls_get(vmx);
+
+ secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
+}
+
+/*
+ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
+ * (indicating "allowed-1") if they are supported in the guest's CPUID.
+ */
+static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_cpuid_entry2 *entry;
+
+ vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
+ vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
+
+#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
+ if (entry && (entry->_reg & (_cpuid_mask))) \
+ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
+} while (0)
+
+ entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
+ cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
+ cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
+ cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
+ cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
+ cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
+ cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
+ cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
+ cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
+ cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
+ cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
+ cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
+ cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
+ cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
+ cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
+
+ entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+ cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
+ cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
+ cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
+ cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
+ cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
+ cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
+
+#undef cr4_fixed1_update
+}
+
+static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (kvm_mpx_supported()) {
+ bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
+
+ if (mpx_enabled) {
+ vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+ vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+ } else {
+ vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
+ vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
+ }
+ }
+}
+
+static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_cpuid_entry2 *best = NULL;
+ int i;
+
+ for (i = 0; i < PT_CPUID_LEAVES; i++) {
+ best = kvm_find_cpuid_entry(vcpu, 0x14, i);
+ if (!best)
+ return;
+ vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
+ vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
+ vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
+ vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
+ }
+
+ /* Get the number of configurable Address Ranges for filtering */
+ vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges);
+
+ /* Initialize and clear the no dependency bits */
+ vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
+ RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
+ * will inject an #GP
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
+ * PSBFreq can be set
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
+ RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
+ * MTCFreq can be set
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
+ RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
+
+ /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
+ RTIT_CTL_PTW_EN);
+
+ /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
+
+ /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
+
+ /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
+
+ /* unmask address range configure area */
+ for (i = 0; i < vmx->pt_desc.addr_range; i++)
+ vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
+}
+
+static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
+ vcpu->arch.xsaves_enabled = false;
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ vmx_compute_secondary_exec_control(vmx);
+ vmcs_set_secondary_exec_control(vmx);
+ }
+
+ if (nested_vmx_allowed(vcpu))
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+ FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
+ FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
+ else
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+ ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
+ FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
+
+ if (nested_vmx_allowed(vcpu)) {
+ nested_vmx_cr_fixed1_bits_update(vcpu);
+ nested_vmx_entry_exit_ctls_update(vcpu);
+ }
+
+ if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
+ update_intel_pt_cfg(vcpu);
+
+ if (boot_cpu_has(X86_FEATURE_RTM)) {
+ struct vmx_uret_msr *msr;
+ msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
+ if (msr) {
+ bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
+ vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
+ }
+ }
+
+ set_cr4_guest_host_mask(vmx);
+
+ /* Refresh #PF interception to account for MAXPHYADDR changes. */
+ update_exception_bitmap(vcpu);
+}
+
+static __init void vmx_set_cpu_caps(void)
+{
+ kvm_set_cpu_caps();
+
+ /* CPUID 0x1 */
+ if (nested)
+ kvm_cpu_cap_set(X86_FEATURE_VMX);
+
+ /* CPUID 0x7 */
+ if (kvm_mpx_supported())
+ kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
+ if (cpu_has_vmx_invpcid())
+ kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
+ if (vmx_pt_mode_is_host_guest())
+ kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
+
+ if (vmx_umip_emulated())
+ kvm_cpu_cap_set(X86_FEATURE_UMIP);
+
+ /* CPUID 0xD.1 */
+ supported_xss = 0;
+ if (!cpu_has_vmx_xsaves())
+ kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
+
+ /* CPUID 0x80000001 and 0x7 (RDPID) */
+ if (!cpu_has_vmx_rdtscp()) {
+ kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
+ kvm_cpu_cap_clear(X86_FEATURE_RDPID);
+ }
+
+ if (cpu_has_vmx_waitpkg())
+ kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
+}
+
+static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
+{
+ to_vmx(vcpu)->req_immediate_exit = true;
+}
+
+static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
+ struct x86_instruction_info *info)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned short port;
+ bool intercept;
+ int size;
+
+ if (info->intercept == x86_intercept_in ||
+ info->intercept == x86_intercept_ins) {
+ port = info->src_val;
+ size = info->dst_bytes;
+ } else {
+ port = info->dst_val;
+ size = info->src_bytes;
+ }
+
+ /*
+ * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
+ * VM-exits depend on the 'unconditional IO exiting' VM-execution
+ * control.
+ *
+ * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
+ */
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ intercept = nested_cpu_has(vmcs12,
+ CPU_BASED_UNCOND_IO_EXITING);
+ else
+ intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
+
+ /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
+ return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage,
+ struct x86_exception *exception)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ switch (info->intercept) {
+ /*
+ * RDPID causes #UD if disabled through secondary execution controls.
+ * Because it is marked as EmulateOnUD, we need to intercept it here.
+ * Note, RDPID is hidden behind ENABLE_RDTSCP.
+ */
+ case x86_intercept_rdpid:
+ if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
+ exception->vector = UD_VECTOR;
+ exception->error_code_valid = false;
+ return X86EMUL_PROPAGATE_FAULT;
+ }
+ break;
+
+ case x86_intercept_in:
+ case x86_intercept_ins:
+ case x86_intercept_out:
+ case x86_intercept_outs:
+ return vmx_check_intercept_io(vcpu, info);
+
+ case x86_intercept_lgdt:
+ case x86_intercept_lidt:
+ case x86_intercept_lldt:
+ case x86_intercept_ltr:
+ case x86_intercept_sgdt:
+ case x86_intercept_sidt:
+ case x86_intercept_sldt:
+ case x86_intercept_str:
+ if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
+ return X86EMUL_CONTINUE;
+
+ /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
+ break;
+
+ case x86_intercept_pause:
+ /*
+ * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
+ * with vanilla NOPs in the emulator. Apply the interception
+ * check only to actual PAUSE instructions. Don't check
+ * PAUSE-loop-exiting, software can't expect a given PAUSE to
+ * exit, i.e. KVM is within its rights to allow L2 to execute
+ * the PAUSE.
+ */
+ if ((info->rep_prefix != REPE_PREFIX) ||
+ !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
+ return X86EMUL_CONTINUE;
+
+ break;
+
+ /* TODO: check more intercepts... */
+ default:
+ break;
+ }
+
+ return X86EMUL_UNHANDLEABLE;
+}
+
+#ifdef CONFIG_X86_64
+/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
+static inline int u64_shl_div_u64(u64 a, unsigned int shift,
+ u64 divisor, u64 *result)
+{
+ u64 low = a << shift, high = a >> (64 - shift);
+
+ /* To avoid the overflow on divq */
+ if (high >= divisor)
+ return 1;
+
+ /* Low hold the result, high hold rem which is discarded */
+ asm("divq %2\n\t" : "=a" (low), "=d" (high) :
+ "rm" (divisor), "0" (low), "1" (high));
+ *result = low;
+
+ return 0;
+}
+
+static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
+ bool *expired)
+{
+ struct vcpu_vmx *vmx;
+ u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
+ struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
+
+ vmx = to_vmx(vcpu);
+ tscl = rdtsc();
+ guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
+ delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
+ lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
+ ktimer->timer_advance_ns);
+
+ if (delta_tsc > lapic_timer_advance_cycles)
+ delta_tsc -= lapic_timer_advance_cycles;
+ else
+ delta_tsc = 0;
+
+ /* Convert to host delta tsc if tsc scaling is enabled */
+ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
+ delta_tsc && u64_shl_div_u64(delta_tsc,
+ kvm_tsc_scaling_ratio_frac_bits,
+ vcpu->arch.tsc_scaling_ratio, &delta_tsc))
+ return -ERANGE;
+
+ /*
+ * If the delta tsc can't fit in the 32 bit after the multi shift,
+ * we can't use the preemption timer.
+ * It's possible that it fits on later vmentries, but checking
+ * on every vmentry is costly so we just use an hrtimer.
+ */
+ if (delta_tsc >> (cpu_preemption_timer_multi + 32))
+ return -ERANGE;
+
+ vmx->hv_deadline_tsc = tscl + delta_tsc;
+ *expired = !delta_tsc;
+ return 0;
+}
+
+static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
+{
+ to_vmx(vcpu)->hv_deadline_tsc = -1;
+}
+#endif
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+ if (!kvm_pause_in_guest(vcpu->kvm))
+ shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
+ kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+ kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+ kvm_flush_pml_buffers(kvm);
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ gfn_t offset, unsigned long mask)
+{
+ kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static int vmx_pre_block(struct kvm_vcpu *vcpu)
+{
+ if (pi_pre_block(vcpu))
+ return 1;
+
+ if (kvm_lapic_hv_timer_in_use(vcpu))
+ kvm_lapic_switch_to_sw_timer(vcpu);
+
+ return 0;
+}
+
+static void vmx_post_block(struct kvm_vcpu *vcpu)
+{
+ if (kvm_x86_ops.set_hv_timer)
+ kvm_lapic_switch_to_hv_timer(vcpu);
+
+ pi_post_block(vcpu);
+}
+
+static void vmx_setup_mce(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.mcg_cap & MCG_LMCE_P)
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+ FEAT_CTL_LMCE_ENABLED;
+ else
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+ ~FEAT_CTL_LMCE_ENABLED;
+}
+
+static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+ /* we need a nested vmexit to enter SMM, postpone if run is pending */
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return -EBUSY;
+ return !is_smm(vcpu);
+}
+
+static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
+ if (vmx->nested.smm.guest_mode)
+ nested_vmx_vmexit(vcpu, -1, 0, 0);
+
+ vmx->nested.smm.vmxon = vmx->nested.vmxon;
+ vmx->nested.vmxon = false;
+ vmx_clear_hlt(vcpu);
+ return 0;
+}
+
+static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int ret;
+
+ if (vmx->nested.smm.vmxon) {
+ vmx->nested.vmxon = true;
+ vmx->nested.smm.vmxon = false;
+ }
+
+ if (vmx->nested.smm.guest_mode) {
+ ret = nested_vmx_enter_non_root_mode(vcpu, false);
+ if (ret)
+ return ret;
+
+ vmx->nested.smm.guest_mode = false;
+ }
+ return 0;
+}
+
+static void enable_smi_window(struct kvm_vcpu *vcpu)
+{
+ /* RSM will cause a vmexit anyway. */
+}
+
+static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.vmxon;
+}
+
+static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu)) {
+ struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
+
+ if (hrtimer_try_to_cancel(timer) == 1)
+ hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
+ }
+}
+
+static void hardware_unsetup(void)
+{
+ kvm_set_posted_intr_wakeup_handler(NULL);
+
+ if (nested)
+ nested_vmx_hardware_unsetup();
+
+ free_kvm_area();
+}
+
+static bool vmx_check_apicv_inhibit_reasons(ulong bit)
+{
+ ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
+ BIT(APICV_INHIBIT_REASON_HYPERV);
+
+ return supported & BIT(bit);
+}
+
+static struct kvm_x86_ops vmx_x86_ops __initdata = {
+ .hardware_unsetup = hardware_unsetup,
+
+ .hardware_enable = hardware_enable,
+ .hardware_disable = hardware_disable,
+ .cpu_has_accelerated_tpr = report_flexpriority,
+ .has_emulated_msr = vmx_has_emulated_msr,
+
+ .vm_size = sizeof(struct kvm_vmx),
+ .vm_init = vmx_vm_init,
+
+ .vcpu_create = vmx_create_vcpu,
+ .vcpu_free = vmx_free_vcpu,
+ .vcpu_reset = vmx_vcpu_reset,
+
+ .prepare_guest_switch = vmx_prepare_switch_to_guest,
+ .vcpu_load = vmx_vcpu_load,
+ .vcpu_put = vmx_vcpu_put,
+
+ .update_exception_bitmap = update_exception_bitmap,
+ .get_msr_feature = vmx_get_msr_feature,
+ .get_msr = vmx_get_msr,
+ .set_msr = vmx_set_msr,
+ .get_segment_base = vmx_get_segment_base,
+ .get_segment = vmx_get_segment,
+ .set_segment = vmx_set_segment,
+ .get_cpl = vmx_get_cpl,
+ .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+ .set_cr0 = vmx_set_cr0,
+ .is_valid_cr4 = vmx_is_valid_cr4,
+ .set_cr4 = vmx_set_cr4,
+ .set_efer = vmx_set_efer,
+ .get_idt = vmx_get_idt,
+ .set_idt = vmx_set_idt,
+ .get_gdt = vmx_get_gdt,
+ .set_gdt = vmx_set_gdt,
+ .set_dr7 = vmx_set_dr7,
+ .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+ .cache_reg = vmx_cache_reg,
+ .get_rflags = vmx_get_rflags,
+ .set_rflags = vmx_set_rflags,
+
+ .tlb_flush_all = vmx_flush_tlb_all,
+ .tlb_flush_current = vmx_flush_tlb_current,
+ .tlb_flush_gva = vmx_flush_tlb_gva,
+ .tlb_flush_guest = vmx_flush_tlb_guest,
+
+ .run = vmx_vcpu_run,
+ .handle_exit = vmx_handle_exit,
+ .skip_emulated_instruction = vmx_skip_emulated_instruction,
+ .update_emulated_instruction = vmx_update_emulated_instruction,
+ .set_interrupt_shadow = vmx_set_interrupt_shadow,
+ .get_interrupt_shadow = vmx_get_interrupt_shadow,
+ .patch_hypercall = vmx_patch_hypercall,
+ .set_irq = vmx_inject_irq,
+ .set_nmi = vmx_inject_nmi,
+ .queue_exception = vmx_queue_exception,
+ .cancel_injection = vmx_cancel_injection,
+ .interrupt_allowed = vmx_interrupt_allowed,
+ .nmi_allowed = vmx_nmi_allowed,
+ .get_nmi_mask = vmx_get_nmi_mask,
+ .set_nmi_mask = vmx_set_nmi_mask,
+ .enable_nmi_window = enable_nmi_window,
+ .enable_irq_window = enable_irq_window,
+ .update_cr8_intercept = update_cr8_intercept,
+ .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
+ .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+ .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
+ .load_eoi_exitmap = vmx_load_eoi_exitmap,
+ .apicv_post_state_restore = vmx_apicv_post_state_restore,
+ .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
+ .hwapic_irr_update = vmx_hwapic_irr_update,
+ .hwapic_isr_update = vmx_hwapic_isr_update,
+ .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
+ .sync_pir_to_irr = vmx_sync_pir_to_irr,
+ .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+ .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
+
+ .set_tss_addr = vmx_set_tss_addr,
+ .set_identity_map_addr = vmx_set_identity_map_addr,
+ .get_mt_mask = vmx_get_mt_mask,
+
+ .get_exit_info = vmx_get_exit_info,
+
+ .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
+
+ .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+ .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
+
+ .load_mmu_pgd = vmx_load_mmu_pgd,
+
+ .check_intercept = vmx_check_intercept,
+ .handle_exit_irqoff = vmx_handle_exit_irqoff,
+
+ .request_immediate_exit = vmx_request_immediate_exit,
+
+ .sched_in = vmx_sched_in,
+
+ .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+ .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+ .flush_log_dirty = vmx_flush_log_dirty,
+ .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+
+ .pre_block = vmx_pre_block,
+ .post_block = vmx_post_block,
+
+ .pmu_ops = &intel_pmu_ops,
+ .nested_ops = &vmx_nested_ops,
+
+ .update_pi_irte = pi_update_irte,
+
+#ifdef CONFIG_X86_64
+ .set_hv_timer = vmx_set_hv_timer,
+ .cancel_hv_timer = vmx_cancel_hv_timer,
+#endif
+
+ .setup_mce = vmx_setup_mce,
+
+ .smi_allowed = vmx_smi_allowed,
+ .pre_enter_smm = vmx_pre_enter_smm,
+ .pre_leave_smm = vmx_pre_leave_smm,
+ .enable_smi_window = enable_smi_window,
+
+ .can_emulate_instruction = vmx_can_emulate_instruction,
+ .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
+ .migrate_timers = vmx_migrate_timers,
+
+ .msr_filter_changed = vmx_msr_filter_changed,
+};
+
+static __init int hardware_setup(void)
+{
+ unsigned long host_bndcfgs;
+ struct desc_ptr dt;
+ int r, i, ept_lpage_level;
+
+ store_idt(&dt);
+ host_idt_base = dt.address;
+
+ for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
+ kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
+
+ if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
+ return -EIO;
+
+ if (boot_cpu_has(X86_FEATURE_NX))
+ kvm_enable_efer_bits(EFER_NX);
+
+ if (boot_cpu_has(X86_FEATURE_MPX)) {
+ rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
+ WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
+ }
+
+ if (!cpu_has_vmx_mpx())
+ supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
+ XFEATURE_MASK_BNDCSR);
+
+ if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
+ !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
+ enable_vpid = 0;
+
+ if (!cpu_has_vmx_ept() ||
+ !cpu_has_vmx_ept_4levels() ||
+ !cpu_has_vmx_ept_mt_wb() ||
+ !cpu_has_vmx_invept_global())
+ enable_ept = 0;
+
+ if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
+ enable_ept_ad_bits = 0;
+
+ if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
+ enable_unrestricted_guest = 0;
+
+ if (!cpu_has_vmx_flexpriority())
+ flexpriority_enabled = 0;
+
+ if (!cpu_has_virtual_nmis())
+ enable_vnmi = 0;
+
+ /*
+ * set_apic_access_page_addr() is used to reload apic access
+ * page upon invalidation. No need to do anything if not
+ * using the APIC_ACCESS_ADDR VMCS field.
+ */
+ if (!flexpriority_enabled)
+ vmx_x86_ops.set_apic_access_page_addr = NULL;
+
+ if (!cpu_has_vmx_tpr_shadow())
+ vmx_x86_ops.update_cr8_intercept = NULL;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
+ && enable_ept) {
+ vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
+ vmx_x86_ops.tlb_remote_flush_with_range =
+ hv_remote_flush_tlb_with_range;
+ }
+#endif
+
+ if (!cpu_has_vmx_ple()) {
+ ple_gap = 0;
+ ple_window = 0;
+ ple_window_grow = 0;
+ ple_window_max = 0;
+ ple_window_shrink = 0;
+ }
+
+ if (!cpu_has_vmx_apicv()) {
+ enable_apicv = 0;
+ vmx_x86_ops.sync_pir_to_irr = NULL;
+ }
+
+ if (cpu_has_vmx_tsc_scaling()) {
+ kvm_has_tsc_control = true;
+ kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
+ kvm_tsc_scaling_ratio_frac_bits = 48;
+ }
+
+ set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
+
+ if (enable_ept)
+ vmx_enable_tdp();
+
+ if (!enable_ept)
+ ept_lpage_level = 0;
+ else if (cpu_has_vmx_ept_1g_page())
+ ept_lpage_level = PG_LEVEL_1G;
+ else if (cpu_has_vmx_ept_2m_page())
+ ept_lpage_level = PG_LEVEL_2M;
+ else
+ ept_lpage_level = PG_LEVEL_4K;
+ kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
+
+ /*
+ * Only enable PML when hardware supports PML feature, and both EPT
+ * and EPT A/D bit features are enabled -- PML depends on them to work.
+ */
+ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+ enable_pml = 0;
+
+ if (!enable_pml) {
+ vmx_x86_ops.slot_enable_log_dirty = NULL;
+ vmx_x86_ops.slot_disable_log_dirty = NULL;
+ vmx_x86_ops.flush_log_dirty = NULL;
+ vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
+ }
+
+ if (!cpu_has_vmx_preemption_timer())
+ enable_preemption_timer = false;
+
+ if (enable_preemption_timer) {
+ u64 use_timer_freq = 5000ULL * 1000 * 1000;
+ u64 vmx_msr;
+
+ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+ cpu_preemption_timer_multi =
+ vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
+
+ if (tsc_khz)
+ use_timer_freq = (u64)tsc_khz * 1000;
+ use_timer_freq >>= cpu_preemption_timer_multi;
+
+ /*
+ * KVM "disables" the preemption timer by setting it to its max
+ * value. Don't use the timer if it might cause spurious exits
+ * at a rate faster than 0.1 Hz (of uninterrupted guest time).
+ */
+ if (use_timer_freq > 0xffffffffu / 10)
+ enable_preemption_timer = false;
+ }
+
+ if (!enable_preemption_timer) {
+ vmx_x86_ops.set_hv_timer = NULL;
+ vmx_x86_ops.cancel_hv_timer = NULL;
+ vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
+ }
+
+ kvm_mce_cap_supported |= MCG_LMCE_P;
+
+ if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
+ return -EINVAL;
+ if (!enable_ept || !cpu_has_vmx_intel_pt())
+ pt_mode = PT_MODE_SYSTEM;
+
+ if (nested) {
+ nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
+ vmx_capability.ept);
+
+ r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
+ if (r)
+ return r;
+ }
+
+ vmx_set_cpu_caps();
+
+ r = alloc_kvm_area();
+ if (r)
+ nested_vmx_hardware_unsetup();
+
+ kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
+
+ return r;
+}
+
+static struct kvm_x86_init_ops vmx_init_ops __initdata = {
+ .cpu_has_kvm_support = cpu_has_kvm_support,
+ .disabled_by_bios = vmx_disabled_by_bios,
+ .check_processor_compatibility = vmx_check_processor_compat,
+ .hardware_setup = hardware_setup,
+ .intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
+
+ .runtime_ops = &vmx_x86_ops,
+};
+
+static void vmx_cleanup_l1d_flush(void)
+{
+ if (vmx_l1d_flush_pages) {
+ free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+ vmx_l1d_flush_pages = NULL;
+ }
+ /* Restore state so sysfs ignores VMX */
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+
+static void vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC_CORE
+ RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+ synchronize_rcu();
+#endif
+
+ kvm_exit();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ if (static_branch_unlikely(&enable_evmcs)) {
+ int cpu;
+ struct hv_vp_assist_page *vp_ap;
+ /*
+ * Reset everything to support using non-enlightened VMCS
+ * access later (e.g. when we reload the module with
+ * enlightened_vmcs=0)
+ */
+ for_each_online_cpu(cpu) {
+ vp_ap = hv_get_vp_assist_page(cpu);
+
+ if (!vp_ap)
+ continue;
+
+ vp_ap->nested_control.features.directhypercall = 0;
+ vp_ap->current_nested_vmcs = 0;
+ vp_ap->enlighten_vmentry = 0;
+ }
+
+ static_branch_disable(&enable_evmcs);
+ }
+#endif
+ vmx_cleanup_l1d_flush();
+}
+module_exit(vmx_exit);
+
+static int __init vmx_init(void)
+{
+ int r, cpu;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ /*
+ * Enlightened VMCS usage should be recommended and the host needs
+ * to support eVMCS v1 or above. We can also disable eVMCS support
+ * with module parameter.
+ */
+ if (enlightened_vmcs &&
+ ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
+ (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
+ KVM_EVMCS_VERSION) {
+ int cpu;
+
+ /* Check that we have assist pages on all online CPUs */
+ for_each_online_cpu(cpu) {
+ if (!hv_get_vp_assist_page(cpu)) {
+ enlightened_vmcs = false;
+ break;
+ }
+ }
+
+ if (enlightened_vmcs) {
+ pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
+ static_branch_enable(&enable_evmcs);
+ }
+
+ if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
+ vmx_x86_ops.enable_direct_tlbflush
+ = hv_enable_direct_tlbflush;
+
+ } else {
+ enlightened_vmcs = false;
+ }
+#endif
+
+ r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
+ __alignof__(struct vcpu_vmx), THIS_MODULE);
+ if (r)
+ return r;
+
+ /*
+ * Must be called after kvm_init() so enable_ept is properly set
+ * up. Hand the parameter mitigation value in which was stored in
+ * the pre module init parser. If no parameter was given, it will
+ * contain 'auto' which will be turned into the default 'cond'
+ * mitigation mode.
+ */
+ r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+ if (r) {
+ vmx_exit();
+ return r;
+ }
+
+ vmx_setup_fb_clear_ctrl();
+
+ for_each_possible_cpu(cpu) {
+ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+
+ pi_init_cpu(cpu);
+ }
+
+#ifdef CONFIG_KEXEC_CORE
+ rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+ crash_vmclear_local_loaded_vmcss);
+#endif
+ vmx_check_vmcs12_offsets();
+
+ /*
+ * Shadow paging doesn't have a (further) performance penalty
+ * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
+ * by default
+ */
+ if (!enable_ept)
+ allow_smaller_maxphyaddr = true;
+
+ return 0;
+}
+module_init(vmx_init);