summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/x86.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /arch/x86/kvm/x86.c
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r--arch/x86/kvm/x86.c11651
1 files changed, 11651 insertions, 0 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
new file mode 100644
index 000000000..13e4699a0
--- /dev/null
+++ b/arch/x86/kvm/x86.c
@@ -0,0 +1,11651 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * derived from drivers/kvm/kvm_main.c
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright (C) 2008 Qumranet, Inc.
+ * Copyright IBM Corporation, 2008
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Amit Shah <amit.shah@qumranet.com>
+ * Ben-Ami Yassour <benami@il.ibm.com>
+ */
+
+#include <linux/kvm_host.h>
+#include "irq.h"
+#include "ioapic.h"
+#include "mmu.h"
+#include "i8254.h"
+#include "tss.h"
+#include "kvm_cache_regs.h"
+#include "kvm_emulate.h"
+#include "x86.h"
+#include "cpuid.h"
+#include "pmu.h"
+#include "hyperv.h"
+#include "lapic.h"
+
+#include <linux/clocksource.h>
+#include <linux/interrupt.h>
+#include <linux/kvm.h>
+#include <linux/fs.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/moduleparam.h>
+#include <linux/mman.h>
+#include <linux/highmem.h>
+#include <linux/iommu.h>
+#include <linux/intel-iommu.h>
+#include <linux/cpufreq.h>
+#include <linux/user-return-notifier.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/perf_event.h>
+#include <linux/uaccess.h>
+#include <linux/hash.h>
+#include <linux/pci.h>
+#include <linux/timekeeper_internal.h>
+#include <linux/pvclock_gtod.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/isolation.h>
+#include <linux/mem_encrypt.h>
+#include <linux/entry-kvm.h>
+
+#include <trace/events/kvm.h>
+
+#include <asm/debugreg.h>
+#include <asm/msr.h>
+#include <asm/desc.h>
+#include <asm/mce.h>
+#include <linux/kernel_stat.h>
+#include <asm/fpu/internal.h> /* Ugh! */
+#include <asm/pvclock.h>
+#include <asm/div64.h>
+#include <asm/irq_remapping.h>
+#include <asm/mshyperv.h>
+#include <asm/hypervisor.h>
+#include <asm/tlbflush.h>
+#include <asm/intel_pt.h>
+#include <asm/emulate_prefix.h>
+#include <clocksource/hyperv_timer.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#define MAX_IO_MSRS 256
+#define KVM_MAX_MCE_BANKS 32
+u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
+EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
+
+#define emul_to_vcpu(ctxt) \
+ ((struct kvm_vcpu *)(ctxt)->vcpu)
+
+/* EFER defaults:
+ * - enable syscall per default because its emulated by KVM
+ * - enable LME and LMA per default on 64 bit KVM
+ */
+#ifdef CONFIG_X86_64
+static
+u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
+#else
+static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
+#endif
+
+static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
+
+#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
+ KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu);
+static void process_nmi(struct kvm_vcpu *vcpu);
+static void process_smi(struct kvm_vcpu *vcpu);
+static void enter_smm(struct kvm_vcpu *vcpu);
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
+static void store_regs(struct kvm_vcpu *vcpu);
+static int sync_regs(struct kvm_vcpu *vcpu);
+
+struct kvm_x86_ops kvm_x86_ops __read_mostly;
+EXPORT_SYMBOL_GPL(kvm_x86_ops);
+
+static bool __read_mostly ignore_msrs = 0;
+module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
+
+static bool __read_mostly report_ignored_msrs = true;
+module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
+
+unsigned int min_timer_period_us = 200;
+module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
+
+static bool __read_mostly kvmclock_periodic_sync = true;
+module_param(kvmclock_periodic_sync, bool, S_IRUGO);
+
+bool __read_mostly kvm_has_tsc_control;
+EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
+u32 __read_mostly kvm_max_guest_tsc_khz;
+EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
+u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
+EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
+u64 __read_mostly kvm_max_tsc_scaling_ratio;
+EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
+u64 __read_mostly kvm_default_tsc_scaling_ratio;
+EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
+
+/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
+static u32 __read_mostly tsc_tolerance_ppm = 250;
+module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
+
+/*
+ * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
+ * adaptive tuning starting from default advancment of 1000ns. '0' disables
+ * advancement entirely. Any other value is used as-is and disables adaptive
+ * tuning, i.e. allows priveleged userspace to set an exact advancement time.
+ */
+static int __read_mostly lapic_timer_advance_ns = -1;
+module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
+
+static bool __read_mostly vector_hashing = true;
+module_param(vector_hashing, bool, S_IRUGO);
+
+bool __read_mostly enable_vmware_backdoor = false;
+module_param(enable_vmware_backdoor, bool, S_IRUGO);
+EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
+
+static bool __read_mostly force_emulation_prefix = false;
+module_param(force_emulation_prefix, bool, S_IRUGO);
+
+int __read_mostly pi_inject_timer = -1;
+module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
+
+/*
+ * Restoring the host value for MSRs that are only consumed when running in
+ * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
+ * returns to userspace, i.e. the kernel can run with the guest's value.
+ */
+#define KVM_MAX_NR_USER_RETURN_MSRS 16
+
+struct kvm_user_return_msrs_global {
+ int nr;
+ u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
+};
+
+struct kvm_user_return_msrs {
+ struct user_return_notifier urn;
+ bool registered;
+ struct kvm_user_return_msr_values {
+ u64 host;
+ u64 curr;
+ } values[KVM_MAX_NR_USER_RETURN_MSRS];
+};
+
+static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
+static struct kvm_user_return_msrs __percpu *user_return_msrs;
+
+#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
+ | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
+ | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
+ | XFEATURE_MASK_PKRU)
+
+u64 __read_mostly host_efer;
+EXPORT_SYMBOL_GPL(host_efer);
+
+bool __read_mostly allow_smaller_maxphyaddr = 0;
+EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
+
+static u64 __read_mostly host_xss;
+u64 __read_mostly supported_xss;
+EXPORT_SYMBOL_GPL(supported_xss);
+
+struct kvm_stats_debugfs_item debugfs_entries[] = {
+ VCPU_STAT("pf_fixed", pf_fixed),
+ VCPU_STAT("pf_guest", pf_guest),
+ VCPU_STAT("tlb_flush", tlb_flush),
+ VCPU_STAT("invlpg", invlpg),
+ VCPU_STAT("exits", exits),
+ VCPU_STAT("io_exits", io_exits),
+ VCPU_STAT("mmio_exits", mmio_exits),
+ VCPU_STAT("signal_exits", signal_exits),
+ VCPU_STAT("irq_window", irq_window_exits),
+ VCPU_STAT("nmi_window", nmi_window_exits),
+ VCPU_STAT("halt_exits", halt_exits),
+ VCPU_STAT("halt_successful_poll", halt_successful_poll),
+ VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
+ VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
+ VCPU_STAT("halt_wakeup", halt_wakeup),
+ VCPU_STAT("hypercalls", hypercalls),
+ VCPU_STAT("request_irq", request_irq_exits),
+ VCPU_STAT("irq_exits", irq_exits),
+ VCPU_STAT("host_state_reload", host_state_reload),
+ VCPU_STAT("fpu_reload", fpu_reload),
+ VCPU_STAT("insn_emulation", insn_emulation),
+ VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
+ VCPU_STAT("irq_injections", irq_injections),
+ VCPU_STAT("nmi_injections", nmi_injections),
+ VCPU_STAT("req_event", req_event),
+ VCPU_STAT("l1d_flush", l1d_flush),
+ VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
+ VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
+ VCPU_STAT("preemption_reported", preemption_reported),
+ VCPU_STAT("preemption_other", preemption_other),
+ VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
+ VM_STAT("mmu_pte_write", mmu_pte_write),
+ VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
+ VM_STAT("mmu_flooded", mmu_flooded),
+ VM_STAT("mmu_recycled", mmu_recycled),
+ VM_STAT("mmu_cache_miss", mmu_cache_miss),
+ VM_STAT("mmu_unsync", mmu_unsync),
+ VM_STAT("remote_tlb_flush", remote_tlb_flush),
+ VM_STAT("largepages", lpages, .mode = 0444),
+ VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
+ VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
+ { NULL }
+};
+
+u64 __read_mostly host_xcr0;
+u64 __read_mostly supported_xcr0;
+EXPORT_SYMBOL_GPL(supported_xcr0);
+
+static struct kmem_cache *x86_fpu_cache;
+
+static struct kmem_cache *x86_emulator_cache;
+
+/*
+ * When called, it means the previous get/set msr reached an invalid msr.
+ * Return true if we want to ignore/silent this failed msr access.
+ */
+static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
+ u64 data, bool write)
+{
+ const char *op = write ? "wrmsr" : "rdmsr";
+
+ if (ignore_msrs) {
+ if (report_ignored_msrs)
+ kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
+ op, msr, data);
+ /* Mask the error */
+ return true;
+ } else {
+ kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
+ op, msr, data);
+ return false;
+ }
+}
+
+static struct kmem_cache *kvm_alloc_emulator_cache(void)
+{
+ unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
+ unsigned int size = sizeof(struct x86_emulate_ctxt);
+
+ return kmem_cache_create_usercopy("x86_emulator", size,
+ __alignof__(struct x86_emulate_ctxt),
+ SLAB_ACCOUNT, useroffset,
+ size - useroffset, NULL);
+}
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
+
+static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
+{
+ int i;
+ for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
+ vcpu->arch.apf.gfns[i] = ~0;
+}
+
+static void kvm_on_user_return(struct user_return_notifier *urn)
+{
+ unsigned slot;
+ struct kvm_user_return_msrs *msrs
+ = container_of(urn, struct kvm_user_return_msrs, urn);
+ struct kvm_user_return_msr_values *values;
+ unsigned long flags;
+
+ /*
+ * Disabling irqs at this point since the following code could be
+ * interrupted and executed through kvm_arch_hardware_disable()
+ */
+ local_irq_save(flags);
+ if (msrs->registered) {
+ msrs->registered = false;
+ user_return_notifier_unregister(urn);
+ }
+ local_irq_restore(flags);
+ for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
+ values = &msrs->values[slot];
+ if (values->host != values->curr) {
+ wrmsrl(user_return_msrs_global.msrs[slot], values->host);
+ values->curr = values->host;
+ }
+ }
+}
+
+int kvm_probe_user_return_msr(u32 msr)
+{
+ u64 val;
+ int ret;
+
+ preempt_disable();
+ ret = rdmsrl_safe(msr, &val);
+ if (ret)
+ goto out;
+ ret = wrmsrl_safe(msr, val);
+out:
+ preempt_enable();
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
+
+void kvm_define_user_return_msr(unsigned slot, u32 msr)
+{
+ BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
+ user_return_msrs_global.msrs[slot] = msr;
+ if (slot >= user_return_msrs_global.nr)
+ user_return_msrs_global.nr = slot + 1;
+}
+EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
+
+static void kvm_user_return_msr_cpu_online(void)
+{
+ unsigned int cpu = smp_processor_id();
+ struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
+ u64 value;
+ int i;
+
+ for (i = 0; i < user_return_msrs_global.nr; ++i) {
+ rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
+ msrs->values[i].host = value;
+ msrs->values[i].curr = value;
+ }
+}
+
+int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
+{
+ unsigned int cpu = smp_processor_id();
+ struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
+ int err;
+
+ value = (value & mask) | (msrs->values[slot].host & ~mask);
+ if (value == msrs->values[slot].curr)
+ return 0;
+ err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
+ if (err)
+ return 1;
+
+ msrs->values[slot].curr = value;
+ if (!msrs->registered) {
+ msrs->urn.on_user_return = kvm_on_user_return;
+ user_return_notifier_register(&msrs->urn);
+ msrs->registered = true;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
+
+static void drop_user_return_notifiers(void)
+{
+ unsigned int cpu = smp_processor_id();
+ struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
+
+ if (msrs->registered)
+ kvm_on_user_return(&msrs->urn);
+}
+
+u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.apic_base;
+}
+EXPORT_SYMBOL_GPL(kvm_get_apic_base);
+
+enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
+{
+ return kvm_apic_mode(kvm_get_apic_base(vcpu));
+}
+EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
+
+int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
+ enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
+ u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
+ (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
+
+ if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
+ return 1;
+ if (!msr_info->host_initiated) {
+ if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
+ return 1;
+ if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
+ return 1;
+ }
+
+ kvm_lapic_set_base(vcpu, msr_info->data);
+ kvm_recalculate_apic_map(vcpu->kvm);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_apic_base);
+
+asmlinkage __visible noinstr void kvm_spurious_fault(void)
+{
+ /* Fault while not rebooting. We want the trace. */
+ BUG_ON(!kvm_rebooting);
+}
+EXPORT_SYMBOL_GPL(kvm_spurious_fault);
+
+#define EXCPT_BENIGN 0
+#define EXCPT_CONTRIBUTORY 1
+#define EXCPT_PF 2
+
+static int exception_class(int vector)
+{
+ switch (vector) {
+ case PF_VECTOR:
+ return EXCPT_PF;
+ case DE_VECTOR:
+ case TS_VECTOR:
+ case NP_VECTOR:
+ case SS_VECTOR:
+ case GP_VECTOR:
+ return EXCPT_CONTRIBUTORY;
+ default:
+ break;
+ }
+ return EXCPT_BENIGN;
+}
+
+#define EXCPT_FAULT 0
+#define EXCPT_TRAP 1
+#define EXCPT_ABORT 2
+#define EXCPT_INTERRUPT 3
+#define EXCPT_DB 4
+
+static int exception_type(int vector)
+{
+ unsigned int mask;
+
+ if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
+ return EXCPT_INTERRUPT;
+
+ mask = 1 << vector;
+
+ /*
+ * #DBs can be trap-like or fault-like, the caller must check other CPU
+ * state, e.g. DR6, to determine whether a #DB is a trap or fault.
+ */
+ if (mask & (1 << DB_VECTOR))
+ return EXCPT_DB;
+
+ if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
+ return EXCPT_TRAP;
+
+ if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
+ return EXCPT_ABORT;
+
+ /* Reserved exceptions will result in fault */
+ return EXCPT_FAULT;
+}
+
+void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
+{
+ unsigned nr = vcpu->arch.exception.nr;
+ bool has_payload = vcpu->arch.exception.has_payload;
+ unsigned long payload = vcpu->arch.exception.payload;
+
+ if (!has_payload)
+ return;
+
+ switch (nr) {
+ case DB_VECTOR:
+ /*
+ * "Certain debug exceptions may clear bit 0-3. The
+ * remaining contents of the DR6 register are never
+ * cleared by the processor".
+ */
+ vcpu->arch.dr6 &= ~DR_TRAP_BITS;
+ /*
+ * DR6.RTM is set by all #DB exceptions that don't clear it.
+ */
+ vcpu->arch.dr6 |= DR6_RTM;
+ vcpu->arch.dr6 |= payload;
+ /*
+ * Bit 16 should be set in the payload whenever the #DB
+ * exception should clear DR6.RTM. This makes the payload
+ * compatible with the pending debug exceptions under VMX.
+ * Though not currently documented in the SDM, this also
+ * makes the payload compatible with the exit qualification
+ * for #DB exceptions under VMX.
+ */
+ vcpu->arch.dr6 ^= payload & DR6_RTM;
+
+ /*
+ * The #DB payload is defined as compatible with the 'pending
+ * debug exceptions' field under VMX, not DR6. While bit 12 is
+ * defined in the 'pending debug exceptions' field (enabled
+ * breakpoint), it is reserved and must be zero in DR6.
+ */
+ vcpu->arch.dr6 &= ~BIT(12);
+ break;
+ case PF_VECTOR:
+ vcpu->arch.cr2 = payload;
+ break;
+ }
+
+ vcpu->arch.exception.has_payload = false;
+ vcpu->arch.exception.payload = 0;
+}
+EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
+
+static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
+ unsigned nr, bool has_error, u32 error_code,
+ bool has_payload, unsigned long payload, bool reinject)
+{
+ u32 prev_nr;
+ int class1, class2;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
+ queue:
+ if (reinject) {
+ /*
+ * On vmentry, vcpu->arch.exception.pending is only
+ * true if an event injection was blocked by
+ * nested_run_pending. In that case, however,
+ * vcpu_enter_guest requests an immediate exit,
+ * and the guest shouldn't proceed far enough to
+ * need reinjection.
+ */
+ WARN_ON_ONCE(vcpu->arch.exception.pending);
+ vcpu->arch.exception.injected = true;
+ if (WARN_ON_ONCE(has_payload)) {
+ /*
+ * A reinjected event has already
+ * delivered its payload.
+ */
+ has_payload = false;
+ payload = 0;
+ }
+ } else {
+ vcpu->arch.exception.pending = true;
+ vcpu->arch.exception.injected = false;
+ }
+ vcpu->arch.exception.has_error_code = has_error;
+ vcpu->arch.exception.nr = nr;
+ vcpu->arch.exception.error_code = error_code;
+ vcpu->arch.exception.has_payload = has_payload;
+ vcpu->arch.exception.payload = payload;
+ if (!is_guest_mode(vcpu))
+ kvm_deliver_exception_payload(vcpu);
+ return;
+ }
+
+ /* to check exception */
+ prev_nr = vcpu->arch.exception.nr;
+ if (prev_nr == DF_VECTOR) {
+ /* triple fault -> shutdown */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+ class1 = exception_class(prev_nr);
+ class2 = exception_class(nr);
+ if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
+ || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
+ /*
+ * Generate double fault per SDM Table 5-5. Set
+ * exception.pending = true so that the double fault
+ * can trigger a nested vmexit.
+ */
+ vcpu->arch.exception.pending = true;
+ vcpu->arch.exception.injected = false;
+ vcpu->arch.exception.has_error_code = true;
+ vcpu->arch.exception.nr = DF_VECTOR;
+ vcpu->arch.exception.error_code = 0;
+ vcpu->arch.exception.has_payload = false;
+ vcpu->arch.exception.payload = 0;
+ } else
+ /* replace previous exception with a new one in a hope
+ that instruction re-execution will regenerate lost
+ exception */
+ goto queue;
+}
+
+void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+ kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception);
+
+void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+ kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception);
+
+void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
+ unsigned long payload)
+{
+ kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
+
+static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
+ u32 error_code, unsigned long payload)
+{
+ kvm_multiple_exception(vcpu, nr, true, error_code,
+ true, payload, false);
+}
+
+int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
+{
+ if (err)
+ kvm_inject_gp(vcpu, 0);
+ else
+ return kvm_skip_emulated_instruction(vcpu);
+
+ return 1;
+}
+EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
+
+void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+ ++vcpu->stat.pf_guest;
+ vcpu->arch.exception.nested_apf =
+ is_guest_mode(vcpu) && fault->async_page_fault;
+ if (vcpu->arch.exception.nested_apf) {
+ vcpu->arch.apf.nested_apf_token = fault->address;
+ kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
+ } else {
+ kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
+ fault->address);
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
+
+bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct kvm_mmu *fault_mmu;
+ WARN_ON_ONCE(fault->vector != PF_VECTOR);
+
+ fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
+ vcpu->arch.walk_mmu;
+
+ /*
+ * Invalidate the TLB entry for the faulting address, if it exists,
+ * else the access will fault indefinitely (and to emulate hardware).
+ */
+ if ((fault->error_code & PFERR_PRESENT_MASK) &&
+ !(fault->error_code & PFERR_RSVD_MASK))
+ kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
+ fault_mmu->root_hpa);
+
+ fault_mmu->inject_page_fault(vcpu, fault);
+ return fault->nested_page_fault;
+}
+EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
+
+void kvm_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ atomic_inc(&vcpu->arch.nmi_queued);
+ kvm_make_request(KVM_REQ_NMI, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_inject_nmi);
+
+void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+ kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
+
+void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+ kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
+
+/*
+ * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
+ * a #GP and return false.
+ */
+bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
+{
+ if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
+ return true;
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_cpl);
+
+bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
+{
+ if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
+ return true;
+
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_dr);
+
+/*
+ * This function will be used to read from the physical memory of the currently
+ * running guest. The difference to kvm_vcpu_read_guest_page is that this function
+ * can read from guest physical or from the guest's guest physical memory.
+ */
+int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ gfn_t ngfn, void *data, int offset, int len,
+ u32 access)
+{
+ struct x86_exception exception;
+ gfn_t real_gfn;
+ gpa_t ngpa;
+
+ ngpa = gfn_to_gpa(ngfn);
+ real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
+ if (real_gfn == UNMAPPED_GVA)
+ return -EFAULT;
+
+ real_gfn = gpa_to_gfn(real_gfn);
+
+ return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
+
+static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
+ void *data, int offset, int len, u32 access)
+{
+ return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
+ data, offset, len, access);
+}
+
+static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
+{
+ return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
+ rsvd_bits(1, 2);
+}
+
+/*
+ * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
+ */
+int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
+{
+ gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
+ unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
+ int i;
+ int ret;
+ u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
+
+ ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
+ offset * sizeof(u64), sizeof(pdpte),
+ PFERR_USER_MASK|PFERR_WRITE_MASK);
+ if (ret < 0) {
+ ret = 0;
+ goto out;
+ }
+ for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
+ if ((pdpte[i] & PT_PRESENT_MASK) &&
+ (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
+ ret = 0;
+ goto out;
+ }
+ }
+ ret = 1;
+
+ memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
+ kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
+
+out:
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(load_pdptrs);
+
+bool pdptrs_changed(struct kvm_vcpu *vcpu)
+{
+ u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
+ int offset;
+ gfn_t gfn;
+ int r;
+
+ if (!is_pae_paging(vcpu))
+ return false;
+
+ if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
+ return true;
+
+ gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
+ offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
+ r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
+ PFERR_USER_MASK | PFERR_WRITE_MASK);
+ if (r < 0)
+ return true;
+
+ return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
+}
+EXPORT_SYMBOL_GPL(pdptrs_changed);
+
+int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ unsigned long old_cr0 = kvm_read_cr0(vcpu);
+ unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
+ unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
+
+ cr0 |= X86_CR0_ET;
+
+#ifdef CONFIG_X86_64
+ if (cr0 & 0xffffffff00000000UL)
+ return 1;
+#endif
+
+ cr0 &= ~CR0_RESERVED_BITS;
+
+ if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
+ return 1;
+
+ if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
+ return 1;
+
+#ifdef CONFIG_X86_64
+ if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
+ (cr0 & X86_CR0_PG)) {
+ int cs_db, cs_l;
+
+ if (!is_pae(vcpu))
+ return 1;
+ kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+ if (cs_l)
+ return 1;
+ }
+#endif
+ if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
+ is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
+ !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
+ return 1;
+
+ if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
+ return 1;
+
+ kvm_x86_ops.set_cr0(vcpu, cr0);
+
+ if ((cr0 ^ old_cr0) & X86_CR0_PG) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ }
+
+ if ((cr0 ^ old_cr0) & update_bits)
+ kvm_mmu_reset_context(vcpu);
+
+ if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
+ kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
+ !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+ kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr0);
+
+void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
+{
+ (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
+}
+EXPORT_SYMBOL_GPL(kvm_lmsw);
+
+void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
+{
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
+
+ if (vcpu->arch.xcr0 != host_xcr0)
+ xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
+
+ if (vcpu->arch.xsaves_enabled &&
+ vcpu->arch.ia32_xss != host_xss)
+ wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
+ }
+
+ if (static_cpu_has(X86_FEATURE_PKU) &&
+ (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
+ (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
+ vcpu->arch.pkru != vcpu->arch.host_pkru)
+ __write_pkru(vcpu->arch.pkru);
+}
+EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
+
+void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
+{
+ if (static_cpu_has(X86_FEATURE_PKU) &&
+ (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
+ (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
+ vcpu->arch.pkru = rdpkru();
+ if (vcpu->arch.pkru != vcpu->arch.host_pkru)
+ __write_pkru(vcpu->arch.host_pkru);
+ }
+
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
+
+ if (vcpu->arch.xcr0 != host_xcr0)
+ xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
+
+ if (vcpu->arch.xsaves_enabled &&
+ vcpu->arch.ia32_xss != host_xss)
+ wrmsrl(MSR_IA32_XSS, host_xss);
+ }
+
+}
+EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
+
+static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+ u64 xcr0 = xcr;
+ u64 old_xcr0 = vcpu->arch.xcr0;
+ u64 valid_bits;
+
+ /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
+ if (index != XCR_XFEATURE_ENABLED_MASK)
+ return 1;
+ if (!(xcr0 & XFEATURE_MASK_FP))
+ return 1;
+ if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
+ return 1;
+
+ /*
+ * Do not allow the guest to set bits that we do not support
+ * saving. However, xcr0 bit 0 is always set, even if the
+ * emulated CPU does not support XSAVE (see fx_init).
+ */
+ valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
+ if (xcr0 & ~valid_bits)
+ return 1;
+
+ if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
+ (!(xcr0 & XFEATURE_MASK_BNDCSR)))
+ return 1;
+
+ if (xcr0 & XFEATURE_MASK_AVX512) {
+ if (!(xcr0 & XFEATURE_MASK_YMM))
+ return 1;
+ if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
+ return 1;
+ }
+ vcpu->arch.xcr0 = xcr0;
+
+ if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
+ kvm_update_cpuid_runtime(vcpu);
+ return 0;
+}
+
+int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+ if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
+ __kvm_set_xcr(vcpu, index, xcr)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_xcr);
+
+int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ if (cr4 & cr4_reserved_bits)
+ return -EINVAL;
+
+ if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
+ return -EINVAL;
+
+ if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
+ return -EINVAL;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_valid_cr4);
+
+int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ unsigned long old_cr4 = kvm_read_cr4(vcpu);
+ unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
+ X86_CR4_SMEP;
+ unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
+
+ if (kvm_valid_cr4(vcpu, cr4))
+ return 1;
+
+ if (is_long_mode(vcpu)) {
+ if (!(cr4 & X86_CR4_PAE))
+ return 1;
+ if ((cr4 ^ old_cr4) & X86_CR4_LA57)
+ return 1;
+ } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
+ && ((cr4 ^ old_cr4) & pdptr_bits)
+ && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
+ kvm_read_cr3(vcpu)))
+ return 1;
+
+ if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
+ return 1;
+
+ /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
+ if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
+ return 1;
+ }
+
+ kvm_x86_ops.set_cr4(vcpu, cr4);
+
+ if (((cr4 ^ old_cr4) & mmu_role_bits) ||
+ (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
+ kvm_mmu_reset_context(vcpu);
+
+ if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
+ kvm_update_cpuid_runtime(vcpu);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr4);
+
+int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+ bool skip_tlb_flush = false;
+#ifdef CONFIG_X86_64
+ bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+
+ if (pcid_enabled) {
+ skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
+ cr3 &= ~X86_CR3_PCID_NOFLUSH;
+ }
+#endif
+
+ if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
+ if (!skip_tlb_flush) {
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
+ }
+ return 0;
+ }
+
+ if (is_long_mode(vcpu) &&
+ (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
+ return 1;
+ else if (is_pae_paging(vcpu) &&
+ !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
+ return 1;
+
+ kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
+ vcpu->arch.cr3 = cr3;
+ kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr3);
+
+int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
+{
+ if (cr8 & CR8_RESERVED_BITS)
+ return 1;
+ if (lapic_in_kernel(vcpu))
+ kvm_lapic_set_tpr(vcpu, cr8);
+ else
+ vcpu->arch.cr8 = cr8;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr8);
+
+unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
+{
+ if (lapic_in_kernel(vcpu))
+ return kvm_lapic_get_cr8(vcpu);
+ else
+ return vcpu->arch.cr8;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cr8);
+
+static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
+ for (i = 0; i < KVM_NR_DB_REGS; i++)
+ vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
+ }
+}
+
+void kvm_update_dr7(struct kvm_vcpu *vcpu)
+{
+ unsigned long dr7;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+ dr7 = vcpu->arch.guest_debug_dr7;
+ else
+ dr7 = vcpu->arch.dr7;
+ kvm_x86_ops.set_dr7(vcpu, dr7);
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
+ if (dr7 & DR7_BP_EN_MASK)
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
+}
+EXPORT_SYMBOL_GPL(kvm_update_dr7);
+
+static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
+{
+ u64 fixed = DR6_FIXED_1;
+
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
+ fixed |= DR6_RTM;
+ return fixed;
+}
+
+static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+ size_t size = ARRAY_SIZE(vcpu->arch.db);
+
+ switch (dr) {
+ case 0 ... 3:
+ vcpu->arch.db[array_index_nospec(dr, size)] = val;
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+ vcpu->arch.eff_db[dr] = val;
+ break;
+ case 4:
+ case 6:
+ if (!kvm_dr6_valid(val))
+ return -1; /* #GP */
+ vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
+ break;
+ case 5:
+ default: /* 7 */
+ if (!kvm_dr7_valid(val))
+ return -1; /* #GP */
+ vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
+ kvm_update_dr7(vcpu);
+ break;
+ }
+
+ return 0;
+}
+
+int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+ if (__kvm_set_dr(vcpu, dr, val)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_dr);
+
+int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
+{
+ size_t size = ARRAY_SIZE(vcpu->arch.db);
+
+ switch (dr) {
+ case 0 ... 3:
+ *val = vcpu->arch.db[array_index_nospec(dr, size)];
+ break;
+ case 4:
+ case 6:
+ *val = vcpu->arch.dr6;
+ break;
+ case 5:
+ default: /* 7 */
+ *val = vcpu->arch.dr7;
+ break;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_dr);
+
+bool kvm_rdpmc(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = kvm_rcx_read(vcpu);
+ u64 data;
+ int err;
+
+ err = kvm_pmu_rdpmc(vcpu, ecx, &data);
+ if (err)
+ return err;
+ kvm_rax_write(vcpu, (u32)data);
+ kvm_rdx_write(vcpu, data >> 32);
+ return err;
+}
+EXPORT_SYMBOL_GPL(kvm_rdpmc);
+
+/*
+ * List of msr numbers which we expose to userspace through KVM_GET_MSRS
+ * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
+ *
+ * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
+ * extract the supported MSRs from the related const lists.
+ * msrs_to_save is selected from the msrs_to_save_all to reflect the
+ * capabilities of the host cpu. This capabilities test skips MSRs that are
+ * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
+ * may depend on host virtualization features rather than host cpu features.
+ */
+
+static const u32 msrs_to_save_all[] = {
+ MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+ MSR_STAR,
+#ifdef CONFIG_X86_64
+ MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
+#endif
+ MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
+ MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
+ MSR_IA32_SPEC_CTRL,
+ MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
+ MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
+ MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
+ MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
+ MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
+ MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
+ MSR_IA32_UMWAIT_CONTROL,
+
+ MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
+ MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
+ MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
+ MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
+ MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
+ MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
+ MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
+ MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
+ MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
+ MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
+ MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
+ MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
+ MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
+ MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
+ MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
+
+ MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
+ MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
+ MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
+ MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
+ MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
+ MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
+};
+
+static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
+static unsigned num_msrs_to_save;
+
+static const u32 emulated_msrs_all[] = {
+ MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
+ MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
+ HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
+ HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
+ HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
+ HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
+ HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
+ HV_X64_MSR_RESET,
+ HV_X64_MSR_VP_INDEX,
+ HV_X64_MSR_VP_RUNTIME,
+ HV_X64_MSR_SCONTROL,
+ HV_X64_MSR_STIMER0_CONFIG,
+ HV_X64_MSR_VP_ASSIST_PAGE,
+ HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
+ HV_X64_MSR_TSC_EMULATION_STATUS,
+ HV_X64_MSR_SYNDBG_OPTIONS,
+ HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
+ HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
+ HV_X64_MSR_SYNDBG_PENDING_BUFFER,
+
+ MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
+ MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
+
+ MSR_IA32_TSC_ADJUST,
+ MSR_IA32_TSCDEADLINE,
+ MSR_IA32_ARCH_CAPABILITIES,
+ MSR_IA32_PERF_CAPABILITIES,
+ MSR_IA32_MISC_ENABLE,
+ MSR_IA32_MCG_STATUS,
+ MSR_IA32_MCG_CTL,
+ MSR_IA32_MCG_EXT_CTL,
+ MSR_IA32_SMBASE,
+ MSR_SMI_COUNT,
+ MSR_PLATFORM_INFO,
+ MSR_MISC_FEATURES_ENABLES,
+ MSR_AMD64_VIRT_SPEC_CTRL,
+ MSR_IA32_POWER_CTL,
+ MSR_IA32_UCODE_REV,
+
+ /*
+ * The following list leaves out MSRs whose values are determined
+ * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
+ * We always support the "true" VMX control MSRs, even if the host
+ * processor does not, so I am putting these registers here rather
+ * than in msrs_to_save_all.
+ */
+ MSR_IA32_VMX_BASIC,
+ MSR_IA32_VMX_TRUE_PINBASED_CTLS,
+ MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
+ MSR_IA32_VMX_TRUE_EXIT_CTLS,
+ MSR_IA32_VMX_TRUE_ENTRY_CTLS,
+ MSR_IA32_VMX_MISC,
+ MSR_IA32_VMX_CR0_FIXED0,
+ MSR_IA32_VMX_CR4_FIXED0,
+ MSR_IA32_VMX_VMCS_ENUM,
+ MSR_IA32_VMX_PROCBASED_CTLS2,
+ MSR_IA32_VMX_EPT_VPID_CAP,
+ MSR_IA32_VMX_VMFUNC,
+
+ MSR_K7_HWCR,
+ MSR_KVM_POLL_CONTROL,
+};
+
+static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
+static unsigned num_emulated_msrs;
+
+/*
+ * List of msr numbers which are used to expose MSR-based features that
+ * can be used by a hypervisor to validate requested CPU features.
+ */
+static const u32 msr_based_features_all[] = {
+ MSR_IA32_VMX_BASIC,
+ MSR_IA32_VMX_TRUE_PINBASED_CTLS,
+ MSR_IA32_VMX_PINBASED_CTLS,
+ MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
+ MSR_IA32_VMX_PROCBASED_CTLS,
+ MSR_IA32_VMX_TRUE_EXIT_CTLS,
+ MSR_IA32_VMX_EXIT_CTLS,
+ MSR_IA32_VMX_TRUE_ENTRY_CTLS,
+ MSR_IA32_VMX_ENTRY_CTLS,
+ MSR_IA32_VMX_MISC,
+ MSR_IA32_VMX_CR0_FIXED0,
+ MSR_IA32_VMX_CR0_FIXED1,
+ MSR_IA32_VMX_CR4_FIXED0,
+ MSR_IA32_VMX_CR4_FIXED1,
+ MSR_IA32_VMX_VMCS_ENUM,
+ MSR_IA32_VMX_PROCBASED_CTLS2,
+ MSR_IA32_VMX_EPT_VPID_CAP,
+ MSR_IA32_VMX_VMFUNC,
+
+ MSR_AMD64_DE_CFG,
+ MSR_IA32_UCODE_REV,
+ MSR_IA32_ARCH_CAPABILITIES,
+ MSR_IA32_PERF_CAPABILITIES,
+};
+
+static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
+static unsigned int num_msr_based_features;
+
+/*
+ * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
+ * does not yet virtualize. These include:
+ * 10 - MISC_PACKAGE_CTRLS
+ * 11 - ENERGY_FILTERING_CTL
+ * 12 - DOITM
+ * 18 - FB_CLEAR_CTRL
+ * 21 - XAPIC_DISABLE_STATUS
+ * 23 - OVERCLOCKING_STATUS
+ */
+
+#define KVM_SUPPORTED_ARCH_CAP \
+ (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
+ ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
+ ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
+ ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
+ ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
+
+static u64 kvm_get_arch_capabilities(void)
+{
+ u64 data = 0;
+
+ if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+ rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
+ data &= KVM_SUPPORTED_ARCH_CAP;
+ }
+
+ /*
+ * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
+ * the nested hypervisor runs with NX huge pages. If it is not,
+ * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
+ * L1 guests, so it need not worry about its own (L2) guests.
+ */
+ data |= ARCH_CAP_PSCHANGE_MC_NO;
+
+ /*
+ * If we're doing cache flushes (either "always" or "cond")
+ * we will do one whenever the guest does a vmlaunch/vmresume.
+ * If an outer hypervisor is doing the cache flush for us
+ * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
+ * capability to the guest too, and if EPT is disabled we're not
+ * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
+ * require a nested hypervisor to do a flush of its own.
+ */
+ if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
+ data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
+
+ if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
+ data |= ARCH_CAP_RDCL_NO;
+ if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
+ data |= ARCH_CAP_SSB_NO;
+ if (!boot_cpu_has_bug(X86_BUG_MDS))
+ data |= ARCH_CAP_MDS_NO;
+
+ if (!boot_cpu_has(X86_FEATURE_RTM)) {
+ /*
+ * If RTM=0 because the kernel has disabled TSX, the host might
+ * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
+ * and therefore knows that there cannot be TAA) but keep
+ * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
+ * and we want to allow migrating those guests to tsx=off hosts.
+ */
+ data &= ~ARCH_CAP_TAA_NO;
+ } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
+ data |= ARCH_CAP_TAA_NO;
+ } else {
+ /*
+ * Nothing to do here; we emulate TSX_CTRL if present on the
+ * host so the guest can choose between disabling TSX or
+ * using VERW to clear CPU buffers.
+ */
+ }
+
+ if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
+ data |= ARCH_CAP_GDS_NO;
+
+ return data;
+}
+
+static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
+{
+ switch (msr->index) {
+ case MSR_IA32_ARCH_CAPABILITIES:
+ msr->data = kvm_get_arch_capabilities();
+ break;
+ case MSR_IA32_UCODE_REV:
+ rdmsrl_safe(msr->index, &msr->data);
+ break;
+ default:
+ return kvm_x86_ops.get_msr_feature(msr);
+ }
+ return 0;
+}
+
+static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
+{
+ struct kvm_msr_entry msr;
+ int r;
+
+ msr.index = index;
+ r = kvm_get_msr_feature(&msr);
+
+ if (r == KVM_MSR_RET_INVALID) {
+ /* Unconditionally clear the output for simplicity */
+ *data = 0;
+ if (kvm_msr_ignored_check(vcpu, index, 0, false))
+ r = 0;
+ }
+
+ if (r)
+ return r;
+
+ *data = msr.data;
+
+ return 0;
+}
+
+static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
+ return false;
+
+ if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
+ return false;
+
+ if (efer & (EFER_LME | EFER_LMA) &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ return false;
+
+ if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
+ return false;
+
+ return true;
+
+}
+bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ if (efer & efer_reserved_bits)
+ return false;
+
+ return __kvm_valid_efer(vcpu, efer);
+}
+EXPORT_SYMBOL_GPL(kvm_valid_efer);
+
+static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ u64 old_efer = vcpu->arch.efer;
+ u64 efer = msr_info->data;
+ int r;
+
+ if (efer & efer_reserved_bits)
+ return 1;
+
+ if (!msr_info->host_initiated) {
+ if (!__kvm_valid_efer(vcpu, efer))
+ return 1;
+
+ if (is_paging(vcpu) &&
+ (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
+ return 1;
+ }
+
+ efer &= ~EFER_LMA;
+ efer |= vcpu->arch.efer & EFER_LMA;
+
+ r = kvm_x86_ops.set_efer(vcpu, efer);
+ if (r) {
+ WARN_ON(r > 0);
+ return r;
+ }
+
+ /* Update reserved bits */
+ if ((efer ^ old_efer) & EFER_NX)
+ kvm_mmu_reset_context(vcpu);
+
+ return 0;
+}
+
+void kvm_enable_efer_bits(u64 mask)
+{
+ efer_reserved_bits &= ~mask;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
+
+bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
+{
+ struct kvm_x86_msr_filter *msr_filter;
+ struct msr_bitmap_range *ranges;
+ struct kvm *kvm = vcpu->kvm;
+ bool allowed;
+ int idx;
+ u32 i;
+
+ /* x2APIC MSRs do not support filtering. */
+ if (index >= 0x800 && index <= 0x8ff)
+ return true;
+
+ idx = srcu_read_lock(&kvm->srcu);
+
+ msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
+ if (!msr_filter) {
+ allowed = true;
+ goto out;
+ }
+
+ allowed = msr_filter->default_allow;
+ ranges = msr_filter->ranges;
+
+ for (i = 0; i < msr_filter->count; i++) {
+ u32 start = ranges[i].base;
+ u32 end = start + ranges[i].nmsrs;
+ u32 flags = ranges[i].flags;
+ unsigned long *bitmap = ranges[i].bitmap;
+
+ if ((index >= start) && (index < end) && (flags & type)) {
+ allowed = !!test_bit(index - start, bitmap);
+ break;
+ }
+
+ /* Note, VM-Exits that go down the "slow" path are accounted below. */
+ ++vcpu->stat.exits;
+ }
+
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ return allowed;
+}
+EXPORT_SYMBOL_GPL(kvm_msr_allowed);
+
+/*
+ * Write @data into the MSR specified by @index. Select MSR specific fault
+ * checks are bypassed if @host_initiated is %true.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
+ bool host_initiated)
+{
+ struct msr_data msr;
+
+ if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
+ return KVM_MSR_RET_FILTERED;
+
+ switch (index) {
+ case MSR_FS_BASE:
+ case MSR_GS_BASE:
+ case MSR_KERNEL_GS_BASE:
+ case MSR_CSTAR:
+ case MSR_LSTAR:
+ if (is_noncanonical_address(data, vcpu))
+ return 1;
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ case MSR_IA32_SYSENTER_ESP:
+ /*
+ * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
+ * non-canonical address is written on Intel but not on
+ * AMD (which ignores the top 32-bits, because it does
+ * not implement 64-bit SYSENTER).
+ *
+ * 64-bit code should hence be able to write a non-canonical
+ * value on AMD. Making the address canonical ensures that
+ * vmentry does not fail on Intel after writing a non-canonical
+ * value, and that something deterministic happens if the guest
+ * invokes 64-bit SYSENTER.
+ */
+ data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
+ }
+
+ msr.data = data;
+ msr.index = index;
+ msr.host_initiated = host_initiated;
+
+ return kvm_x86_ops.set_msr(vcpu, &msr);
+}
+
+static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
+ u32 index, u64 data, bool host_initiated)
+{
+ int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
+
+ if (ret == KVM_MSR_RET_INVALID)
+ if (kvm_msr_ignored_check(vcpu, index, data, true))
+ ret = 0;
+
+ return ret;
+}
+
+/*
+ * Read the MSR specified by @index into @data. Select MSR specific fault
+ * checks are bypassed if @host_initiated is %true.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
+ bool host_initiated)
+{
+ struct msr_data msr;
+ int ret;
+
+ if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
+ return KVM_MSR_RET_FILTERED;
+
+ msr.index = index;
+ msr.host_initiated = host_initiated;
+
+ ret = kvm_x86_ops.get_msr(vcpu, &msr);
+ if (!ret)
+ *data = msr.data;
+ return ret;
+}
+
+static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
+ u32 index, u64 *data, bool host_initiated)
+{
+ int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
+
+ if (ret == KVM_MSR_RET_INVALID) {
+ /* Unconditionally clear *data for simplicity */
+ *data = 0;
+ if (kvm_msr_ignored_check(vcpu, index, 0, false))
+ ret = 0;
+ }
+
+ return ret;
+}
+
+int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
+{
+ return kvm_get_msr_ignored_check(vcpu, index, data, false);
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr);
+
+int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
+{
+ return kvm_set_msr_ignored_check(vcpu, index, data, false);
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr);
+
+static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
+{
+ if (vcpu->run->msr.error) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ } else if (is_read) {
+ kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
+ kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
+ }
+
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
+{
+ return complete_emulated_msr(vcpu, true);
+}
+
+static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
+{
+ return complete_emulated_msr(vcpu, false);
+}
+
+static u64 kvm_msr_reason(int r)
+{
+ switch (r) {
+ case KVM_MSR_RET_INVALID:
+ return KVM_MSR_EXIT_REASON_UNKNOWN;
+ case KVM_MSR_RET_FILTERED:
+ return KVM_MSR_EXIT_REASON_FILTER;
+ default:
+ return KVM_MSR_EXIT_REASON_INVAL;
+ }
+}
+
+static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
+ u32 exit_reason, u64 data,
+ int (*completion)(struct kvm_vcpu *vcpu),
+ int r)
+{
+ u64 msr_reason = kvm_msr_reason(r);
+
+ /* Check if the user wanted to know about this MSR fault */
+ if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
+ return 0;
+
+ vcpu->run->exit_reason = exit_reason;
+ vcpu->run->msr.error = 0;
+ memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
+ vcpu->run->msr.reason = msr_reason;
+ vcpu->run->msr.index = index;
+ vcpu->run->msr.data = data;
+ vcpu->arch.complete_userspace_io = completion;
+
+ return 1;
+}
+
+static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
+{
+ return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
+ complete_emulated_rdmsr, r);
+}
+
+static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
+{
+ return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
+ complete_emulated_wrmsr, r);
+}
+
+int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = kvm_rcx_read(vcpu);
+ u64 data;
+ int r;
+
+ r = kvm_get_msr(vcpu, ecx, &data);
+
+ /* MSR read failed? See if we should ask user space */
+ if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
+ /* Bounce to user space */
+ return 0;
+ }
+
+ /* MSR read failed? Inject a #GP */
+ if (r) {
+ trace_kvm_msr_read_ex(ecx);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_read(ecx, data);
+
+ kvm_rax_write(vcpu, data & -1u);
+ kvm_rdx_write(vcpu, (data >> 32) & -1u);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
+
+int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = kvm_rcx_read(vcpu);
+ u64 data = kvm_read_edx_eax(vcpu);
+ int r;
+
+ r = kvm_set_msr(vcpu, ecx, data);
+
+ /* MSR write failed? See if we should ask user space */
+ if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
+ /* Bounce to user space */
+ return 0;
+
+ /* Signal all other negative errors to userspace */
+ if (r < 0)
+ return r;
+
+ /* MSR write failed? Inject a #GP */
+ if (r > 0) {
+ trace_kvm_msr_write_ex(ecx, data);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_write(ecx, data);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
+
+bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
+{
+ return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
+ xfer_to_guest_mode_work_pending();
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
+
+/*
+ * The fast path for frequent and performance sensitive wrmsr emulation,
+ * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
+ * the latency of virtual IPI by avoiding the expensive bits of transitioning
+ * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
+ * other cases which must be called after interrupts are enabled on the host.
+ */
+static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
+{
+ if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
+ return 1;
+
+ if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
+ ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
+ ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
+ ((u32)(data >> 32) != X2APIC_BROADCAST)) {
+
+ data &= ~(1 << 12);
+ kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
+ kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
+ kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
+ trace_kvm_apic_write(APIC_ICR, (u32)data);
+ return 0;
+ }
+
+ return 1;
+}
+
+static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
+{
+ if (!kvm_can_use_hv_timer(vcpu))
+ return 1;
+
+ kvm_set_lapic_tscdeadline_msr(vcpu, data);
+ return 0;
+}
+
+fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
+{
+ u32 msr = kvm_rcx_read(vcpu);
+ u64 data;
+ fastpath_t ret = EXIT_FASTPATH_NONE;
+
+ switch (msr) {
+ case APIC_BASE_MSR + (APIC_ICR >> 4):
+ data = kvm_read_edx_eax(vcpu);
+ if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
+ kvm_skip_emulated_instruction(vcpu);
+ ret = EXIT_FASTPATH_EXIT_HANDLED;
+ }
+ break;
+ case MSR_IA32_TSCDEADLINE:
+ data = kvm_read_edx_eax(vcpu);
+ if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
+ kvm_skip_emulated_instruction(vcpu);
+ ret = EXIT_FASTPATH_REENTER_GUEST;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (ret != EXIT_FASTPATH_NONE)
+ trace_kvm_msr_write(msr, data);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
+
+/*
+ * Adapt set_msr() to msr_io()'s calling convention
+ */
+static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
+{
+ return kvm_get_msr_ignored_check(vcpu, index, data, true);
+}
+
+static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
+{
+ return kvm_set_msr_ignored_check(vcpu, index, *data, true);
+}
+
+#ifdef CONFIG_X86_64
+struct pvclock_clock {
+ int vclock_mode;
+ u64 cycle_last;
+ u64 mask;
+ u32 mult;
+ u32 shift;
+ u64 base_cycles;
+ u64 offset;
+};
+
+struct pvclock_gtod_data {
+ seqcount_t seq;
+
+ struct pvclock_clock clock; /* extract of a clocksource struct */
+ struct pvclock_clock raw_clock; /* extract of a clocksource struct */
+
+ ktime_t offs_boot;
+ u64 wall_time_sec;
+};
+
+static struct pvclock_gtod_data pvclock_gtod_data;
+
+static void update_pvclock_gtod(struct timekeeper *tk)
+{
+ struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
+
+ write_seqcount_begin(&vdata->seq);
+
+ /* copy pvclock gtod data */
+ vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
+ vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
+ vdata->clock.mask = tk->tkr_mono.mask;
+ vdata->clock.mult = tk->tkr_mono.mult;
+ vdata->clock.shift = tk->tkr_mono.shift;
+ vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
+ vdata->clock.offset = tk->tkr_mono.base;
+
+ vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
+ vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
+ vdata->raw_clock.mask = tk->tkr_raw.mask;
+ vdata->raw_clock.mult = tk->tkr_raw.mult;
+ vdata->raw_clock.shift = tk->tkr_raw.shift;
+ vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
+ vdata->raw_clock.offset = tk->tkr_raw.base;
+
+ vdata->wall_time_sec = tk->xtime_sec;
+
+ vdata->offs_boot = tk->offs_boot;
+
+ write_seqcount_end(&vdata->seq);
+}
+
+static s64 get_kvmclock_base_ns(void)
+{
+ /* Count up from boot time, but with the frequency of the raw clock. */
+ return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
+}
+#else
+static s64 get_kvmclock_base_ns(void)
+{
+ /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
+ return ktime_get_boottime_ns();
+}
+#endif
+
+static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
+{
+ int version;
+ int r;
+ struct pvclock_wall_clock wc;
+ u64 wall_nsec;
+
+ kvm->arch.wall_clock = wall_clock;
+
+ if (!wall_clock)
+ return;
+
+ r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
+ if (r)
+ return;
+
+ if (version & 1)
+ ++version; /* first time write, random junk */
+
+ ++version;
+
+ if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
+ return;
+
+ /*
+ * The guest calculates current wall clock time by adding
+ * system time (updated by kvm_guest_time_update below) to the
+ * wall clock specified here. We do the reverse here.
+ */
+ wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
+
+ wc.nsec = do_div(wall_nsec, 1000000000);
+ wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
+ wc.version = version;
+
+ kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
+
+ version++;
+ kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
+}
+
+static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
+ bool old_msr, bool host_initiated)
+{
+ struct kvm_arch *ka = &vcpu->kvm->arch;
+
+ if (vcpu->vcpu_id == 0 && !host_initiated) {
+ if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+
+ ka->boot_vcpu_runs_old_kvmclock = old_msr;
+ }
+
+ vcpu->arch.time = system_time;
+ kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+
+ /* we verify if the enable bit is set... */
+ vcpu->arch.pv_time_enabled = false;
+ if (!(system_time & 1))
+ return;
+
+ if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
+ &vcpu->arch.pv_time, system_time & ~1ULL,
+ sizeof(struct pvclock_vcpu_time_info)))
+ vcpu->arch.pv_time_enabled = true;
+
+ return;
+}
+
+static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
+{
+ do_shl32_div32(dividend, divisor);
+ return dividend;
+}
+
+static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
+ s8 *pshift, u32 *pmultiplier)
+{
+ uint64_t scaled64;
+ int32_t shift = 0;
+ uint64_t tps64;
+ uint32_t tps32;
+
+ tps64 = base_hz;
+ scaled64 = scaled_hz;
+ while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
+ tps64 >>= 1;
+ shift--;
+ }
+
+ tps32 = (uint32_t)tps64;
+ while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
+ if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
+ scaled64 >>= 1;
+ else
+ tps32 <<= 1;
+ shift++;
+ }
+
+ *pshift = shift;
+ *pmultiplier = div_frac(scaled64, tps32);
+}
+
+#ifdef CONFIG_X86_64
+static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
+#endif
+
+static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
+static unsigned long max_tsc_khz;
+
+static u32 adjust_tsc_khz(u32 khz, s32 ppm)
+{
+ u64 v = (u64)khz * (1000000 + ppm);
+ do_div(v, 1000000);
+ return v;
+}
+
+static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
+{
+ u64 ratio;
+
+ /* Guest TSC same frequency as host TSC? */
+ if (!scale) {
+ vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
+ return 0;
+ }
+
+ /* TSC scaling supported? */
+ if (!kvm_has_tsc_control) {
+ if (user_tsc_khz > tsc_khz) {
+ vcpu->arch.tsc_catchup = 1;
+ vcpu->arch.tsc_always_catchup = 1;
+ return 0;
+ } else {
+ pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
+ return -1;
+ }
+ }
+
+ /* TSC scaling required - calculate ratio */
+ ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
+ user_tsc_khz, tsc_khz);
+
+ if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
+ pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
+ user_tsc_khz);
+ return -1;
+ }
+
+ vcpu->arch.tsc_scaling_ratio = ratio;
+ return 0;
+}
+
+static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
+{
+ u32 thresh_lo, thresh_hi;
+ int use_scaling = 0;
+
+ /* tsc_khz can be zero if TSC calibration fails */
+ if (user_tsc_khz == 0) {
+ /* set tsc_scaling_ratio to a safe value */
+ vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
+ return -1;
+ }
+
+ /* Compute a scale to convert nanoseconds in TSC cycles */
+ kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
+ &vcpu->arch.virtual_tsc_shift,
+ &vcpu->arch.virtual_tsc_mult);
+ vcpu->arch.virtual_tsc_khz = user_tsc_khz;
+
+ /*
+ * Compute the variation in TSC rate which is acceptable
+ * within the range of tolerance and decide if the
+ * rate being applied is within that bounds of the hardware
+ * rate. If so, no scaling or compensation need be done.
+ */
+ thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
+ thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
+ if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
+ pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
+ use_scaling = 1;
+ }
+ return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
+}
+
+static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
+{
+ u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
+ vcpu->arch.virtual_tsc_mult,
+ vcpu->arch.virtual_tsc_shift);
+ tsc += vcpu->arch.this_tsc_write;
+ return tsc;
+}
+
+static inline int gtod_is_based_on_tsc(int mode)
+{
+ return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
+}
+
+static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_X86_64
+ bool vcpus_matched;
+ struct kvm_arch *ka = &vcpu->kvm->arch;
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+ vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+ atomic_read(&vcpu->kvm->online_vcpus));
+
+ /*
+ * Once the masterclock is enabled, always perform request in
+ * order to update it.
+ *
+ * In order to enable masterclock, the host clocksource must be TSC
+ * and the vcpus need to have matched TSCs. When that happens,
+ * perform request to enable masterclock.
+ */
+ if (ka->use_master_clock ||
+ (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+
+ trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
+ atomic_read(&vcpu->kvm->online_vcpus),
+ ka->use_master_clock, gtod->clock.vclock_mode);
+#endif
+}
+
+/*
+ * Multiply tsc by a fixed point number represented by ratio.
+ *
+ * The most significant 64-N bits (mult) of ratio represent the
+ * integral part of the fixed point number; the remaining N bits
+ * (frac) represent the fractional part, ie. ratio represents a fixed
+ * point number (mult + frac * 2^(-N)).
+ *
+ * N equals to kvm_tsc_scaling_ratio_frac_bits.
+ */
+static inline u64 __scale_tsc(u64 ratio, u64 tsc)
+{
+ return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
+}
+
+u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
+{
+ u64 _tsc = tsc;
+ u64 ratio = vcpu->arch.tsc_scaling_ratio;
+
+ if (ratio != kvm_default_tsc_scaling_ratio)
+ _tsc = __scale_tsc(ratio, tsc);
+
+ return _tsc;
+}
+EXPORT_SYMBOL_GPL(kvm_scale_tsc);
+
+static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
+{
+ u64 tsc;
+
+ tsc = kvm_scale_tsc(vcpu, rdtsc());
+
+ return target_tsc - tsc;
+}
+
+u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
+{
+ return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
+}
+EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
+
+static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+ vcpu->arch.l1_tsc_offset = offset;
+ vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
+}
+
+static inline bool kvm_check_tsc_unstable(void)
+{
+#ifdef CONFIG_X86_64
+ /*
+ * TSC is marked unstable when we're running on Hyper-V,
+ * 'TSC page' clocksource is good.
+ */
+ if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
+ return false;
+#endif
+ return check_tsc_unstable();
+}
+
+static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u64 offset, ns, elapsed;
+ unsigned long flags;
+ bool matched;
+ bool already_matched;
+ bool synchronizing = false;
+
+ raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
+ offset = kvm_compute_tsc_offset(vcpu, data);
+ ns = get_kvmclock_base_ns();
+ elapsed = ns - kvm->arch.last_tsc_nsec;
+
+ if (vcpu->arch.virtual_tsc_khz) {
+ if (data == 0) {
+ /*
+ * detection of vcpu initialization -- need to sync
+ * with other vCPUs. This particularly helps to keep
+ * kvm_clock stable after CPU hotplug
+ */
+ synchronizing = true;
+ } else {
+ u64 tsc_exp = kvm->arch.last_tsc_write +
+ nsec_to_cycles(vcpu, elapsed);
+ u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
+ /*
+ * Special case: TSC write with a small delta (1 second)
+ * of virtual cycle time against real time is
+ * interpreted as an attempt to synchronize the CPU.
+ */
+ synchronizing = data < tsc_exp + tsc_hz &&
+ data + tsc_hz > tsc_exp;
+ }
+ }
+
+ /*
+ * For a reliable TSC, we can match TSC offsets, and for an unstable
+ * TSC, we add elapsed time in this computation. We could let the
+ * compensation code attempt to catch up if we fall behind, but
+ * it's better to try to match offsets from the beginning.
+ */
+ if (synchronizing &&
+ vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
+ if (!kvm_check_tsc_unstable()) {
+ offset = kvm->arch.cur_tsc_offset;
+ } else {
+ u64 delta = nsec_to_cycles(vcpu, elapsed);
+ data += delta;
+ offset = kvm_compute_tsc_offset(vcpu, data);
+ }
+ matched = true;
+ already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
+ } else {
+ /*
+ * We split periods of matched TSC writes into generations.
+ * For each generation, we track the original measured
+ * nanosecond time, offset, and write, so if TSCs are in
+ * sync, we can match exact offset, and if not, we can match
+ * exact software computation in compute_guest_tsc()
+ *
+ * These values are tracked in kvm->arch.cur_xxx variables.
+ */
+ kvm->arch.cur_tsc_generation++;
+ kvm->arch.cur_tsc_nsec = ns;
+ kvm->arch.cur_tsc_write = data;
+ kvm->arch.cur_tsc_offset = offset;
+ matched = false;
+ }
+
+ /*
+ * We also track th most recent recorded KHZ, write and time to
+ * allow the matching interval to be extended at each write.
+ */
+ kvm->arch.last_tsc_nsec = ns;
+ kvm->arch.last_tsc_write = data;
+ kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
+
+ vcpu->arch.last_guest_tsc = data;
+
+ /* Keep track of which generation this VCPU has synchronized to */
+ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
+ vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
+ vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
+
+ kvm_vcpu_write_tsc_offset(vcpu, offset);
+ raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
+
+ spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
+ if (!matched) {
+ kvm->arch.nr_vcpus_matched_tsc = 0;
+ } else if (!already_matched) {
+ kvm->arch.nr_vcpus_matched_tsc++;
+ }
+
+ kvm_track_tsc_matching(vcpu);
+ spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
+}
+
+static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
+ s64 adjustment)
+{
+ u64 tsc_offset = vcpu->arch.l1_tsc_offset;
+ kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
+}
+
+static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
+{
+ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
+ WARN_ON(adjustment < 0);
+ adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
+ adjust_tsc_offset_guest(vcpu, adjustment);
+}
+
+#ifdef CONFIG_X86_64
+
+static u64 read_tsc(void)
+{
+ u64 ret = (u64)rdtsc_ordered();
+ u64 last = pvclock_gtod_data.clock.cycle_last;
+
+ if (likely(ret >= last))
+ return ret;
+
+ /*
+ * GCC likes to generate cmov here, but this branch is extremely
+ * predictable (it's just a function of time and the likely is
+ * very likely) and there's a data dependence, so force GCC
+ * to generate a branch instead. I don't barrier() because
+ * we don't actually need a barrier, and if this function
+ * ever gets inlined it will generate worse code.
+ */
+ asm volatile ("");
+ return last;
+}
+
+static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
+ int *mode)
+{
+ long v;
+ u64 tsc_pg_val;
+
+ switch (clock->vclock_mode) {
+ case VDSO_CLOCKMODE_HVCLOCK:
+ tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
+ tsc_timestamp);
+ if (tsc_pg_val != U64_MAX) {
+ /* TSC page valid */
+ *mode = VDSO_CLOCKMODE_HVCLOCK;
+ v = (tsc_pg_val - clock->cycle_last) &
+ clock->mask;
+ } else {
+ /* TSC page invalid */
+ *mode = VDSO_CLOCKMODE_NONE;
+ }
+ break;
+ case VDSO_CLOCKMODE_TSC:
+ *mode = VDSO_CLOCKMODE_TSC;
+ *tsc_timestamp = read_tsc();
+ v = (*tsc_timestamp - clock->cycle_last) &
+ clock->mask;
+ break;
+ default:
+ *mode = VDSO_CLOCKMODE_NONE;
+ }
+
+ if (*mode == VDSO_CLOCKMODE_NONE)
+ *tsc_timestamp = v = 0;
+
+ return v * clock->mult;
+}
+
+static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ unsigned long seq;
+ int mode;
+ u64 ns;
+
+ do {
+ seq = read_seqcount_begin(&gtod->seq);
+ ns = gtod->raw_clock.base_cycles;
+ ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
+ ns >>= gtod->raw_clock.shift;
+ ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
+ } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+ *t = ns;
+
+ return mode;
+}
+
+static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ unsigned long seq;
+ int mode;
+ u64 ns;
+
+ do {
+ seq = read_seqcount_begin(&gtod->seq);
+ ts->tv_sec = gtod->wall_time_sec;
+ ns = gtod->clock.base_cycles;
+ ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
+ ns >>= gtod->clock.shift;
+ } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+
+ ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
+ ts->tv_nsec = ns;
+
+ return mode;
+}
+
+/* returns true if host is using TSC based clocksource */
+static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
+{
+ /* checked again under seqlock below */
+ if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
+ return false;
+
+ return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
+ tsc_timestamp));
+}
+
+/* returns true if host is using TSC based clocksource */
+static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
+ u64 *tsc_timestamp)
+{
+ /* checked again under seqlock below */
+ if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
+ return false;
+
+ return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
+}
+#endif
+
+/*
+ *
+ * Assuming a stable TSC across physical CPUS, and a stable TSC
+ * across virtual CPUs, the following condition is possible.
+ * Each numbered line represents an event visible to both
+ * CPUs at the next numbered event.
+ *
+ * "timespecX" represents host monotonic time. "tscX" represents
+ * RDTSC value.
+ *
+ * VCPU0 on CPU0 | VCPU1 on CPU1
+ *
+ * 1. read timespec0,tsc0
+ * 2. | timespec1 = timespec0 + N
+ * | tsc1 = tsc0 + M
+ * 3. transition to guest | transition to guest
+ * 4. ret0 = timespec0 + (rdtsc - tsc0) |
+ * 5. | ret1 = timespec1 + (rdtsc - tsc1)
+ * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
+ *
+ * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
+ *
+ * - ret0 < ret1
+ * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
+ * ...
+ * - 0 < N - M => M < N
+ *
+ * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
+ * always the case (the difference between two distinct xtime instances
+ * might be smaller then the difference between corresponding TSC reads,
+ * when updating guest vcpus pvclock areas).
+ *
+ * To avoid that problem, do not allow visibility of distinct
+ * system_timestamp/tsc_timestamp values simultaneously: use a master
+ * copy of host monotonic time values. Update that master copy
+ * in lockstep.
+ *
+ * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
+ *
+ */
+
+static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ struct kvm_arch *ka = &kvm->arch;
+ int vclock_mode;
+ bool host_tsc_clocksource, vcpus_matched;
+
+ vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+ atomic_read(&kvm->online_vcpus));
+
+ /*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ host_tsc_clocksource = kvm_get_time_and_clockread(
+ &ka->master_kernel_ns,
+ &ka->master_cycle_now);
+
+ ka->use_master_clock = host_tsc_clocksource && vcpus_matched
+ && !ka->backwards_tsc_observed
+ && !ka->boot_vcpu_runs_old_kvmclock;
+
+ if (ka->use_master_clock)
+ atomic_set(&kvm_guest_has_master_clock, 1);
+
+ vclock_mode = pvclock_gtod_data.clock.vclock_mode;
+ trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
+ vcpus_matched);
+#endif
+}
+
+void kvm_make_mclock_inprogress_request(struct kvm *kvm)
+{
+ kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
+}
+
+static void kvm_gen_update_masterclock(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ int i;
+ struct kvm_vcpu *vcpu;
+ struct kvm_arch *ka = &kvm->arch;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ kvm_make_mclock_inprogress_request(kvm);
+ /* no guest entries from this point */
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+ /* guest entries allowed */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
+
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+#endif
+}
+
+u64 get_kvmclock_ns(struct kvm *kvm)
+{
+ struct kvm_arch *ka = &kvm->arch;
+ struct pvclock_vcpu_time_info hv_clock;
+ u64 ret;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ if (!ka->use_master_clock) {
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+ return get_kvmclock_base_ns() + ka->kvmclock_offset;
+ }
+
+ hv_clock.tsc_timestamp = ka->master_cycle_now;
+ hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+
+ /* both __this_cpu_read() and rdtsc() should be on the same cpu */
+ get_cpu();
+
+ if (__this_cpu_read(cpu_tsc_khz)) {
+ kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
+ &hv_clock.tsc_shift,
+ &hv_clock.tsc_to_system_mul);
+ ret = __pvclock_read_cycles(&hv_clock, rdtsc());
+ } else
+ ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
+
+ put_cpu();
+
+ return ret;
+}
+
+static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
+{
+ struct kvm_vcpu_arch *vcpu = &v->arch;
+ struct pvclock_vcpu_time_info guest_hv_clock;
+
+ if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
+ &guest_hv_clock, sizeof(guest_hv_clock))))
+ return;
+
+ /* This VCPU is paused, but it's legal for a guest to read another
+ * VCPU's kvmclock, so we really have to follow the specification where
+ * it says that version is odd if data is being modified, and even after
+ * it is consistent.
+ *
+ * Version field updates must be kept separate. This is because
+ * kvm_write_guest_cached might use a "rep movs" instruction, and
+ * writes within a string instruction are weakly ordered. So there
+ * are three writes overall.
+ *
+ * As a small optimization, only write the version field in the first
+ * and third write. The vcpu->pv_time cache is still valid, because the
+ * version field is the first in the struct.
+ */
+ BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
+
+ if (guest_hv_clock.version & 1)
+ ++guest_hv_clock.version; /* first time write, random junk */
+
+ vcpu->hv_clock.version = guest_hv_clock.version + 1;
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
+
+ smp_wmb();
+
+ /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
+ vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
+
+ if (vcpu->pvclock_set_guest_stopped_request) {
+ vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
+ vcpu->pvclock_set_guest_stopped_request = false;
+ }
+
+ trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
+
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock));
+
+ smp_wmb();
+
+ vcpu->hv_clock.version++;
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
+}
+
+static int kvm_guest_time_update(struct kvm_vcpu *v)
+{
+ unsigned long flags, tgt_tsc_khz;
+ struct kvm_vcpu_arch *vcpu = &v->arch;
+ struct kvm_arch *ka = &v->kvm->arch;
+ s64 kernel_ns;
+ u64 tsc_timestamp, host_tsc;
+ u8 pvclock_flags;
+ bool use_master_clock;
+
+ kernel_ns = 0;
+ host_tsc = 0;
+
+ /*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ use_master_clock = ka->use_master_clock;
+ if (use_master_clock) {
+ host_tsc = ka->master_cycle_now;
+ kernel_ns = ka->master_kernel_ns;
+ }
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+
+ /* Keep irq disabled to prevent changes to the clock */
+ local_irq_save(flags);
+ tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
+ if (unlikely(tgt_tsc_khz == 0)) {
+ local_irq_restore(flags);
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+ return 1;
+ }
+ if (!use_master_clock) {
+ host_tsc = rdtsc();
+ kernel_ns = get_kvmclock_base_ns();
+ }
+
+ tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
+
+ /*
+ * We may have to catch up the TSC to match elapsed wall clock
+ * time for two reasons, even if kvmclock is used.
+ * 1) CPU could have been running below the maximum TSC rate
+ * 2) Broken TSC compensation resets the base at each VCPU
+ * entry to avoid unknown leaps of TSC even when running
+ * again on the same CPU. This may cause apparent elapsed
+ * time to disappear, and the guest to stand still or run
+ * very slowly.
+ */
+ if (vcpu->tsc_catchup) {
+ u64 tsc = compute_guest_tsc(v, kernel_ns);
+ if (tsc > tsc_timestamp) {
+ adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
+ tsc_timestamp = tsc;
+ }
+ }
+
+ local_irq_restore(flags);
+
+ /* With all the info we got, fill in the values */
+
+ if (kvm_has_tsc_control)
+ tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
+
+ if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
+ kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
+ &vcpu->hv_clock.tsc_shift,
+ &vcpu->hv_clock.tsc_to_system_mul);
+ vcpu->hw_tsc_khz = tgt_tsc_khz;
+ }
+
+ vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
+ vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
+ vcpu->last_guest_tsc = tsc_timestamp;
+
+ /* If the host uses TSC clocksource, then it is stable */
+ pvclock_flags = 0;
+ if (use_master_clock)
+ pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
+
+ vcpu->hv_clock.flags = pvclock_flags;
+
+ if (vcpu->pv_time_enabled)
+ kvm_setup_pvclock_page(v);
+ if (v == kvm_get_vcpu(v->kvm, 0))
+ kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
+ return 0;
+}
+
+/*
+ * kvmclock updates which are isolated to a given vcpu, such as
+ * vcpu->cpu migration, should not allow system_timestamp from
+ * the rest of the vcpus to remain static. Otherwise ntp frequency
+ * correction applies to one vcpu's system_timestamp but not
+ * the others.
+ *
+ * So in those cases, request a kvmclock update for all vcpus.
+ * We need to rate-limit these requests though, as they can
+ * considerably slow guests that have a large number of vcpus.
+ * The time for a remote vcpu to update its kvmclock is bound
+ * by the delay we use to rate-limit the updates.
+ */
+
+#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
+
+static void kvmclock_update_fn(struct work_struct *work)
+{
+ int i;
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+ kvmclock_update_work);
+ struct kvm *kvm = container_of(ka, struct kvm, arch);
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+}
+
+static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
+{
+ struct kvm *kvm = v->kvm;
+
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+ schedule_delayed_work(&kvm->arch.kvmclock_update_work,
+ KVMCLOCK_UPDATE_DELAY);
+}
+
+#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
+
+static void kvmclock_sync_fn(struct work_struct *work)
+{
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+ kvmclock_sync_work);
+ struct kvm *kvm = container_of(ka, struct kvm, arch);
+
+ if (!kvmclock_periodic_sync)
+ return;
+
+ schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
+ schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+ KVMCLOCK_SYNC_PERIOD);
+}
+
+/*
+ * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
+ */
+static bool can_set_mci_status(struct kvm_vcpu *vcpu)
+{
+ /* McStatusWrEn enabled? */
+ if (guest_cpuid_is_amd_or_hygon(vcpu))
+ return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
+
+ return false;
+}
+
+static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+ u32 msr = msr_info->index;
+ u64 data = msr_info->data;
+
+ switch (msr) {
+ case MSR_IA32_MCG_STATUS:
+ vcpu->arch.mcg_status = data;
+ break;
+ case MSR_IA32_MCG_CTL:
+ if (!(mcg_cap & MCG_CTL_P) &&
+ (data || !msr_info->host_initiated))
+ return 1;
+ if (data != 0 && data != ~(u64)0)
+ return 1;
+ vcpu->arch.mcg_ctl = data;
+ break;
+ default:
+ if (msr >= MSR_IA32_MC0_CTL &&
+ msr < MSR_IA32_MCx_CTL(bank_num)) {
+ u32 offset = array_index_nospec(
+ msr - MSR_IA32_MC0_CTL,
+ MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
+
+ /* only 0 or all 1s can be written to IA32_MCi_CTL
+ * some Linux kernels though clear bit 10 in bank 4 to
+ * workaround a BIOS/GART TBL issue on AMD K8s, ignore
+ * this to avoid an uncatched #GP in the guest.
+ *
+ * UNIXWARE clears bit 0 of MC1_CTL to ignore
+ * correctable, single-bit ECC data errors.
+ */
+ if ((offset & 0x3) == 0 &&
+ data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
+ return 1;
+
+ /* MCi_STATUS */
+ if (!msr_info->host_initiated &&
+ (offset & 0x3) == 1 && data != 0) {
+ if (!can_set_mci_status(vcpu))
+ return 1;
+ }
+
+ vcpu->arch.mce_banks[offset] = data;
+ break;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int lm = is_long_mode(vcpu);
+ u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
+ : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
+ u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
+ : kvm->arch.xen_hvm_config.blob_size_32;
+ u32 page_num = data & ~PAGE_MASK;
+ u64 page_addr = data & PAGE_MASK;
+ u8 *page;
+
+ if (page_num >= blob_size)
+ return 1;
+
+ page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
+ kfree(page);
+ return 1;
+ }
+ return 0;
+}
+
+static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
+{
+ u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
+
+ return (vcpu->arch.apf.msr_en_val & mask) == mask;
+}
+
+static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
+{
+ gpa_t gpa = data & ~0x3f;
+
+ /* Bits 4:5 are reserved, Should be zero */
+ if (data & 0x30)
+ return 1;
+
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
+ (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
+ return 1;
+
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
+ (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
+ return 1;
+
+ if (!lapic_in_kernel(vcpu))
+ return data ? 1 : 0;
+
+ vcpu->arch.apf.msr_en_val = data;
+
+ if (!kvm_pv_async_pf_enabled(vcpu)) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ return 0;
+ }
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
+ sizeof(u64)))
+ return 1;
+
+ vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
+ vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
+
+ kvm_async_pf_wakeup_all(vcpu);
+
+ return 0;
+}
+
+static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
+{
+ /* Bits 8-63 are reserved */
+ if (data >> 8)
+ return 1;
+
+ if (!lapic_in_kernel(vcpu))
+ return 1;
+
+ vcpu->arch.apf.msr_int_val = data;
+
+ vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
+
+ return 0;
+}
+
+static void kvmclock_reset(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pv_time_enabled = false;
+ vcpu->arch.time = 0;
+}
+
+static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.tlb_flush;
+ kvm_x86_ops.tlb_flush_all(vcpu);
+}
+
+static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.tlb_flush;
+ kvm_x86_ops.tlb_flush_guest(vcpu);
+}
+
+static void record_steal_time(struct kvm_vcpu *vcpu)
+{
+ struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
+ struct kvm_steal_time __user *st;
+ struct kvm_memslots *slots;
+ gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
+ u64 steal;
+ u32 version;
+
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
+ return;
+
+ slots = kvm_memslots(vcpu->kvm);
+
+ if (unlikely(slots->generation != ghc->generation ||
+ gpa != ghc->gpa ||
+ kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
+ /* We rely on the fact that it fits in a single page. */
+ BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
+ kvm_is_error_hva(ghc->hva) || !ghc->memslot)
+ return;
+ }
+
+ st = (struct kvm_steal_time __user *)ghc->hva;
+ /*
+ * Doing a TLB flush here, on the guest's behalf, can avoid
+ * expensive IPIs.
+ */
+ if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
+ u8 st_preempted = 0;
+ int err = -EFAULT;
+
+ if (!user_access_begin(st, sizeof(*st)))
+ return;
+
+ asm volatile("1: xchgb %0, %2\n"
+ "xor %1, %1\n"
+ "2:\n"
+ _ASM_EXTABLE_UA(1b, 2b)
+ : "+q" (st_preempted),
+ "+&r" (err),
+ "+m" (st->preempted));
+ if (err)
+ goto out;
+
+ user_access_end();
+
+ vcpu->arch.st.preempted = 0;
+
+ trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
+ st_preempted & KVM_VCPU_FLUSH_TLB);
+ if (st_preempted & KVM_VCPU_FLUSH_TLB)
+ kvm_vcpu_flush_tlb_guest(vcpu);
+
+ if (!user_access_begin(st, sizeof(*st)))
+ goto dirty;
+ } else {
+ if (!user_access_begin(st, sizeof(*st)))
+ return;
+
+ unsafe_put_user(0, &st->preempted, out);
+ vcpu->arch.st.preempted = 0;
+ }
+
+ unsafe_get_user(version, &st->version, out);
+ if (version & 1)
+ version += 1; /* first time write, random junk */
+
+ version += 1;
+ unsafe_put_user(version, &st->version, out);
+
+ smp_wmb();
+
+ unsafe_get_user(steal, &st->steal, out);
+ steal += current->sched_info.run_delay -
+ vcpu->arch.st.last_steal;
+ vcpu->arch.st.last_steal = current->sched_info.run_delay;
+ unsafe_put_user(steal, &st->steal, out);
+
+ version += 1;
+ unsafe_put_user(version, &st->version, out);
+
+ out:
+ user_access_end();
+ dirty:
+ mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
+}
+
+int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ bool pr = false;
+ u32 msr = msr_info->index;
+ u64 data = msr_info->data;
+
+ switch (msr) {
+ case MSR_AMD64_NB_CFG:
+ case MSR_IA32_UCODE_WRITE:
+ case MSR_VM_HSAVE_PA:
+ case MSR_AMD64_PATCH_LOADER:
+ case MSR_AMD64_BU_CFG2:
+ case MSR_AMD64_DC_CFG:
+ case MSR_AMD64_TW_CFG:
+ case MSR_F15H_EX_CFG:
+ break;
+
+ case MSR_IA32_UCODE_REV:
+ if (msr_info->host_initiated)
+ vcpu->arch.microcode_version = data;
+ break;
+ case MSR_IA32_ARCH_CAPABILITIES:
+ if (!msr_info->host_initiated)
+ return 1;
+ vcpu->arch.arch_capabilities = data;
+ break;
+ case MSR_IA32_PERF_CAPABILITIES: {
+ struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
+
+ if (!msr_info->host_initiated)
+ return 1;
+ if (kvm_get_msr_feature(&msr_ent))
+ return 1;
+ if (data & ~msr_ent.data)
+ return 1;
+
+ vcpu->arch.perf_capabilities = data;
+
+ return 0;
+ }
+ case MSR_EFER:
+ return set_efer(vcpu, msr_info);
+ case MSR_K7_HWCR:
+ data &= ~(u64)0x40; /* ignore flush filter disable */
+ data &= ~(u64)0x100; /* ignore ignne emulation enable */
+ data &= ~(u64)0x8; /* ignore TLB cache disable */
+
+ /* Handle McStatusWrEn */
+ if (data == BIT_ULL(18)) {
+ vcpu->arch.msr_hwcr = data;
+ } else if (data != 0) {
+ vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
+ data);
+ return 1;
+ }
+ break;
+ case MSR_FAM10H_MMIO_CONF_BASE:
+ if (data != 0) {
+ vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
+ "0x%llx\n", data);
+ return 1;
+ }
+ break;
+ case MSR_IA32_DEBUGCTLMSR:
+ if (!data) {
+ /* We support the non-activated case already */
+ break;
+ } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
+ /* Values other than LBR and BTF are vendor-specific,
+ thus reserved and should throw a #GP */
+ return 1;
+ } else if (report_ignored_msrs)
+ vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
+ __func__, data);
+ break;
+ case 0x200 ... 0x2ff:
+ return kvm_mtrr_set_msr(vcpu, msr, data);
+ case MSR_IA32_APICBASE:
+ return kvm_set_apic_base(vcpu, msr_info);
+ case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
+ return kvm_x2apic_msr_write(vcpu, msr, data);
+ case MSR_IA32_TSCDEADLINE:
+ kvm_set_lapic_tscdeadline_msr(vcpu, data);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
+ if (!msr_info->host_initiated) {
+ s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
+ adjust_tsc_offset_guest(vcpu, adj);
+ /* Before back to guest, tsc_timestamp must be adjusted
+ * as well, otherwise guest's percpu pvclock time could jump.
+ */
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ }
+ vcpu->arch.ia32_tsc_adjust_msr = data;
+ }
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
+ ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
+ return 1;
+ vcpu->arch.ia32_misc_enable_msr = data;
+ kvm_update_cpuid_runtime(vcpu);
+ } else {
+ vcpu->arch.ia32_misc_enable_msr = data;
+ }
+ break;
+ case MSR_IA32_SMBASE:
+ if (!msr_info->host_initiated)
+ return 1;
+ vcpu->arch.smbase = data;
+ break;
+ case MSR_IA32_POWER_CTL:
+ vcpu->arch.msr_ia32_power_ctl = data;
+ break;
+ case MSR_IA32_TSC:
+ if (msr_info->host_initiated) {
+ kvm_synchronize_tsc(vcpu, data);
+ } else {
+ u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
+ adjust_tsc_offset_guest(vcpu, adj);
+ vcpu->arch.ia32_tsc_adjust_msr += adj;
+ }
+ break;
+ case MSR_IA32_XSS:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
+ return 1;
+ /*
+ * KVM supports exposing PT to the guest, but does not support
+ * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
+ * XSAVES/XRSTORS to save/restore PT MSRs.
+ */
+ if (data & ~supported_xss)
+ return 1;
+ vcpu->arch.ia32_xss = data;
+ kvm_update_cpuid_runtime(vcpu);
+ break;
+ case MSR_SMI_COUNT:
+ if (!msr_info->host_initiated)
+ return 1;
+ vcpu->arch.smi_count = data;
+ break;
+ case MSR_KVM_WALL_CLOCK_NEW:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
+ return 1;
+
+ kvm_write_wall_clock(vcpu->kvm, data);
+ break;
+ case MSR_KVM_WALL_CLOCK:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
+ return 1;
+
+ kvm_write_wall_clock(vcpu->kvm, data);
+ break;
+ case MSR_KVM_SYSTEM_TIME_NEW:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
+ return 1;
+
+ kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
+ break;
+ case MSR_KVM_SYSTEM_TIME:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
+ return 1;
+
+ kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
+ break;
+ case MSR_KVM_ASYNC_PF_EN:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
+ return 1;
+
+ if (kvm_pv_enable_async_pf(vcpu, data))
+ return 1;
+ break;
+ case MSR_KVM_ASYNC_PF_INT:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
+ return 1;
+
+ if (kvm_pv_enable_async_pf_int(vcpu, data))
+ return 1;
+ break;
+ case MSR_KVM_ASYNC_PF_ACK:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
+ return 1;
+ if (data & 0x1) {
+ vcpu->arch.apf.pageready_pending = false;
+ kvm_check_async_pf_completion(vcpu);
+ }
+ break;
+ case MSR_KVM_STEAL_TIME:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
+ return 1;
+
+ if (unlikely(!sched_info_on()))
+ return 1;
+
+ if (data & KVM_STEAL_RESERVED_MASK)
+ return 1;
+
+ vcpu->arch.st.msr_val = data;
+
+ if (!(data & KVM_MSR_ENABLED))
+ break;
+
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+
+ break;
+ case MSR_KVM_PV_EOI_EN:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
+ return 1;
+
+ if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
+ return 1;
+ break;
+
+ case MSR_KVM_POLL_CONTROL:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
+ return 1;
+
+ /* only enable bit supported */
+ if (data & (-1ULL << 1))
+ return 1;
+
+ vcpu->arch.msr_kvm_poll_control = data;
+ break;
+
+ case MSR_IA32_MCG_CTL:
+ case MSR_IA32_MCG_STATUS:
+ case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+ return set_msr_mce(vcpu, msr_info);
+
+ case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
+ case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
+ pr = true;
+ fallthrough;
+ case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
+ case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
+ if (kvm_pmu_is_valid_msr(vcpu, msr))
+ return kvm_pmu_set_msr(vcpu, msr_info);
+
+ if (pr || data != 0)
+ vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
+ "0x%x data 0x%llx\n", msr, data);
+ break;
+ case MSR_K7_CLK_CTL:
+ /*
+ * Ignore all writes to this no longer documented MSR.
+ * Writes are only relevant for old K7 processors,
+ * all pre-dating SVM, but a recommended workaround from
+ * AMD for these chips. It is possible to specify the
+ * affected processor models on the command line, hence
+ * the need to ignore the workaround.
+ */
+ break;
+ case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+ case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
+ case HV_X64_MSR_SYNDBG_OPTIONS:
+ case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
+ case HV_X64_MSR_CRASH_CTL:
+ case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
+ case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
+ case HV_X64_MSR_TSC_EMULATION_CONTROL:
+ case HV_X64_MSR_TSC_EMULATION_STATUS:
+ return kvm_hv_set_msr_common(vcpu, msr, data,
+ msr_info->host_initiated);
+ case MSR_IA32_BBL_CR_CTL3:
+ /* Drop writes to this legacy MSR -- see rdmsr
+ * counterpart for further detail.
+ */
+ if (report_ignored_msrs)
+ vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
+ msr, data);
+ break;
+ case MSR_AMD64_OSVW_ID_LENGTH:
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
+ return 1;
+ vcpu->arch.osvw.length = data;
+ break;
+ case MSR_AMD64_OSVW_STATUS:
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
+ return 1;
+ vcpu->arch.osvw.status = data;
+ break;
+ case MSR_PLATFORM_INFO:
+ if (!msr_info->host_initiated ||
+ (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
+ cpuid_fault_enabled(vcpu)))
+ return 1;
+ vcpu->arch.msr_platform_info = data;
+ break;
+ case MSR_MISC_FEATURES_ENABLES:
+ if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
+ (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
+ !supports_cpuid_fault(vcpu)))
+ return 1;
+ vcpu->arch.msr_misc_features_enables = data;
+ break;
+ default:
+ if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
+ return xen_hvm_config(vcpu, data);
+ if (kvm_pmu_is_valid_msr(vcpu, msr))
+ return kvm_pmu_set_msr(vcpu, msr_info);
+ return KVM_MSR_RET_INVALID;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr_common);
+
+static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
+{
+ u64 data;
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+
+ switch (msr) {
+ case MSR_IA32_P5_MC_ADDR:
+ case MSR_IA32_P5_MC_TYPE:
+ data = 0;
+ break;
+ case MSR_IA32_MCG_CAP:
+ data = vcpu->arch.mcg_cap;
+ break;
+ case MSR_IA32_MCG_CTL:
+ if (!(mcg_cap & MCG_CTL_P) && !host)
+ return 1;
+ data = vcpu->arch.mcg_ctl;
+ break;
+ case MSR_IA32_MCG_STATUS:
+ data = vcpu->arch.mcg_status;
+ break;
+ default:
+ if (msr >= MSR_IA32_MC0_CTL &&
+ msr < MSR_IA32_MCx_CTL(bank_num)) {
+ u32 offset = array_index_nospec(
+ msr - MSR_IA32_MC0_CTL,
+ MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
+
+ data = vcpu->arch.mce_banks[offset];
+ break;
+ }
+ return 1;
+ }
+ *pdata = data;
+ return 0;
+}
+
+int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ switch (msr_info->index) {
+ case MSR_IA32_PLATFORM_ID:
+ case MSR_IA32_EBL_CR_POWERON:
+ case MSR_IA32_DEBUGCTLMSR:
+ case MSR_IA32_LASTBRANCHFROMIP:
+ case MSR_IA32_LASTBRANCHTOIP:
+ case MSR_IA32_LASTINTFROMIP:
+ case MSR_IA32_LASTINTTOIP:
+ case MSR_K8_SYSCFG:
+ case MSR_K8_TSEG_ADDR:
+ case MSR_K8_TSEG_MASK:
+ case MSR_VM_HSAVE_PA:
+ case MSR_K8_INT_PENDING_MSG:
+ case MSR_AMD64_NB_CFG:
+ case MSR_FAM10H_MMIO_CONF_BASE:
+ case MSR_AMD64_BU_CFG2:
+ case MSR_IA32_PERF_CTL:
+ case MSR_AMD64_DC_CFG:
+ case MSR_AMD64_TW_CFG:
+ case MSR_F15H_EX_CFG:
+ /*
+ * Intel Sandy Bridge CPUs must support the RAPL (running average power
+ * limit) MSRs. Just return 0, as we do not want to expose the host
+ * data here. Do not conditionalize this on CPUID, as KVM does not do
+ * so for existing CPU-specific MSRs.
+ */
+ case MSR_RAPL_POWER_UNIT:
+ case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
+ case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
+ case MSR_PKG_ENERGY_STATUS: /* Total package */
+ case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
+ msr_info->data = 0;
+ break;
+ case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
+ case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
+ case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
+ case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
+ case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
+ if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
+ return kvm_pmu_get_msr(vcpu, msr_info);
+ msr_info->data = 0;
+ break;
+ case MSR_IA32_UCODE_REV:
+ msr_info->data = vcpu->arch.microcode_version;
+ break;
+ case MSR_IA32_ARCH_CAPABILITIES:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
+ return 1;
+ msr_info->data = vcpu->arch.arch_capabilities;
+ break;
+ case MSR_IA32_PERF_CAPABILITIES:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
+ return 1;
+ msr_info->data = vcpu->arch.perf_capabilities;
+ break;
+ case MSR_IA32_POWER_CTL:
+ msr_info->data = vcpu->arch.msr_ia32_power_ctl;
+ break;
+ case MSR_IA32_TSC: {
+ /*
+ * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
+ * even when not intercepted. AMD manual doesn't explicitly
+ * state this but appears to behave the same.
+ *
+ * On userspace reads and writes, however, we unconditionally
+ * return L1's TSC value to ensure backwards-compatible
+ * behavior for migration.
+ */
+ u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
+ vcpu->arch.tsc_offset;
+
+ msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
+ break;
+ }
+ case MSR_MTRRcap:
+ case 0x200 ... 0x2ff:
+ return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
+ case 0xcd: /* fsb frequency */
+ msr_info->data = 3;
+ break;
+ /*
+ * MSR_EBC_FREQUENCY_ID
+ * Conservative value valid for even the basic CPU models.
+ * Models 0,1: 000 in bits 23:21 indicating a bus speed of
+ * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
+ * and 266MHz for model 3, or 4. Set Core Clock
+ * Frequency to System Bus Frequency Ratio to 1 (bits
+ * 31:24) even though these are only valid for CPU
+ * models > 2, however guests may end up dividing or
+ * multiplying by zero otherwise.
+ */
+ case MSR_EBC_FREQUENCY_ID:
+ msr_info->data = 1 << 24;
+ break;
+ case MSR_IA32_APICBASE:
+ msr_info->data = kvm_get_apic_base(vcpu);
+ break;
+ case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
+ return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
+ case MSR_IA32_TSCDEADLINE:
+ msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ msr_info->data = vcpu->arch.ia32_misc_enable_msr;
+ break;
+ case MSR_IA32_SMBASE:
+ if (!msr_info->host_initiated)
+ return 1;
+ msr_info->data = vcpu->arch.smbase;
+ break;
+ case MSR_SMI_COUNT:
+ msr_info->data = vcpu->arch.smi_count;
+ break;
+ case MSR_IA32_PERF_STATUS:
+ /* TSC increment by tick */
+ msr_info->data = 1000ULL;
+ /* CPU multiplier */
+ msr_info->data |= (((uint64_t)4ULL) << 40);
+ break;
+ case MSR_EFER:
+ msr_info->data = vcpu->arch.efer;
+ break;
+ case MSR_KVM_WALL_CLOCK:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
+ return 1;
+
+ msr_info->data = vcpu->kvm->arch.wall_clock;
+ break;
+ case MSR_KVM_WALL_CLOCK_NEW:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
+ return 1;
+
+ msr_info->data = vcpu->kvm->arch.wall_clock;
+ break;
+ case MSR_KVM_SYSTEM_TIME:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
+ return 1;
+
+ msr_info->data = vcpu->arch.time;
+ break;
+ case MSR_KVM_SYSTEM_TIME_NEW:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
+ return 1;
+
+ msr_info->data = vcpu->arch.time;
+ break;
+ case MSR_KVM_ASYNC_PF_EN:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
+ return 1;
+
+ msr_info->data = vcpu->arch.apf.msr_en_val;
+ break;
+ case MSR_KVM_ASYNC_PF_INT:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
+ return 1;
+
+ msr_info->data = vcpu->arch.apf.msr_int_val;
+ break;
+ case MSR_KVM_ASYNC_PF_ACK:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
+ return 1;
+
+ msr_info->data = 0;
+ break;
+ case MSR_KVM_STEAL_TIME:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
+ return 1;
+
+ msr_info->data = vcpu->arch.st.msr_val;
+ break;
+ case MSR_KVM_PV_EOI_EN:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
+ return 1;
+
+ msr_info->data = vcpu->arch.pv_eoi.msr_val;
+ break;
+ case MSR_KVM_POLL_CONTROL:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
+ return 1;
+
+ msr_info->data = vcpu->arch.msr_kvm_poll_control;
+ break;
+ case MSR_IA32_P5_MC_ADDR:
+ case MSR_IA32_P5_MC_TYPE:
+ case MSR_IA32_MCG_CAP:
+ case MSR_IA32_MCG_CTL:
+ case MSR_IA32_MCG_STATUS:
+ case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+ return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
+ msr_info->host_initiated);
+ case MSR_IA32_XSS:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
+ return 1;
+ msr_info->data = vcpu->arch.ia32_xss;
+ break;
+ case MSR_K7_CLK_CTL:
+ /*
+ * Provide expected ramp-up count for K7. All other
+ * are set to zero, indicating minimum divisors for
+ * every field.
+ *
+ * This prevents guest kernels on AMD host with CPU
+ * type 6, model 8 and higher from exploding due to
+ * the rdmsr failing.
+ */
+ msr_info->data = 0x20000000;
+ break;
+ case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+ case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
+ case HV_X64_MSR_SYNDBG_OPTIONS:
+ case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
+ case HV_X64_MSR_CRASH_CTL:
+ case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
+ case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
+ case HV_X64_MSR_TSC_EMULATION_CONTROL:
+ case HV_X64_MSR_TSC_EMULATION_STATUS:
+ return kvm_hv_get_msr_common(vcpu,
+ msr_info->index, &msr_info->data,
+ msr_info->host_initiated);
+ case MSR_IA32_BBL_CR_CTL3:
+ /* This legacy MSR exists but isn't fully documented in current
+ * silicon. It is however accessed by winxp in very narrow
+ * scenarios where it sets bit #19, itself documented as
+ * a "reserved" bit. Best effort attempt to source coherent
+ * read data here should the balance of the register be
+ * interpreted by the guest:
+ *
+ * L2 cache control register 3: 64GB range, 256KB size,
+ * enabled, latency 0x1, configured
+ */
+ msr_info->data = 0xbe702111;
+ break;
+ case MSR_AMD64_OSVW_ID_LENGTH:
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
+ return 1;
+ msr_info->data = vcpu->arch.osvw.length;
+ break;
+ case MSR_AMD64_OSVW_STATUS:
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
+ return 1;
+ msr_info->data = vcpu->arch.osvw.status;
+ break;
+ case MSR_PLATFORM_INFO:
+ if (!msr_info->host_initiated &&
+ !vcpu->kvm->arch.guest_can_read_msr_platform_info)
+ return 1;
+ msr_info->data = vcpu->arch.msr_platform_info;
+ break;
+ case MSR_MISC_FEATURES_ENABLES:
+ msr_info->data = vcpu->arch.msr_misc_features_enables;
+ break;
+ case MSR_K7_HWCR:
+ msr_info->data = vcpu->arch.msr_hwcr;
+ break;
+ default:
+ if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
+ return kvm_pmu_get_msr(vcpu, msr_info);
+ return KVM_MSR_RET_INVALID;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr_common);
+
+/*
+ * Read or write a bunch of msrs. All parameters are kernel addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
+ struct kvm_msr_entry *entries,
+ int (*do_msr)(struct kvm_vcpu *vcpu,
+ unsigned index, u64 *data))
+{
+ int i;
+
+ for (i = 0; i < msrs->nmsrs; ++i)
+ if (do_msr(vcpu, entries[i].index, &entries[i].data))
+ break;
+
+ return i;
+}
+
+/*
+ * Read or write a bunch of msrs. Parameters are user addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
+ int (*do_msr)(struct kvm_vcpu *vcpu,
+ unsigned index, u64 *data),
+ int writeback)
+{
+ struct kvm_msrs msrs;
+ struct kvm_msr_entry *entries;
+ int r, n;
+ unsigned size;
+
+ r = -EFAULT;
+ if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
+ goto out;
+
+ r = -E2BIG;
+ if (msrs.nmsrs >= MAX_IO_MSRS)
+ goto out;
+
+ size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
+ entries = memdup_user(user_msrs->entries, size);
+ if (IS_ERR(entries)) {
+ r = PTR_ERR(entries);
+ goto out;
+ }
+
+ r = n = __msr_io(vcpu, &msrs, entries, do_msr);
+ if (r < 0)
+ goto out_free;
+
+ r = -EFAULT;
+ if (writeback && copy_to_user(user_msrs->entries, entries, size))
+ goto out_free;
+
+ r = n;
+
+out_free:
+ kfree(entries);
+out:
+ return r;
+}
+
+static inline bool kvm_can_mwait_in_guest(void)
+{
+ return boot_cpu_has(X86_FEATURE_MWAIT) &&
+ !boot_cpu_has_bug(X86_BUG_MONITOR) &&
+ boot_cpu_has(X86_FEATURE_ARAT);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r = 0;
+
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ case KVM_CAP_HLT:
+ case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
+ case KVM_CAP_SET_TSS_ADDR:
+ case KVM_CAP_EXT_CPUID:
+ case KVM_CAP_EXT_EMUL_CPUID:
+ case KVM_CAP_CLOCKSOURCE:
+ case KVM_CAP_PIT:
+ case KVM_CAP_NOP_IO_DELAY:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_USER_NMI:
+ case KVM_CAP_REINJECT_CONTROL:
+ case KVM_CAP_IRQ_INJECT_STATUS:
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_IOEVENTFD_NO_LENGTH:
+ case KVM_CAP_PIT2:
+ case KVM_CAP_PIT_STATE2:
+ case KVM_CAP_SET_IDENTITY_MAP_ADDR:
+ case KVM_CAP_XEN_HVM:
+ case KVM_CAP_VCPU_EVENTS:
+ case KVM_CAP_HYPERV:
+ case KVM_CAP_HYPERV_VAPIC:
+ case KVM_CAP_HYPERV_SPIN:
+ case KVM_CAP_HYPERV_SYNIC:
+ case KVM_CAP_HYPERV_SYNIC2:
+ case KVM_CAP_HYPERV_VP_INDEX:
+ case KVM_CAP_HYPERV_EVENTFD:
+ case KVM_CAP_HYPERV_TLBFLUSH:
+ case KVM_CAP_HYPERV_SEND_IPI:
+ case KVM_CAP_HYPERV_CPUID:
+ case KVM_CAP_PCI_SEGMENT:
+ case KVM_CAP_DEBUGREGS:
+ case KVM_CAP_X86_ROBUST_SINGLESTEP:
+ case KVM_CAP_XSAVE:
+ case KVM_CAP_ASYNC_PF:
+ case KVM_CAP_ASYNC_PF_INT:
+ case KVM_CAP_GET_TSC_KHZ:
+ case KVM_CAP_KVMCLOCK_CTRL:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_HYPERV_TIME:
+ case KVM_CAP_IOAPIC_POLARITY_IGNORED:
+ case KVM_CAP_TSC_DEADLINE_TIMER:
+ case KVM_CAP_DISABLE_QUIRKS:
+ case KVM_CAP_SET_BOOT_CPU_ID:
+ case KVM_CAP_SPLIT_IRQCHIP:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ case KVM_CAP_PMU_EVENT_FILTER:
+ case KVM_CAP_GET_MSR_FEATURES:
+ case KVM_CAP_MSR_PLATFORM_INFO:
+ case KVM_CAP_EXCEPTION_PAYLOAD:
+ case KVM_CAP_SET_GUEST_DEBUG:
+ case KVM_CAP_LAST_CPU:
+ case KVM_CAP_X86_USER_SPACE_MSR:
+ case KVM_CAP_X86_MSR_FILTER:
+ case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
+ r = 1;
+ break;
+ case KVM_CAP_SYNC_REGS:
+ r = KVM_SYNC_X86_VALID_FIELDS;
+ break;
+ case KVM_CAP_ADJUST_CLOCK:
+ r = KVM_CLOCK_TSC_STABLE;
+ break;
+ case KVM_CAP_X86_DISABLE_EXITS:
+ r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
+ KVM_X86_DISABLE_EXITS_CSTATE;
+ if(kvm_can_mwait_in_guest())
+ r |= KVM_X86_DISABLE_EXITS_MWAIT;
+ break;
+ case KVM_CAP_X86_SMM:
+ /* SMBASE is usually relocated above 1M on modern chipsets,
+ * and SMM handlers might indeed rely on 4G segment limits,
+ * so do not report SMM to be available if real mode is
+ * emulated via vm86 mode. Still, do not go to great lengths
+ * to avoid userspace's usage of the feature, because it is a
+ * fringe case that is not enabled except via specific settings
+ * of the module parameters.
+ */
+ r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
+ break;
+ case KVM_CAP_VAPIC:
+ r = !kvm_x86_ops.cpu_has_accelerated_tpr();
+ break;
+ case KVM_CAP_NR_VCPUS:
+ r = KVM_SOFT_MAX_VCPUS;
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ r = KVM_MAX_VCPUS;
+ break;
+ case KVM_CAP_MAX_VCPU_ID:
+ r = KVM_MAX_VCPU_ID;
+ break;
+ case KVM_CAP_PV_MMU: /* obsolete */
+ r = 0;
+ break;
+ case KVM_CAP_MCE:
+ r = KVM_MAX_MCE_BANKS;
+ break;
+ case KVM_CAP_XCRS:
+ r = boot_cpu_has(X86_FEATURE_XSAVE);
+ break;
+ case KVM_CAP_TSC_CONTROL:
+ r = kvm_has_tsc_control;
+ break;
+ case KVM_CAP_X2APIC_API:
+ r = KVM_X2APIC_API_VALID_FLAGS;
+ break;
+ case KVM_CAP_NESTED_STATE:
+ r = kvm_x86_ops.nested_ops->get_state ?
+ kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
+ break;
+ case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
+ r = kvm_x86_ops.enable_direct_tlbflush != NULL;
+ break;
+ case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+ r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
+ break;
+ case KVM_CAP_SMALLER_MAXPHYADDR:
+ r = (int) allow_smaller_maxphyaddr;
+ break;
+ case KVM_CAP_STEAL_TIME:
+ r = sched_info_on();
+ break;
+ default:
+ break;
+ }
+ return r;
+
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ void __user *argp = (void __user *)arg;
+ long r;
+
+ switch (ioctl) {
+ case KVM_GET_MSR_INDEX_LIST: {
+ struct kvm_msr_list __user *user_msr_list = argp;
+ struct kvm_msr_list msr_list;
+ unsigned n;
+
+ r = -EFAULT;
+ if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
+ goto out;
+ n = msr_list.nmsrs;
+ msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
+ if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
+ goto out;
+ r = -E2BIG;
+ if (n < msr_list.nmsrs)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(user_msr_list->indices, &msrs_to_save,
+ num_msrs_to_save * sizeof(u32)))
+ goto out;
+ if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
+ &emulated_msrs,
+ num_emulated_msrs * sizeof(u32)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_GET_SUPPORTED_CPUID:
+ case KVM_GET_EMULATED_CPUID: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+
+ r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
+ ioctl);
+ if (r)
+ goto out;
+
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_X86_GET_MCE_CAP_SUPPORTED:
+ r = -EFAULT;
+ if (copy_to_user(argp, &kvm_mce_cap_supported,
+ sizeof(kvm_mce_cap_supported)))
+ goto out;
+ r = 0;
+ break;
+ case KVM_GET_MSR_FEATURE_INDEX_LIST: {
+ struct kvm_msr_list __user *user_msr_list = argp;
+ struct kvm_msr_list msr_list;
+ unsigned int n;
+
+ r = -EFAULT;
+ if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
+ goto out;
+ n = msr_list.nmsrs;
+ msr_list.nmsrs = num_msr_based_features;
+ if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
+ goto out;
+ r = -E2BIG;
+ if (n < msr_list.nmsrs)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(user_msr_list->indices, &msr_based_features,
+ num_msr_based_features * sizeof(u32)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_GET_MSRS:
+ r = msr_io(NULL, argp, do_get_msr_feature, 1);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+out:
+ return r;
+}
+
+static void wbinvd_ipi(void *garbage)
+{
+ wbinvd();
+}
+
+static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+ return kvm_arch_has_noncoherent_dma(vcpu->kvm);
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ /* Address WBINVD may be executed by guest */
+ if (need_emulate_wbinvd(vcpu)) {
+ if (kvm_x86_ops.has_wbinvd_exit())
+ cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+ else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
+ smp_call_function_single(vcpu->cpu,
+ wbinvd_ipi, NULL, 1);
+ }
+
+ kvm_x86_ops.vcpu_load(vcpu, cpu);
+
+ /* Save host pkru register if supported */
+ vcpu->arch.host_pkru = read_pkru();
+
+ /* Apply any externally detected TSC adjustments (due to suspend) */
+ if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
+ adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
+ vcpu->arch.tsc_offset_adjustment = 0;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ }
+
+ if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
+ s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
+ rdtsc() - vcpu->arch.last_host_tsc;
+ if (tsc_delta < 0)
+ mark_tsc_unstable("KVM discovered backwards TSC");
+
+ if (kvm_check_tsc_unstable()) {
+ u64 offset = kvm_compute_tsc_offset(vcpu,
+ vcpu->arch.last_guest_tsc);
+ kvm_vcpu_write_tsc_offset(vcpu, offset);
+ vcpu->arch.tsc_catchup = 1;
+ }
+
+ if (kvm_lapic_hv_timer_in_use(vcpu))
+ kvm_lapic_restart_hv_timer(vcpu);
+
+ /*
+ * On a host with synchronized TSC, there is no need to update
+ * kvmclock on vcpu->cpu migration
+ */
+ if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
+ kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+ if (vcpu->cpu != cpu)
+ kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
+ vcpu->cpu = cpu;
+ }
+
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+}
+
+static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
+{
+ struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
+ struct kvm_steal_time __user *st;
+ struct kvm_memslots *slots;
+ static const u8 preempted = KVM_VCPU_PREEMPTED;
+ gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
+
+ /*
+ * The vCPU can be marked preempted if and only if the VM-Exit was on
+ * an instruction boundary and will not trigger guest emulation of any
+ * kind (see vcpu_run). Vendor specific code controls (conservatively)
+ * when this is true, for example allowing the vCPU to be marked
+ * preempted if and only if the VM-Exit was due to a host interrupt.
+ */
+ if (!vcpu->arch.at_instruction_boundary) {
+ vcpu->stat.preemption_other++;
+ return;
+ }
+
+ vcpu->stat.preemption_reported++;
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ if (vcpu->arch.st.preempted)
+ return;
+
+ /* This happens on process exit */
+ if (unlikely(current->mm != vcpu->kvm->mm))
+ return;
+
+ slots = kvm_memslots(vcpu->kvm);
+
+ if (unlikely(slots->generation != ghc->generation ||
+ gpa != ghc->gpa ||
+ kvm_is_error_hva(ghc->hva) || !ghc->memslot))
+ return;
+
+ st = (struct kvm_steal_time __user *)ghc->hva;
+ BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
+
+ if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
+ vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
+
+ mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ int idx;
+
+ if (vcpu->preempted) {
+ vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
+
+ /*
+ * Take the srcu lock as memslots will be accessed to check the gfn
+ * cache generation against the memslots generation.
+ */
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ kvm_steal_time_set_preempted(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ }
+
+ kvm_x86_ops.vcpu_put(vcpu);
+ vcpu->arch.last_host_tsc = rdtsc();
+ /*
+ * If userspace has set any breakpoints or watchpoints, dr6 is restored
+ * on every vmexit, but if not, we might have a stale dr6 from the
+ * guest. do_debug expects dr6 to be cleared after it runs, do the same.
+ */
+ set_debugreg(0, 6);
+}
+
+static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s)
+{
+ if (vcpu->arch.apicv_active)
+ kvm_x86_ops.sync_pir_to_irr(vcpu);
+
+ return kvm_apic_get_state(vcpu, s);
+}
+
+static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s)
+{
+ int r;
+
+ r = kvm_apic_set_state(vcpu, s);
+ if (r)
+ return r;
+ update_cr8_intercept(vcpu);
+
+ return 0;
+}
+
+static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
+{
+ /*
+ * We can accept userspace's request for interrupt injection
+ * as long as we have a place to store the interrupt number.
+ * The actual injection will happen when the CPU is able to
+ * deliver the interrupt.
+ */
+ if (kvm_cpu_has_extint(vcpu))
+ return false;
+
+ /* Acknowledging ExtINT does not happen if LINT0 is masked. */
+ return (!lapic_in_kernel(vcpu) ||
+ kvm_apic_accept_pic_intr(vcpu));
+}
+
+static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Do not cause an interrupt window exit if an exception
+ * is pending or an event needs reinjection; userspace
+ * might want to inject the interrupt manually using KVM_SET_REGS
+ * or KVM_SET_SREGS. For that to work, we must be at an
+ * instruction boundary and with no events half-injected.
+ */
+ return (kvm_arch_interrupt_allowed(vcpu) &&
+ kvm_cpu_accept_dm_intr(vcpu) &&
+ !kvm_event_needs_reinjection(vcpu) &&
+ !vcpu->arch.exception.pending);
+}
+
+static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
+ struct kvm_interrupt *irq)
+{
+ if (irq->irq >= KVM_NR_INTERRUPTS)
+ return -EINVAL;
+
+ if (!irqchip_in_kernel(vcpu->kvm)) {
+ kvm_queue_interrupt(vcpu, irq->irq, false);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return 0;
+ }
+
+ /*
+ * With in-kernel LAPIC, we only use this to inject EXTINT, so
+ * fail for in-kernel 8259.
+ */
+ if (pic_in_kernel(vcpu->kvm))
+ return -ENXIO;
+
+ if (vcpu->arch.pending_external_vector != -1)
+ return -EEXIST;
+
+ vcpu->arch.pending_external_vector = irq->irq;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_nmi(vcpu);
+
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
+{
+ kvm_make_request(KVM_REQ_SMI, vcpu);
+
+ return 0;
+}
+
+static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
+ struct kvm_tpr_access_ctl *tac)
+{
+ if (tac->flags)
+ return -EINVAL;
+ vcpu->arch.tpr_access_reporting = !!tac->enabled;
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
+ u64 mcg_cap)
+{
+ int r;
+ unsigned bank_num = mcg_cap & 0xff, bank;
+
+ r = -EINVAL;
+ if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
+ goto out;
+ if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
+ goto out;
+ r = 0;
+ vcpu->arch.mcg_cap = mcg_cap;
+ /* Init IA32_MCG_CTL to all 1s */
+ if (mcg_cap & MCG_CTL_P)
+ vcpu->arch.mcg_ctl = ~(u64)0;
+ /* Init IA32_MCi_CTL to all 1s */
+ for (bank = 0; bank < bank_num; bank++)
+ vcpu->arch.mce_banks[bank*4] = ~(u64)0;
+
+ kvm_x86_ops.setup_mce(vcpu);
+out:
+ return r;
+}
+
+static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
+ struct kvm_x86_mce *mce)
+{
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+ u64 *banks = vcpu->arch.mce_banks;
+
+ if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
+ return -EINVAL;
+ /*
+ * if IA32_MCG_CTL is not all 1s, the uncorrected error
+ * reporting is disabled
+ */
+ if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
+ vcpu->arch.mcg_ctl != ~(u64)0)
+ return 0;
+ banks += 4 * mce->bank;
+ /*
+ * if IA32_MCi_CTL is not all 1s, the uncorrected error
+ * reporting is disabled for the bank
+ */
+ if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
+ return 0;
+ if (mce->status & MCI_STATUS_UC) {
+ if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
+ !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return 0;
+ }
+ if (banks[1] & MCI_STATUS_VAL)
+ mce->status |= MCI_STATUS_OVER;
+ banks[2] = mce->addr;
+ banks[3] = mce->misc;
+ vcpu->arch.mcg_status = mce->mcg_status;
+ banks[1] = mce->status;
+ kvm_queue_exception(vcpu, MC_VECTOR);
+ } else if (!(banks[1] & MCI_STATUS_VAL)
+ || !(banks[1] & MCI_STATUS_UC)) {
+ if (banks[1] & MCI_STATUS_VAL)
+ mce->status |= MCI_STATUS_OVER;
+ banks[2] = mce->addr;
+ banks[3] = mce->misc;
+ banks[1] = mce->status;
+ } else
+ banks[1] |= MCI_STATUS_OVER;
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ process_nmi(vcpu);
+
+ if (kvm_check_request(KVM_REQ_SMI, vcpu))
+ process_smi(vcpu);
+
+ /*
+ * In guest mode, payload delivery should be deferred,
+ * so that the L1 hypervisor can intercept #PF before
+ * CR2 is modified (or intercept #DB before DR6 is
+ * modified under nVMX). Unless the per-VM capability,
+ * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
+ * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
+ * opportunistically defer the exception payload, deliver it if the
+ * capability hasn't been requested before processing a
+ * KVM_GET_VCPU_EVENTS.
+ */
+ if (!vcpu->kvm->arch.exception_payload_enabled &&
+ vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
+ kvm_deliver_exception_payload(vcpu);
+
+ /*
+ * The API doesn't provide the instruction length for software
+ * exceptions, so don't report them. As long as the guest RIP
+ * isn't advanced, we should expect to encounter the exception
+ * again.
+ */
+ if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
+ events->exception.injected = 0;
+ events->exception.pending = 0;
+ } else {
+ events->exception.injected = vcpu->arch.exception.injected;
+ events->exception.pending = vcpu->arch.exception.pending;
+ /*
+ * For ABI compatibility, deliberately conflate
+ * pending and injected exceptions when
+ * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
+ */
+ if (!vcpu->kvm->arch.exception_payload_enabled)
+ events->exception.injected |=
+ vcpu->arch.exception.pending;
+ }
+ events->exception.nr = vcpu->arch.exception.nr;
+ events->exception.has_error_code = vcpu->arch.exception.has_error_code;
+ events->exception.error_code = vcpu->arch.exception.error_code;
+ events->exception_has_payload = vcpu->arch.exception.has_payload;
+ events->exception_payload = vcpu->arch.exception.payload;
+
+ events->interrupt.injected =
+ vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
+ events->interrupt.nr = vcpu->arch.interrupt.nr;
+ events->interrupt.soft = 0;
+ events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
+
+ events->nmi.injected = vcpu->arch.nmi_injected;
+ events->nmi.pending = vcpu->arch.nmi_pending != 0;
+ events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
+ events->nmi.pad = 0;
+
+ events->sipi_vector = 0; /* never valid when reporting to user space */
+
+ events->smi.smm = is_smm(vcpu);
+ events->smi.pending = vcpu->arch.smi_pending;
+ events->smi.smm_inside_nmi =
+ !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
+ events->smi.latched_init = kvm_lapic_latched_init(vcpu);
+
+ events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
+ | KVM_VCPUEVENT_VALID_SHADOW
+ | KVM_VCPUEVENT_VALID_SMM);
+ if (vcpu->kvm->arch.exception_payload_enabled)
+ events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
+
+ memset(&events->reserved, 0, sizeof(events->reserved));
+}
+
+static void kvm_smm_changed(struct kvm_vcpu *vcpu);
+
+static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
+ | KVM_VCPUEVENT_VALID_SIPI_VECTOR
+ | KVM_VCPUEVENT_VALID_SHADOW
+ | KVM_VCPUEVENT_VALID_SMM
+ | KVM_VCPUEVENT_VALID_PAYLOAD))
+ return -EINVAL;
+
+ if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
+ if (!vcpu->kvm->arch.exception_payload_enabled)
+ return -EINVAL;
+ if (events->exception.pending)
+ events->exception.injected = 0;
+ else
+ events->exception_has_payload = 0;
+ } else {
+ events->exception.pending = 0;
+ events->exception_has_payload = 0;
+ }
+
+ if ((events->exception.injected || events->exception.pending) &&
+ (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
+ return -EINVAL;
+
+ /* INITs are latched while in SMM */
+ if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
+ (events->smi.smm || events->smi.pending) &&
+ vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
+ return -EINVAL;
+
+ process_nmi(vcpu);
+ vcpu->arch.exception.injected = events->exception.injected;
+ vcpu->arch.exception.pending = events->exception.pending;
+ vcpu->arch.exception.nr = events->exception.nr;
+ vcpu->arch.exception.has_error_code = events->exception.has_error_code;
+ vcpu->arch.exception.error_code = events->exception.error_code;
+ vcpu->arch.exception.has_payload = events->exception_has_payload;
+ vcpu->arch.exception.payload = events->exception_payload;
+
+ vcpu->arch.interrupt.injected = events->interrupt.injected;
+ vcpu->arch.interrupt.nr = events->interrupt.nr;
+ vcpu->arch.interrupt.soft = events->interrupt.soft;
+ if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
+ kvm_x86_ops.set_interrupt_shadow(vcpu,
+ events->interrupt.shadow);
+
+ vcpu->arch.nmi_injected = events->nmi.injected;
+ if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
+ vcpu->arch.nmi_pending = events->nmi.pending;
+ kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
+
+ if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
+ lapic_in_kernel(vcpu))
+ vcpu->arch.apic->sipi_vector = events->sipi_vector;
+
+ if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
+ if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
+ if (events->smi.smm)
+ vcpu->arch.hflags |= HF_SMM_MASK;
+ else
+ vcpu->arch.hflags &= ~HF_SMM_MASK;
+
+ kvm_x86_ops.nested_ops->leave_nested(vcpu);
+ kvm_smm_changed(vcpu);
+ }
+
+ vcpu->arch.smi_pending = events->smi.pending;
+
+ if (events->smi.smm) {
+ if (events->smi.smm_inside_nmi)
+ vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
+ else
+ vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
+ }
+
+ if (lapic_in_kernel(vcpu)) {
+ if (events->smi.latched_init)
+ set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
+ else
+ clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
+ }
+ }
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
+ struct kvm_debugregs *dbgregs)
+{
+ unsigned long val;
+
+ memset(dbgregs, 0, sizeof(*dbgregs));
+ memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
+ kvm_get_dr(vcpu, 6, &val);
+ dbgregs->dr6 = val;
+ dbgregs->dr7 = vcpu->arch.dr7;
+}
+
+static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
+ struct kvm_debugregs *dbgregs)
+{
+ if (dbgregs->flags)
+ return -EINVAL;
+
+ if (dbgregs->dr6 & ~0xffffffffull)
+ return -EINVAL;
+ if (dbgregs->dr7 & ~0xffffffffull)
+ return -EINVAL;
+
+ memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
+ kvm_update_dr0123(vcpu);
+ vcpu->arch.dr6 = dbgregs->dr6;
+ vcpu->arch.dr7 = dbgregs->dr7;
+ kvm_update_dr7(vcpu);
+
+ return 0;
+}
+
+#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
+
+static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
+{
+ struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
+ u64 xstate_bv = xsave->header.xfeatures;
+ u64 valid;
+
+ /*
+ * Copy legacy XSAVE area, to avoid complications with CPUID
+ * leaves 0 and 1 in the loop below.
+ */
+ memcpy(dest, xsave, XSAVE_HDR_OFFSET);
+
+ /* Set XSTATE_BV */
+ xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
+ *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
+
+ /*
+ * Copy each region from the possibly compacted offset to the
+ * non-compacted offset.
+ */
+ valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
+ while (valid) {
+ u64 xfeature_mask = valid & -valid;
+ int xfeature_nr = fls64(xfeature_mask) - 1;
+ void *src = get_xsave_addr(xsave, xfeature_nr);
+
+ if (src) {
+ u32 size, offset, ecx, edx;
+ cpuid_count(XSTATE_CPUID, xfeature_nr,
+ &size, &offset, &ecx, &edx);
+ if (xfeature_nr == XFEATURE_PKRU)
+ memcpy(dest + offset, &vcpu->arch.pkru,
+ sizeof(vcpu->arch.pkru));
+ else
+ memcpy(dest + offset, src, size);
+
+ }
+
+ valid -= xfeature_mask;
+ }
+}
+
+static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
+{
+ struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
+ u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
+ u64 valid;
+
+ /*
+ * Copy legacy XSAVE area, to avoid complications with CPUID
+ * leaves 0 and 1 in the loop below.
+ */
+ memcpy(xsave, src, XSAVE_HDR_OFFSET);
+
+ /* Set XSTATE_BV and possibly XCOMP_BV. */
+ xsave->header.xfeatures = xstate_bv;
+ if (boot_cpu_has(X86_FEATURE_XSAVES))
+ xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+ /*
+ * Copy each region from the non-compacted offset to the
+ * possibly compacted offset.
+ */
+ valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
+ while (valid) {
+ u64 xfeature_mask = valid & -valid;
+ int xfeature_nr = fls64(xfeature_mask) - 1;
+ void *dest = get_xsave_addr(xsave, xfeature_nr);
+
+ if (dest) {
+ u32 size, offset, ecx, edx;
+ cpuid_count(XSTATE_CPUID, xfeature_nr,
+ &size, &offset, &ecx, &edx);
+ if (xfeature_nr == XFEATURE_PKRU)
+ memcpy(&vcpu->arch.pkru, src + offset,
+ sizeof(vcpu->arch.pkru));
+ else
+ memcpy(dest, src + offset, size);
+ }
+
+ valid -= xfeature_mask;
+ }
+}
+
+static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
+ struct kvm_xsave *guest_xsave)
+{
+ if (boot_cpu_has(X86_FEATURE_XSAVE)) {
+ memset(guest_xsave, 0, sizeof(struct kvm_xsave));
+ fill_xsave((u8 *) guest_xsave->region, vcpu);
+ } else {
+ memcpy(guest_xsave->region,
+ &vcpu->arch.guest_fpu->state.fxsave,
+ sizeof(struct fxregs_state));
+ *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
+ XFEATURE_MASK_FPSSE;
+ }
+}
+
+#define XSAVE_MXCSR_OFFSET 24
+
+static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
+ struct kvm_xsave *guest_xsave)
+{
+ u64 xstate_bv =
+ *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
+ u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
+
+ if (boot_cpu_has(X86_FEATURE_XSAVE)) {
+ /*
+ * Here we allow setting states that are not present in
+ * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
+ * with old userspace.
+ */
+ if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
+ return -EINVAL;
+ load_xsave(vcpu, (u8 *)guest_xsave->region);
+ } else {
+ if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
+ mxcsr & ~mxcsr_feature_mask)
+ return -EINVAL;
+ memcpy(&vcpu->arch.guest_fpu->state.fxsave,
+ guest_xsave->region, sizeof(struct fxregs_state));
+ }
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
+ struct kvm_xcrs *guest_xcrs)
+{
+ if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
+ guest_xcrs->nr_xcrs = 0;
+ return;
+ }
+
+ guest_xcrs->nr_xcrs = 1;
+ guest_xcrs->flags = 0;
+ guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
+ guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
+}
+
+static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
+ struct kvm_xcrs *guest_xcrs)
+{
+ int i, r = 0;
+
+ if (!boot_cpu_has(X86_FEATURE_XSAVE))
+ return -EINVAL;
+
+ if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
+ return -EINVAL;
+
+ for (i = 0; i < guest_xcrs->nr_xcrs; i++)
+ /* Only support XCR0 currently */
+ if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
+ r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
+ guest_xcrs->xcrs[i].value);
+ break;
+ }
+ if (r)
+ r = -EINVAL;
+ return r;
+}
+
+/*
+ * kvm_set_guest_paused() indicates to the guest kernel that it has been
+ * stopped by the hypervisor. This function will be called from the host only.
+ * EINVAL is returned when the host attempts to set the flag for a guest that
+ * does not support pv clocks.
+ */
+static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.pv_time_enabled)
+ return -EINVAL;
+ vcpu->arch.pvclock_set_guest_stopped_request = true;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+ uint16_t vmcs_version;
+ void __user *user_ptr;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_HYPERV_SYNIC2:
+ if (cap->args[0])
+ return -EINVAL;
+ fallthrough;
+
+ case KVM_CAP_HYPERV_SYNIC:
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+ return kvm_hv_activate_synic(vcpu, cap->cap ==
+ KVM_CAP_HYPERV_SYNIC2);
+ case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+ if (!kvm_x86_ops.nested_ops->enable_evmcs)
+ return -ENOTTY;
+ r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
+ if (!r) {
+ user_ptr = (void __user *)(uintptr_t)cap->args[0];
+ if (copy_to_user(user_ptr, &vmcs_version,
+ sizeof(vmcs_version)))
+ r = -EFAULT;
+ }
+ return r;
+ case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
+ if (!kvm_x86_ops.enable_direct_tlbflush)
+ return -ENOTTY;
+
+ return kvm_x86_ops.enable_direct_tlbflush(vcpu);
+
+ case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
+ vcpu->arch.pv_cpuid.enforce = cap->args[0];
+ if (vcpu->arch.pv_cpuid.enforce)
+ kvm_update_pv_runtime(vcpu);
+
+ return 0;
+
+ default:
+ return -EINVAL;
+ }
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ int r;
+ union {
+ struct kvm_lapic_state *lapic;
+ struct kvm_xsave *xsave;
+ struct kvm_xcrs *xcrs;
+ void *buffer;
+ } u;
+
+ vcpu_load(vcpu);
+
+ u.buffer = NULL;
+ switch (ioctl) {
+ case KVM_GET_LAPIC: {
+ r = -EINVAL;
+ if (!lapic_in_kernel(vcpu))
+ goto out;
+ u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
+ GFP_KERNEL_ACCOUNT);
+
+ r = -ENOMEM;
+ if (!u.lapic)
+ goto out;
+ r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_LAPIC: {
+ r = -EINVAL;
+ if (!lapic_in_kernel(vcpu))
+ goto out;
+ u.lapic = memdup_user(argp, sizeof(*u.lapic));
+ if (IS_ERR(u.lapic)) {
+ r = PTR_ERR(u.lapic);
+ goto out_nofree;
+ }
+
+ r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
+ break;
+ }
+ case KVM_INTERRUPT: {
+ struct kvm_interrupt irq;
+
+ r = -EFAULT;
+ if (copy_from_user(&irq, argp, sizeof(irq)))
+ goto out;
+ r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
+ break;
+ }
+ case KVM_NMI: {
+ r = kvm_vcpu_ioctl_nmi(vcpu);
+ break;
+ }
+ case KVM_SMI: {
+ r = kvm_vcpu_ioctl_smi(vcpu);
+ break;
+ }
+ case KVM_SET_CPUID: {
+ struct kvm_cpuid __user *cpuid_arg = argp;
+ struct kvm_cpuid cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+ r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
+ break;
+ }
+ case KVM_SET_CPUID2: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+ r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
+ cpuid_arg->entries);
+ break;
+ }
+ case KVM_GET_CPUID2: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+ r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
+ cpuid_arg->entries);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_GET_MSRS: {
+ int idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = msr_io(vcpu, argp, do_get_msr, 1);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+ case KVM_SET_MSRS: {
+ int idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = msr_io(vcpu, argp, do_set_msr, 0);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+ case KVM_TPR_ACCESS_REPORTING: {
+ struct kvm_tpr_access_ctl tac;
+
+ r = -EFAULT;
+ if (copy_from_user(&tac, argp, sizeof(tac)))
+ goto out;
+ r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &tac, sizeof(tac)))
+ goto out;
+ r = 0;
+ break;
+ };
+ case KVM_SET_VAPIC_ADDR: {
+ struct kvm_vapic_addr va;
+ int idx;
+
+ r = -EINVAL;
+ if (!lapic_in_kernel(vcpu))
+ goto out;
+ r = -EFAULT;
+ if (copy_from_user(&va, argp, sizeof(va)))
+ goto out;
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+ case KVM_X86_SETUP_MCE: {
+ u64 mcg_cap;
+
+ r = -EFAULT;
+ if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
+ goto out;
+ r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
+ break;
+ }
+ case KVM_X86_SET_MCE: {
+ struct kvm_x86_mce mce;
+
+ r = -EFAULT;
+ if (copy_from_user(&mce, argp, sizeof(mce)))
+ goto out;
+ r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
+ break;
+ }
+ case KVM_GET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ r = -EFAULT;
+ if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
+ break;
+
+ r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
+ break;
+ }
+ case KVM_GET_DEBUGREGS: {
+ struct kvm_debugregs dbgregs;
+
+ kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &dbgregs,
+ sizeof(struct kvm_debugregs)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_DEBUGREGS: {
+ struct kvm_debugregs dbgregs;
+
+ r = -EFAULT;
+ if (copy_from_user(&dbgregs, argp,
+ sizeof(struct kvm_debugregs)))
+ break;
+
+ r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
+ break;
+ }
+ case KVM_GET_XSAVE: {
+ u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
+ r = -ENOMEM;
+ if (!u.xsave)
+ break;
+
+ kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_XSAVE: {
+ u.xsave = memdup_user(argp, sizeof(*u.xsave));
+ if (IS_ERR(u.xsave)) {
+ r = PTR_ERR(u.xsave);
+ goto out_nofree;
+ }
+
+ r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
+ break;
+ }
+ case KVM_GET_XCRS: {
+ u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
+ r = -ENOMEM;
+ if (!u.xcrs)
+ break;
+
+ kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, u.xcrs,
+ sizeof(struct kvm_xcrs)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_XCRS: {
+ u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
+ if (IS_ERR(u.xcrs)) {
+ r = PTR_ERR(u.xcrs);
+ goto out_nofree;
+ }
+
+ r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
+ break;
+ }
+ case KVM_SET_TSC_KHZ: {
+ u32 user_tsc_khz;
+
+ r = -EINVAL;
+ user_tsc_khz = (u32)arg;
+
+ if (kvm_has_tsc_control &&
+ user_tsc_khz >= kvm_max_guest_tsc_khz)
+ goto out;
+
+ if (user_tsc_khz == 0)
+ user_tsc_khz = tsc_khz;
+
+ if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
+ r = 0;
+
+ goto out;
+ }
+ case KVM_GET_TSC_KHZ: {
+ r = vcpu->arch.virtual_tsc_khz;
+ goto out;
+ }
+ case KVM_KVMCLOCK_CTRL: {
+ r = kvm_set_guest_paused(vcpu);
+ goto out;
+ }
+ case KVM_ENABLE_CAP: {
+ struct kvm_enable_cap cap;
+
+ r = -EFAULT;
+ if (copy_from_user(&cap, argp, sizeof(cap)))
+ goto out;
+ r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
+ break;
+ }
+ case KVM_GET_NESTED_STATE: {
+ struct kvm_nested_state __user *user_kvm_nested_state = argp;
+ u32 user_data_size;
+
+ r = -EINVAL;
+ if (!kvm_x86_ops.nested_ops->get_state)
+ break;
+
+ BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
+ r = -EFAULT;
+ if (get_user(user_data_size, &user_kvm_nested_state->size))
+ break;
+
+ r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
+ user_data_size);
+ if (r < 0)
+ break;
+
+ if (r > user_data_size) {
+ if (put_user(r, &user_kvm_nested_state->size))
+ r = -EFAULT;
+ else
+ r = -E2BIG;
+ break;
+ }
+
+ r = 0;
+ break;
+ }
+ case KVM_SET_NESTED_STATE: {
+ struct kvm_nested_state __user *user_kvm_nested_state = argp;
+ struct kvm_nested_state kvm_state;
+ int idx;
+
+ r = -EINVAL;
+ if (!kvm_x86_ops.nested_ops->set_state)
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
+ break;
+
+ r = -EINVAL;
+ if (kvm_state.size < sizeof(kvm_state))
+ break;
+
+ if (kvm_state.flags &
+ ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
+ | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
+ | KVM_STATE_NESTED_GIF_SET))
+ break;
+
+ /* nested_run_pending implies guest_mode. */
+ if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
+ && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
+ break;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+ case KVM_GET_SUPPORTED_HV_CPUID: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+
+ r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
+ cpuid_arg->entries);
+ if (r)
+ goto out;
+
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
+ goto out;
+ r = 0;
+ break;
+ }
+ default:
+ r = -EINVAL;
+ }
+out:
+ kfree(u.buffer);
+out_nofree:
+ vcpu_put(vcpu);
+ return r;
+}
+
+vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
+{
+ int ret;
+
+ if (addr > (unsigned int)(-3 * PAGE_SIZE))
+ return -EINVAL;
+ ret = kvm_x86_ops.set_tss_addr(kvm, addr);
+ return ret;
+}
+
+static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
+ u64 ident_addr)
+{
+ return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
+}
+
+static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
+ unsigned long kvm_nr_mmu_pages)
+{
+ if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
+ return -EINVAL;
+
+ mutex_lock(&kvm->slots_lock);
+
+ kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
+ kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
+
+ mutex_unlock(&kvm->slots_lock);
+ return 0;
+}
+
+static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
+{
+ return kvm->arch.n_max_mmu_pages;
+}
+
+static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+ struct kvm_pic *pic = kvm->arch.vpic;
+ int r;
+
+ r = 0;
+ switch (chip->chip_id) {
+ case KVM_IRQCHIP_PIC_MASTER:
+ memcpy(&chip->chip.pic, &pic->pics[0],
+ sizeof(struct kvm_pic_state));
+ break;
+ case KVM_IRQCHIP_PIC_SLAVE:
+ memcpy(&chip->chip.pic, &pic->pics[1],
+ sizeof(struct kvm_pic_state));
+ break;
+ case KVM_IRQCHIP_IOAPIC:
+ kvm_get_ioapic(kvm, &chip->chip.ioapic);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ return r;
+}
+
+static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+ struct kvm_pic *pic = kvm->arch.vpic;
+ int r;
+
+ r = 0;
+ switch (chip->chip_id) {
+ case KVM_IRQCHIP_PIC_MASTER:
+ spin_lock(&pic->lock);
+ memcpy(&pic->pics[0], &chip->chip.pic,
+ sizeof(struct kvm_pic_state));
+ spin_unlock(&pic->lock);
+ break;
+ case KVM_IRQCHIP_PIC_SLAVE:
+ spin_lock(&pic->lock);
+ memcpy(&pic->pics[1], &chip->chip.pic,
+ sizeof(struct kvm_pic_state));
+ spin_unlock(&pic->lock);
+ break;
+ case KVM_IRQCHIP_IOAPIC:
+ kvm_set_ioapic(kvm, &chip->chip.ioapic);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ kvm_pic_update_irq(pic);
+ return r;
+}
+
+static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+ struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
+
+ BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
+
+ mutex_lock(&kps->lock);
+ memcpy(ps, &kps->channels, sizeof(*ps));
+ mutex_unlock(&kps->lock);
+ return 0;
+}
+
+static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+ int i;
+ struct kvm_pit *pit = kvm->arch.vpit;
+
+ mutex_lock(&pit->pit_state.lock);
+ memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
+ for (i = 0; i < 3; i++)
+ kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
+ mutex_unlock(&pit->pit_state.lock);
+ return 0;
+}
+
+static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
+ sizeof(ps->channels));
+ ps->flags = kvm->arch.vpit->pit_state.flags;
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ memset(&ps->reserved, 0, sizeof(ps->reserved));
+ return 0;
+}
+
+static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+ int start = 0;
+ int i;
+ u32 prev_legacy, cur_legacy;
+ struct kvm_pit *pit = kvm->arch.vpit;
+
+ mutex_lock(&pit->pit_state.lock);
+ prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
+ cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
+ if (!prev_legacy && cur_legacy)
+ start = 1;
+ memcpy(&pit->pit_state.channels, &ps->channels,
+ sizeof(pit->pit_state.channels));
+ pit->pit_state.flags = ps->flags;
+ for (i = 0; i < 3; i++)
+ kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
+ start && i == 0);
+ mutex_unlock(&pit->pit_state.lock);
+ return 0;
+}
+
+static int kvm_vm_ioctl_reinject(struct kvm *kvm,
+ struct kvm_reinject_control *control)
+{
+ struct kvm_pit *pit = kvm->arch.vpit;
+
+ /* pit->pit_state.lock was overloaded to prevent userspace from getting
+ * an inconsistent state after running multiple KVM_REINJECT_CONTROL
+ * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
+ */
+ mutex_lock(&pit->pit_state.lock);
+ kvm_pit_set_reinject(pit, control->pit_reinject);
+ mutex_unlock(&pit->pit_state.lock);
+
+ return 0;
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+ /*
+ * Flush potentially hardware-cached dirty pages to dirty_bitmap.
+ */
+ if (kvm_x86_ops.flush_log_dirty)
+ kvm_x86_ops.flush_log_dirty(kvm);
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
+ bool line_status)
+{
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
+ irq_event->irq, irq_event->level,
+ line_status);
+ return 0;
+}
+
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_DISABLE_QUIRKS:
+ kvm->arch.disabled_quirks = cap->args[0];
+ r = 0;
+ break;
+ case KVM_CAP_SPLIT_IRQCHIP: {
+ mutex_lock(&kvm->lock);
+ r = -EINVAL;
+ if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
+ goto split_irqchip_unlock;
+ r = -EEXIST;
+ if (irqchip_in_kernel(kvm))
+ goto split_irqchip_unlock;
+ if (kvm->created_vcpus)
+ goto split_irqchip_unlock;
+ r = kvm_setup_empty_irq_routing(kvm);
+ if (r)
+ goto split_irqchip_unlock;
+ /* Pairs with irqchip_in_kernel. */
+ smp_wmb();
+ kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
+ kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
+ r = 0;
+split_irqchip_unlock:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_CAP_X2APIC_API:
+ r = -EINVAL;
+ if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
+ break;
+
+ if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
+ kvm->arch.x2apic_format = true;
+ if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
+ kvm->arch.x2apic_broadcast_quirk_disabled = true;
+
+ r = 0;
+ break;
+ case KVM_CAP_X86_DISABLE_EXITS:
+ r = -EINVAL;
+ if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
+ break;
+
+ if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
+ kvm_can_mwait_in_guest())
+ kvm->arch.mwait_in_guest = true;
+ if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
+ kvm->arch.hlt_in_guest = true;
+ if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
+ kvm->arch.pause_in_guest = true;
+ if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
+ kvm->arch.cstate_in_guest = true;
+ r = 0;
+ break;
+ case KVM_CAP_MSR_PLATFORM_INFO:
+ kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
+ r = 0;
+ break;
+ case KVM_CAP_EXCEPTION_PAYLOAD:
+ kvm->arch.exception_payload_enabled = cap->args[0];
+ r = 0;
+ break;
+ case KVM_CAP_X86_USER_SPACE_MSR:
+ r = -EINVAL;
+ if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
+ KVM_MSR_EXIT_REASON_UNKNOWN |
+ KVM_MSR_EXIT_REASON_FILTER))
+ break;
+ kvm->arch.user_space_msr_mask = cap->args[0];
+ r = 0;
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ return r;
+}
+
+static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
+{
+ struct kvm_x86_msr_filter *msr_filter;
+
+ msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
+ if (!msr_filter)
+ return NULL;
+
+ msr_filter->default_allow = default_allow;
+ return msr_filter;
+}
+
+static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
+{
+ u32 i;
+
+ if (!msr_filter)
+ return;
+
+ for (i = 0; i < msr_filter->count; i++)
+ kfree(msr_filter->ranges[i].bitmap);
+
+ kfree(msr_filter);
+}
+
+static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
+ struct kvm_msr_filter_range *user_range)
+{
+ struct msr_bitmap_range range;
+ unsigned long *bitmap = NULL;
+ size_t bitmap_size;
+ int r;
+
+ if (!user_range->nmsrs)
+ return 0;
+
+ bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
+ if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
+ return -EINVAL;
+
+ bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
+ if (IS_ERR(bitmap))
+ return PTR_ERR(bitmap);
+
+ range = (struct msr_bitmap_range) {
+ .flags = user_range->flags,
+ .base = user_range->base,
+ .nmsrs = user_range->nmsrs,
+ .bitmap = bitmap,
+ };
+
+ if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
+ r = -EINVAL;
+ goto err;
+ }
+
+ if (!range.flags) {
+ r = -EINVAL;
+ goto err;
+ }
+
+ /* Everything ok, add this range identifier. */
+ msr_filter->ranges[msr_filter->count] = range;
+ msr_filter->count++;
+
+ return 0;
+err:
+ kfree(bitmap);
+ return r;
+}
+
+static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
+ struct kvm_msr_filter *filter)
+{
+ struct kvm_x86_msr_filter *new_filter, *old_filter;
+ bool default_allow;
+ bool empty = true;
+ int r = 0;
+ u32 i;
+
+ if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
+ return -EINVAL;
+
+ for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
+ empty &= !filter->ranges[i].nmsrs;
+
+ default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
+ if (empty && !default_allow)
+ return -EINVAL;
+
+ new_filter = kvm_alloc_msr_filter(default_allow);
+ if (!new_filter)
+ return -ENOMEM;
+
+ for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
+ r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
+ if (r) {
+ kvm_free_msr_filter(new_filter);
+ return r;
+ }
+ }
+
+ mutex_lock(&kvm->lock);
+
+ /* The per-VM filter is protected by kvm->lock... */
+ old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
+
+ rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
+ synchronize_srcu(&kvm->srcu);
+
+ kvm_free_msr_filter(old_filter);
+
+ kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
+ mutex_unlock(&kvm->lock);
+
+ return 0;
+}
+
+#ifdef CONFIG_KVM_COMPAT
+/* for KVM_X86_SET_MSR_FILTER */
+struct kvm_msr_filter_range_compat {
+ __u32 flags;
+ __u32 nmsrs;
+ __u32 base;
+ __u32 bitmap;
+};
+
+struct kvm_msr_filter_compat {
+ __u32 flags;
+ struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
+};
+
+#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
+
+long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
+ unsigned long arg)
+{
+ void __user *argp = (void __user *)arg;
+ struct kvm *kvm = filp->private_data;
+ long r = -ENOTTY;
+
+ switch (ioctl) {
+ case KVM_X86_SET_MSR_FILTER_COMPAT: {
+ struct kvm_msr_filter __user *user_msr_filter = argp;
+ struct kvm_msr_filter_compat filter_compat;
+ struct kvm_msr_filter filter;
+ int i;
+
+ if (copy_from_user(&filter_compat, user_msr_filter,
+ sizeof(filter_compat)))
+ return -EFAULT;
+
+ filter.flags = filter_compat.flags;
+ for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
+ struct kvm_msr_filter_range_compat *cr;
+
+ cr = &filter_compat.ranges[i];
+ filter.ranges[i] = (struct kvm_msr_filter_range) {
+ .flags = cr->flags,
+ .nmsrs = cr->nmsrs,
+ .base = cr->base,
+ .bitmap = (__u8 *)(ulong)cr->bitmap,
+ };
+ }
+
+ r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
+ break;
+ }
+ }
+
+ return r;
+}
+#endif
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ int r = -ENOTTY;
+ /*
+ * This union makes it completely explicit to gcc-3.x
+ * that these two variables' stack usage should be
+ * combined, not added together.
+ */
+ union {
+ struct kvm_pit_state ps;
+ struct kvm_pit_state2 ps2;
+ struct kvm_pit_config pit_config;
+ } u;
+
+ switch (ioctl) {
+ case KVM_SET_TSS_ADDR:
+ r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
+ break;
+ case KVM_SET_IDENTITY_MAP_ADDR: {
+ u64 ident_addr;
+
+ mutex_lock(&kvm->lock);
+ r = -EINVAL;
+ if (kvm->created_vcpus)
+ goto set_identity_unlock;
+ r = -EFAULT;
+ if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
+ goto set_identity_unlock;
+ r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
+set_identity_unlock:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_SET_NR_MMU_PAGES:
+ r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
+ break;
+ case KVM_GET_NR_MMU_PAGES:
+ r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
+ break;
+ case KVM_CREATE_IRQCHIP: {
+ mutex_lock(&kvm->lock);
+
+ r = -EEXIST;
+ if (irqchip_in_kernel(kvm))
+ goto create_irqchip_unlock;
+
+ r = -EINVAL;
+ if (kvm->created_vcpus)
+ goto create_irqchip_unlock;
+
+ r = kvm_pic_init(kvm);
+ if (r)
+ goto create_irqchip_unlock;
+
+ r = kvm_ioapic_init(kvm);
+ if (r) {
+ kvm_pic_destroy(kvm);
+ goto create_irqchip_unlock;
+ }
+
+ r = kvm_setup_default_irq_routing(kvm);
+ if (r) {
+ kvm_ioapic_destroy(kvm);
+ kvm_pic_destroy(kvm);
+ goto create_irqchip_unlock;
+ }
+ /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
+ smp_wmb();
+ kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
+ create_irqchip_unlock:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_CREATE_PIT:
+ u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
+ goto create_pit;
+ case KVM_CREATE_PIT2:
+ r = -EFAULT;
+ if (copy_from_user(&u.pit_config, argp,
+ sizeof(struct kvm_pit_config)))
+ goto out;
+ create_pit:
+ mutex_lock(&kvm->lock);
+ r = -EEXIST;
+ if (kvm->arch.vpit)
+ goto create_pit_unlock;
+ r = -ENOMEM;
+ kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
+ if (kvm->arch.vpit)
+ r = 0;
+ create_pit_unlock:
+ mutex_unlock(&kvm->lock);
+ break;
+ case KVM_GET_IRQCHIP: {
+ /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+ struct kvm_irqchip *chip;
+
+ chip = memdup_user(argp, sizeof(*chip));
+ if (IS_ERR(chip)) {
+ r = PTR_ERR(chip);
+ goto out;
+ }
+
+ r = -ENXIO;
+ if (!irqchip_kernel(kvm))
+ goto get_irqchip_out;
+ r = kvm_vm_ioctl_get_irqchip(kvm, chip);
+ if (r)
+ goto get_irqchip_out;
+ r = -EFAULT;
+ if (copy_to_user(argp, chip, sizeof(*chip)))
+ goto get_irqchip_out;
+ r = 0;
+ get_irqchip_out:
+ kfree(chip);
+ break;
+ }
+ case KVM_SET_IRQCHIP: {
+ /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+ struct kvm_irqchip *chip;
+
+ chip = memdup_user(argp, sizeof(*chip));
+ if (IS_ERR(chip)) {
+ r = PTR_ERR(chip);
+ goto out;
+ }
+
+ r = -ENXIO;
+ if (!irqchip_kernel(kvm))
+ goto set_irqchip_out;
+ r = kvm_vm_ioctl_set_irqchip(kvm, chip);
+ set_irqchip_out:
+ kfree(chip);
+ break;
+ }
+ case KVM_GET_PIT: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
+ goto out;
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_PIT: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
+ goto out;
+ mutex_lock(&kvm->lock);
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto set_pit_out;
+ r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
+set_pit_out:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_GET_PIT2: {
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_PIT2: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
+ goto out;
+ mutex_lock(&kvm->lock);
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto set_pit2_out;
+ r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
+set_pit2_out:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_REINJECT_CONTROL: {
+ struct kvm_reinject_control control;
+ r = -EFAULT;
+ if (copy_from_user(&control, argp, sizeof(control)))
+ goto out;
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_reinject(kvm, &control);
+ break;
+ }
+ case KVM_SET_BOOT_CPU_ID:
+ r = 0;
+ mutex_lock(&kvm->lock);
+ if (kvm->created_vcpus)
+ r = -EBUSY;
+ else
+ kvm->arch.bsp_vcpu_id = arg;
+ mutex_unlock(&kvm->lock);
+ break;
+ case KVM_XEN_HVM_CONFIG: {
+ struct kvm_xen_hvm_config xhc;
+ r = -EFAULT;
+ if (copy_from_user(&xhc, argp, sizeof(xhc)))
+ goto out;
+ r = -EINVAL;
+ if (xhc.flags)
+ goto out;
+ memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
+ r = 0;
+ break;
+ }
+ case KVM_SET_CLOCK: {
+ struct kvm_clock_data user_ns;
+ u64 now_ns;
+
+ r = -EFAULT;
+ if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
+ goto out;
+
+ r = -EINVAL;
+ if (user_ns.flags)
+ goto out;
+
+ r = 0;
+ /*
+ * TODO: userspace has to take care of races with VCPU_RUN, so
+ * kvm_gen_update_masterclock() can be cut down to locked
+ * pvclock_update_vm_gtod_copy().
+ */
+ kvm_gen_update_masterclock(kvm);
+ now_ns = get_kvmclock_ns(kvm);
+ kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
+ kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
+ break;
+ }
+ case KVM_GET_CLOCK: {
+ struct kvm_clock_data user_ns;
+ u64 now_ns;
+
+ now_ns = get_kvmclock_ns(kvm);
+ user_ns.clock = now_ns;
+ user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
+ memset(&user_ns.pad, 0, sizeof(user_ns.pad));
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_MEMORY_ENCRYPT_OP: {
+ r = -ENOTTY;
+ if (kvm_x86_ops.mem_enc_op)
+ r = kvm_x86_ops.mem_enc_op(kvm, argp);
+ break;
+ }
+ case KVM_MEMORY_ENCRYPT_REG_REGION: {
+ struct kvm_enc_region region;
+
+ r = -EFAULT;
+ if (copy_from_user(&region, argp, sizeof(region)))
+ goto out;
+
+ r = -ENOTTY;
+ if (kvm_x86_ops.mem_enc_reg_region)
+ r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
+ break;
+ }
+ case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
+ struct kvm_enc_region region;
+
+ r = -EFAULT;
+ if (copy_from_user(&region, argp, sizeof(region)))
+ goto out;
+
+ r = -ENOTTY;
+ if (kvm_x86_ops.mem_enc_unreg_region)
+ r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
+ break;
+ }
+ case KVM_HYPERV_EVENTFD: {
+ struct kvm_hyperv_eventfd hvevfd;
+
+ r = -EFAULT;
+ if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
+ goto out;
+ r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
+ break;
+ }
+ case KVM_SET_PMU_EVENT_FILTER:
+ r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
+ break;
+ case KVM_X86_SET_MSR_FILTER: {
+ struct kvm_msr_filter __user *user_msr_filter = argp;
+ struct kvm_msr_filter filter;
+
+ if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
+ return -EFAULT;
+
+ r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
+ break;
+ }
+ default:
+ r = -ENOTTY;
+ }
+out:
+ return r;
+}
+
+static void kvm_init_msr_list(void)
+{
+ struct x86_pmu_capability x86_pmu;
+ u32 dummy[2];
+ unsigned i;
+
+ BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
+ "Please update the fixed PMCs in msrs_to_saved_all[]");
+
+ perf_get_x86_pmu_capability(&x86_pmu);
+
+ num_msrs_to_save = 0;
+ num_emulated_msrs = 0;
+ num_msr_based_features = 0;
+
+ for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
+ if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
+ continue;
+
+ /*
+ * Even MSRs that are valid in the host may not be exposed
+ * to the guests in some cases.
+ */
+ switch (msrs_to_save_all[i]) {
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_mpx_supported())
+ continue;
+ break;
+ case MSR_TSC_AUX:
+ if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
+ continue;
+ break;
+ case MSR_IA32_UMWAIT_CONTROL:
+ if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
+ continue;
+ break;
+ case MSR_IA32_RTIT_CTL:
+ case MSR_IA32_RTIT_STATUS:
+ if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
+ continue;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
+ !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
+ continue;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
+ (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
+ !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
+ continue;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
+ msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
+ intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
+ continue;
+ break;
+ case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
+ if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
+ min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
+ continue;
+ break;
+ case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
+ if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
+ min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
+ }
+
+ for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
+ if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
+ continue;
+
+ emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
+ }
+
+ for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
+ struct kvm_msr_entry msr;
+
+ msr.index = msr_based_features_all[i];
+ if (kvm_get_msr_feature(&msr))
+ continue;
+
+ msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
+ }
+}
+
+static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
+ const void *v)
+{
+ int handled = 0;
+ int n;
+
+ do {
+ n = min(len, 8);
+ if (!(lapic_in_kernel(vcpu) &&
+ !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
+ && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
+ break;
+ handled += n;
+ addr += n;
+ len -= n;
+ v += n;
+ } while (len);
+
+ return handled;
+}
+
+static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
+{
+ int handled = 0;
+ int n;
+
+ do {
+ n = min(len, 8);
+ if (!(lapic_in_kernel(vcpu) &&
+ !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
+ addr, n, v))
+ && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
+ break;
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
+ handled += n;
+ addr += n;
+ len -= n;
+ v += n;
+ } while (len);
+
+ return handled;
+}
+
+static void kvm_set_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ kvm_x86_ops.set_segment(vcpu, var, seg);
+}
+
+void kvm_get_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ kvm_x86_ops.get_segment(vcpu, var, seg);
+}
+
+gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
+ struct x86_exception *exception)
+{
+ gpa_t t_gpa;
+
+ BUG_ON(!mmu_is_nested(vcpu));
+
+ /* NPT walks are always user-walks */
+ access |= PFERR_USER_MASK;
+ t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
+
+ return t_gpa;
+}
+
+gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+ gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ access |= PFERR_FETCH_MASK;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ access |= PFERR_WRITE_MASK;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+/* uses this to access any guest's mapped memory without checking CPL */
+gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
+}
+
+static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
+ struct kvm_vcpu *vcpu, u32 access,
+ struct x86_exception *exception)
+{
+ void *data = val;
+ int r = X86EMUL_CONTINUE;
+
+ while (bytes) {
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
+ exception);
+ unsigned offset = addr & (PAGE_SIZE-1);
+ unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
+ int ret;
+
+ if (gpa == UNMAPPED_GVA)
+ return X86EMUL_PROPAGATE_FAULT;
+ ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
+ offset, toread);
+ if (ret < 0) {
+ r = X86EMUL_IO_NEEDED;
+ goto out;
+ }
+
+ bytes -= toread;
+ data += toread;
+ addr += toread;
+ }
+out:
+ return r;
+}
+
+/* used for instruction fetching */
+static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ unsigned offset;
+ int ret;
+
+ /* Inline kvm_read_guest_virt_helper for speed. */
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
+ exception);
+ if (unlikely(gpa == UNMAPPED_GVA))
+ return X86EMUL_PROPAGATE_FAULT;
+
+ offset = addr & (PAGE_SIZE-1);
+ if (WARN_ON(offset + bytes > PAGE_SIZE))
+ bytes = (unsigned)PAGE_SIZE - offset;
+ ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
+ offset, bytes);
+ if (unlikely(ret < 0))
+ return X86EMUL_IO_NEEDED;
+
+ return X86EMUL_CONTINUE;
+}
+
+int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+
+ /*
+ * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
+ * is returned, but our callers are not ready for that and they blindly
+ * call kvm_inject_page_fault. Ensure that they at least do not leak
+ * uninitialized kernel stack memory into cr2 and error code.
+ */
+ memset(exception, 0, sizeof(*exception));
+ return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
+ exception);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
+
+static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception, bool system)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u32 access = 0;
+
+ if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
+ access |= PFERR_USER_MASK;
+
+ return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
+}
+
+static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr, void *val, unsigned int bytes)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
+
+ return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
+}
+
+static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
+ struct kvm_vcpu *vcpu, u32 access,
+ struct x86_exception *exception)
+{
+ void *data = val;
+ int r = X86EMUL_CONTINUE;
+
+ while (bytes) {
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
+ access,
+ exception);
+ unsigned offset = addr & (PAGE_SIZE-1);
+ unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
+ int ret;
+
+ if (gpa == UNMAPPED_GVA)
+ return X86EMUL_PROPAGATE_FAULT;
+ ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
+ if (ret < 0) {
+ r = X86EMUL_IO_NEEDED;
+ goto out;
+ }
+
+ bytes -= towrite;
+ data += towrite;
+ addr += towrite;
+ }
+out:
+ return r;
+}
+
+static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
+ unsigned int bytes, struct x86_exception *exception,
+ bool system)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u32 access = PFERR_WRITE_MASK;
+
+ if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
+ access |= PFERR_USER_MASK;
+
+ return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
+ access, exception);
+}
+
+int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
+ unsigned int bytes, struct x86_exception *exception)
+{
+ /* kvm_write_guest_virt_system can pull in tons of pages. */
+ vcpu->arch.l1tf_flush_l1d = true;
+
+ return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
+ PFERR_WRITE_MASK, exception);
+}
+EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
+
+int handle_ud(struct kvm_vcpu *vcpu)
+{
+ static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
+ int emul_type = EMULTYPE_TRAP_UD;
+ char sig[5]; /* ud2; .ascii "kvm" */
+ struct x86_exception e;
+
+ if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
+ return 1;
+
+ if (force_emulation_prefix &&
+ kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
+ sig, sizeof(sig), &e) == 0 &&
+ memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
+ kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
+ emul_type = EMULTYPE_TRAP_UD_FORCED;
+ }
+
+ return kvm_emulate_instruction(vcpu, emul_type);
+}
+EXPORT_SYMBOL_GPL(handle_ud);
+
+static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ gpa_t gpa, bool write)
+{
+ /* For APIC access vmexit */
+ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ return 1;
+
+ if (vcpu_match_mmio_gpa(vcpu, gpa)) {
+ trace_vcpu_match_mmio(gva, gpa, write, true);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ gpa_t *gpa, struct x86_exception *exception,
+ bool write)
+{
+ u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
+ | (write ? PFERR_WRITE_MASK : 0);
+
+ /*
+ * currently PKRU is only applied to ept enabled guest so
+ * there is no pkey in EPT page table for L1 guest or EPT
+ * shadow page table for L2 guest.
+ */
+ if (vcpu_match_mmio_gva(vcpu, gva)
+ && !permission_fault(vcpu, vcpu->arch.walk_mmu,
+ vcpu->arch.mmio_access, 0, access)) {
+ *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
+ (gva & (PAGE_SIZE - 1));
+ trace_vcpu_match_mmio(gva, *gpa, write, false);
+ return 1;
+ }
+
+ *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+
+ if (*gpa == UNMAPPED_GVA)
+ return -1;
+
+ return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
+}
+
+int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
+ const void *val, int bytes)
+{
+ int ret;
+
+ ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
+ if (ret < 0)
+ return 0;
+ kvm_page_track_write(vcpu, gpa, val, bytes);
+ return 1;
+}
+
+struct read_write_emulator_ops {
+ int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
+ int bytes);
+ int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes);
+ int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ int bytes, void *val);
+ int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes);
+ bool write;
+};
+
+static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
+{
+ if (vcpu->mmio_read_completed) {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
+ vcpu->mmio_fragments[0].gpa, val);
+ vcpu->mmio_read_completed = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
+}
+
+static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ return emulator_write_phys(vcpu, gpa, val, bytes);
+}
+
+static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
+{
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
+ return vcpu_mmio_write(vcpu, gpa, bytes, val);
+}
+
+static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
+ return X86EMUL_IO_NEEDED;
+}
+
+static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
+
+ memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
+ return X86EMUL_CONTINUE;
+}
+
+static const struct read_write_emulator_ops read_emultor = {
+ .read_write_prepare = read_prepare,
+ .read_write_emulate = read_emulate,
+ .read_write_mmio = vcpu_mmio_read,
+ .read_write_exit_mmio = read_exit_mmio,
+};
+
+static const struct read_write_emulator_ops write_emultor = {
+ .read_write_emulate = write_emulate,
+ .read_write_mmio = write_mmio,
+ .read_write_exit_mmio = write_exit_mmio,
+ .write = true,
+};
+
+static int emulator_read_write_onepage(unsigned long addr, void *val,
+ unsigned int bytes,
+ struct x86_exception *exception,
+ struct kvm_vcpu *vcpu,
+ const struct read_write_emulator_ops *ops)
+{
+ gpa_t gpa;
+ int handled, ret;
+ bool write = ops->write;
+ struct kvm_mmio_fragment *frag;
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+
+ /*
+ * If the exit was due to a NPF we may already have a GPA.
+ * If the GPA is present, use it to avoid the GVA to GPA table walk.
+ * Note, this cannot be used on string operations since string
+ * operation using rep will only have the initial GPA from the NPF
+ * occurred.
+ */
+ if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
+ (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
+ gpa = ctxt->gpa_val;
+ ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
+ } else {
+ ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
+ if (ret < 0)
+ return X86EMUL_PROPAGATE_FAULT;
+ }
+
+ if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
+ return X86EMUL_CONTINUE;
+
+ /*
+ * Is this MMIO handled locally?
+ */
+ handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
+ if (handled == bytes)
+ return X86EMUL_CONTINUE;
+
+ gpa += handled;
+ bytes -= handled;
+ val += handled;
+
+ WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
+ frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
+ frag->gpa = gpa;
+ frag->data = val;
+ frag->len = bytes;
+ return X86EMUL_CONTINUE;
+}
+
+static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ void *val, unsigned int bytes,
+ struct x86_exception *exception,
+ const struct read_write_emulator_ops *ops)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ gpa_t gpa;
+ int rc;
+
+ if (ops->read_write_prepare &&
+ ops->read_write_prepare(vcpu, val, bytes))
+ return X86EMUL_CONTINUE;
+
+ vcpu->mmio_nr_fragments = 0;
+
+ /* Crossing a page boundary? */
+ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
+ int now;
+
+ now = -addr & ~PAGE_MASK;
+ rc = emulator_read_write_onepage(addr, val, now, exception,
+ vcpu, ops);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ addr += now;
+ if (ctxt->mode != X86EMUL_MODE_PROT64)
+ addr = (u32)addr;
+ val += now;
+ bytes -= now;
+ }
+
+ rc = emulator_read_write_onepage(addr, val, bytes, exception,
+ vcpu, ops);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ if (!vcpu->mmio_nr_fragments)
+ return rc;
+
+ gpa = vcpu->mmio_fragments[0].gpa;
+
+ vcpu->mmio_needed = 1;
+ vcpu->mmio_cur_fragment = 0;
+
+ vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
+ vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
+ vcpu->run->exit_reason = KVM_EXIT_MMIO;
+ vcpu->run->mmio.phys_addr = gpa;
+
+ return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
+}
+
+static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ void *val,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ return emulator_read_write(ctxt, addr, val, bytes,
+ exception, &read_emultor);
+}
+
+static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ const void *val,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ return emulator_read_write(ctxt, addr, (void *)val, bytes,
+ exception, &write_emultor);
+}
+
+#define CMPXCHG_TYPE(t, ptr, old, new) \
+ (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
+
+#ifdef CONFIG_X86_64
+# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
+#else
+# define CMPXCHG64(ptr, old, new) \
+ (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
+#endif
+
+static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ const void *old,
+ const void *new,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_host_map map;
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u64 page_line_mask;
+ gpa_t gpa;
+ char *kaddr;
+ bool exchanged;
+
+ /* guests cmpxchg8b have to be emulated atomically */
+ if (bytes > 8 || (bytes & (bytes - 1)))
+ goto emul_write;
+
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
+
+ if (gpa == UNMAPPED_GVA ||
+ (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ goto emul_write;
+
+ /*
+ * Emulate the atomic as a straight write to avoid #AC if SLD is
+ * enabled in the host and the access splits a cache line.
+ */
+ if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
+ page_line_mask = ~(cache_line_size() - 1);
+ else
+ page_line_mask = PAGE_MASK;
+
+ if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
+ goto emul_write;
+
+ if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
+ goto emul_write;
+
+ kaddr = map.hva + offset_in_page(gpa);
+
+ switch (bytes) {
+ case 1:
+ exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
+ break;
+ case 2:
+ exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
+ break;
+ case 4:
+ exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
+ break;
+ case 8:
+ exchanged = CMPXCHG64(kaddr, old, new);
+ break;
+ default:
+ BUG();
+ }
+
+ kvm_vcpu_unmap(vcpu, &map, true);
+
+ if (!exchanged)
+ return X86EMUL_CMPXCHG_FAILED;
+
+ kvm_page_track_write(vcpu, gpa, new, bytes);
+
+ return X86EMUL_CONTINUE;
+
+emul_write:
+ printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
+
+ return emulator_write_emulated(ctxt, addr, new, bytes, exception);
+}
+
+static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
+{
+ int r = 0, i;
+
+ for (i = 0; i < vcpu->arch.pio.count; i++) {
+ if (vcpu->arch.pio.in)
+ r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
+ vcpu->arch.pio.size, pd);
+ else
+ r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
+ vcpu->arch.pio.port, vcpu->arch.pio.size,
+ pd);
+ if (r)
+ break;
+ pd += vcpu->arch.pio.size;
+ }
+ return r;
+}
+
+static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
+ unsigned short port, void *val,
+ unsigned int count, bool in)
+{
+ vcpu->arch.pio.port = port;
+ vcpu->arch.pio.in = in;
+ vcpu->arch.pio.count = count;
+ vcpu->arch.pio.size = size;
+
+ if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
+ vcpu->arch.pio.count = 0;
+ return 1;
+ }
+
+ vcpu->run->exit_reason = KVM_EXIT_IO;
+ vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
+ vcpu->run->io.size = size;
+ vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
+ vcpu->run->io.count = count;
+ vcpu->run->io.port = port;
+
+ return 0;
+}
+
+static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
+ unsigned short port, void *val, unsigned int count)
+{
+ int ret;
+
+ if (vcpu->arch.pio.count)
+ goto data_avail;
+
+ memset(vcpu->arch.pio_data, 0, size * count);
+
+ ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
+ if (ret) {
+data_avail:
+ memcpy(val, vcpu->arch.pio_data, size * count);
+ trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
+ vcpu->arch.pio.count = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
+ int size, unsigned short port, void *val,
+ unsigned int count)
+{
+ return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
+
+}
+
+static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
+ unsigned short port, const void *val,
+ unsigned int count)
+{
+ memcpy(vcpu->arch.pio_data, val, size * count);
+ trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
+ return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
+}
+
+static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
+ int size, unsigned short port,
+ const void *val, unsigned int count)
+{
+ return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
+}
+
+static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ return kvm_x86_ops.get_segment_base(vcpu, seg);
+}
+
+static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
+{
+ kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
+}
+
+static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
+{
+ if (!need_emulate_wbinvd(vcpu))
+ return X86EMUL_CONTINUE;
+
+ if (kvm_x86_ops.has_wbinvd_exit()) {
+ int cpu = get_cpu();
+
+ cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+ smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
+ wbinvd_ipi, NULL, 1);
+ put_cpu();
+ cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
+ } else
+ wbinvd();
+ return X86EMUL_CONTINUE;
+}
+
+int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+ kvm_emulate_wbinvd_noskip(vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
+
+
+
+static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
+{
+ kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
+}
+
+static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
+ unsigned long *dest)
+{
+ return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
+}
+
+static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
+ unsigned long value)
+{
+
+ return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
+}
+
+static u64 mk_cr_64(u64 curr_cr, u32 new_val)
+{
+ return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
+}
+
+static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ unsigned long value;
+
+ switch (cr) {
+ case 0:
+ value = kvm_read_cr0(vcpu);
+ break;
+ case 2:
+ value = vcpu->arch.cr2;
+ break;
+ case 3:
+ value = kvm_read_cr3(vcpu);
+ break;
+ case 4:
+ value = kvm_read_cr4(vcpu);
+ break;
+ case 8:
+ value = kvm_get_cr8(vcpu);
+ break;
+ default:
+ kvm_err("%s: unexpected cr %u\n", __func__, cr);
+ return 0;
+ }
+
+ return value;
+}
+
+static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int res = 0;
+
+ switch (cr) {
+ case 0:
+ res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
+ break;
+ case 2:
+ vcpu->arch.cr2 = val;
+ break;
+ case 3:
+ res = kvm_set_cr3(vcpu, val);
+ break;
+ case 4:
+ res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
+ break;
+ case 8:
+ res = kvm_set_cr8(vcpu, val);
+ break;
+ default:
+ kvm_err("%s: unexpected cr %u\n", __func__, cr);
+ res = -1;
+ }
+
+ return res;
+}
+
+static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
+{
+ return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
+}
+
+static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static unsigned long emulator_get_cached_segment_base(
+ struct x86_emulate_ctxt *ctxt, int seg)
+{
+ return get_segment_base(emul_to_vcpu(ctxt), seg);
+}
+
+static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
+ struct desc_struct *desc, u32 *base3,
+ int seg)
+{
+ struct kvm_segment var;
+
+ kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
+ *selector = var.selector;
+
+ if (var.unusable) {
+ memset(desc, 0, sizeof(*desc));
+ if (base3)
+ *base3 = 0;
+ return false;
+ }
+
+ if (var.g)
+ var.limit >>= 12;
+ set_desc_limit(desc, var.limit);
+ set_desc_base(desc, (unsigned long)var.base);
+#ifdef CONFIG_X86_64
+ if (base3)
+ *base3 = var.base >> 32;
+#endif
+ desc->type = var.type;
+ desc->s = var.s;
+ desc->dpl = var.dpl;
+ desc->p = var.present;
+ desc->avl = var.avl;
+ desc->l = var.l;
+ desc->d = var.db;
+ desc->g = var.g;
+
+ return true;
+}
+
+static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
+ struct desc_struct *desc, u32 base3,
+ int seg)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ struct kvm_segment var;
+
+ var.selector = selector;
+ var.base = get_desc_base(desc);
+#ifdef CONFIG_X86_64
+ var.base |= ((u64)base3) << 32;
+#endif
+ var.limit = get_desc_limit(desc);
+ if (desc->g)
+ var.limit = (var.limit << 12) | 0xfff;
+ var.type = desc->type;
+ var.dpl = desc->dpl;
+ var.db = desc->d;
+ var.s = desc->s;
+ var.l = desc->l;
+ var.g = desc->g;
+ var.avl = desc->avl;
+ var.present = desc->p;
+ var.unusable = !var.present;
+ var.padding = 0;
+
+ kvm_set_segment(vcpu, &var, seg);
+ return;
+}
+
+static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
+ u32 msr_index, u64 *pdata)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int r;
+
+ r = kvm_get_msr(vcpu, msr_index, pdata);
+
+ if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
+ /* Bounce to user space */
+ return X86EMUL_IO_NEEDED;
+ }
+
+ return r;
+}
+
+static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
+ u32 msr_index, u64 data)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int r;
+
+ r = kvm_set_msr(vcpu, msr_index, data);
+
+ if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
+ /* Bounce to user space */
+ return X86EMUL_IO_NEEDED;
+ }
+
+ return r;
+}
+
+static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+
+ return vcpu->arch.smbase;
+}
+
+static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+
+ vcpu->arch.smbase = smbase;
+}
+
+static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
+ u32 pmc)
+{
+ return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
+}
+
+static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
+ u32 pmc, u64 *pdata)
+{
+ return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
+}
+
+static void emulator_halt(struct x86_emulate_ctxt *ctxt)
+{
+ emul_to_vcpu(ctxt)->arch.halt_request = 1;
+}
+
+static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage)
+{
+ return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
+ &ctxt->exception);
+}
+
+static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
+ u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
+ bool exact_only)
+{
+ return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
+}
+
+static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
+{
+ return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
+}
+
+static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
+{
+ return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
+}
+
+static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
+{
+ return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
+}
+
+static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
+{
+ return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
+}
+
+static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
+{
+ return kvm_register_read(emul_to_vcpu(ctxt), reg);
+}
+
+static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
+{
+ kvm_register_write(emul_to_vcpu(ctxt), reg, val);
+}
+
+static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
+{
+ kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
+}
+
+static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
+{
+ return emul_to_vcpu(ctxt)->arch.hflags;
+}
+
+static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+
+ vcpu->arch.hflags = emul_flags;
+ kvm_mmu_reset_context(vcpu);
+}
+
+static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
+ const char *smstate)
+{
+ return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
+}
+
+static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
+{
+ kvm_smm_changed(emul_to_vcpu(ctxt));
+}
+
+static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
+{
+ return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
+}
+
+static const struct x86_emulate_ops emulate_ops = {
+ .read_gpr = emulator_read_gpr,
+ .write_gpr = emulator_write_gpr,
+ .read_std = emulator_read_std,
+ .write_std = emulator_write_std,
+ .read_phys = kvm_read_guest_phys_system,
+ .fetch = kvm_fetch_guest_virt,
+ .read_emulated = emulator_read_emulated,
+ .write_emulated = emulator_write_emulated,
+ .cmpxchg_emulated = emulator_cmpxchg_emulated,
+ .invlpg = emulator_invlpg,
+ .pio_in_emulated = emulator_pio_in_emulated,
+ .pio_out_emulated = emulator_pio_out_emulated,
+ .get_segment = emulator_get_segment,
+ .set_segment = emulator_set_segment,
+ .get_cached_segment_base = emulator_get_cached_segment_base,
+ .get_gdt = emulator_get_gdt,
+ .get_idt = emulator_get_idt,
+ .set_gdt = emulator_set_gdt,
+ .set_idt = emulator_set_idt,
+ .get_cr = emulator_get_cr,
+ .set_cr = emulator_set_cr,
+ .cpl = emulator_get_cpl,
+ .get_dr = emulator_get_dr,
+ .set_dr = emulator_set_dr,
+ .get_smbase = emulator_get_smbase,
+ .set_smbase = emulator_set_smbase,
+ .set_msr = emulator_set_msr,
+ .get_msr = emulator_get_msr,
+ .check_pmc = emulator_check_pmc,
+ .read_pmc = emulator_read_pmc,
+ .halt = emulator_halt,
+ .wbinvd = emulator_wbinvd,
+ .fix_hypercall = emulator_fix_hypercall,
+ .intercept = emulator_intercept,
+ .get_cpuid = emulator_get_cpuid,
+ .guest_has_long_mode = emulator_guest_has_long_mode,
+ .guest_has_movbe = emulator_guest_has_movbe,
+ .guest_has_fxsr = emulator_guest_has_fxsr,
+ .guest_has_rdpid = emulator_guest_has_rdpid,
+ .set_nmi_mask = emulator_set_nmi_mask,
+ .get_hflags = emulator_get_hflags,
+ .set_hflags = emulator_set_hflags,
+ .pre_leave_smm = emulator_pre_leave_smm,
+ .post_leave_smm = emulator_post_leave_smm,
+ .set_xcr = emulator_set_xcr,
+};
+
+static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
+{
+ u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
+ /*
+ * an sti; sti; sequence only disable interrupts for the first
+ * instruction. So, if the last instruction, be it emulated or
+ * not, left the system with the INT_STI flag enabled, it
+ * means that the last instruction is an sti. We should not
+ * leave the flag on in this case. The same goes for mov ss
+ */
+ if (int_shadow & mask)
+ mask = 0;
+ if (unlikely(int_shadow || mask)) {
+ kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
+ if (!mask)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ }
+}
+
+static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
+{
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ if (ctxt->exception.vector == PF_VECTOR)
+ return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
+
+ if (ctxt->exception.error_code_valid)
+ kvm_queue_exception_e(vcpu, ctxt->exception.vector,
+ ctxt->exception.error_code);
+ else
+ kvm_queue_exception(vcpu, ctxt->exception.vector);
+ return false;
+}
+
+static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
+{
+ struct x86_emulate_ctxt *ctxt;
+
+ ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
+ if (!ctxt) {
+ pr_err("kvm: failed to allocate vcpu's emulator\n");
+ return NULL;
+ }
+
+ ctxt->vcpu = vcpu;
+ ctxt->ops = &emulate_ops;
+ vcpu->arch.emulate_ctxt = ctxt;
+
+ return ctxt;
+}
+
+static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
+{
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ int cs_db, cs_l;
+
+ kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+
+ ctxt->gpa_available = false;
+ ctxt->eflags = kvm_get_rflags(vcpu);
+ ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
+
+ ctxt->eip = kvm_rip_read(vcpu);
+ ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
+ (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
+ (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
+ cs_db ? X86EMUL_MODE_PROT32 :
+ X86EMUL_MODE_PROT16;
+ BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
+ BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
+ BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
+
+ ctxt->interruptibility = 0;
+ ctxt->have_exception = false;
+ ctxt->exception.vector = -1;
+ ctxt->perm_ok = false;
+
+ init_decode_cache(ctxt);
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+}
+
+void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
+{
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ int ret;
+
+ init_emulate_ctxt(vcpu);
+
+ ctxt->op_bytes = 2;
+ ctxt->ad_bytes = 2;
+ ctxt->_eip = ctxt->eip + inc_eip;
+ ret = emulate_int_real(ctxt, irq);
+
+ if (ret != X86EMUL_CONTINUE) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ } else {
+ ctxt->eip = ctxt->_eip;
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
+
+static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
+{
+ ++vcpu->stat.insn_emulation_fail;
+ trace_kvm_emulate_insn_failed(vcpu);
+
+ if (emulation_type & EMULTYPE_VMWARE_GP) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+
+ if (emulation_type & EMULTYPE_SKIP) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ kvm_queue_exception(vcpu, UD_VECTOR);
+
+ if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ return 1;
+}
+
+static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ bool write_fault_to_shadow_pgtable,
+ int emulation_type)
+{
+ gpa_t gpa = cr2_or_gpa;
+ kvm_pfn_t pfn;
+
+ if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
+ return false;
+
+ if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
+ WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
+ return false;
+
+ if (!vcpu->arch.mmu->direct_map) {
+ /*
+ * Write permission should be allowed since only
+ * write access need to be emulated.
+ */
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
+
+ /*
+ * If the mapping is invalid in guest, let cpu retry
+ * it to generate fault.
+ */
+ if (gpa == UNMAPPED_GVA)
+ return true;
+ }
+
+ /*
+ * Do not retry the unhandleable instruction if it faults on the
+ * readonly host memory, otherwise it will goto a infinite loop:
+ * retry instruction -> write #PF -> emulation fail -> retry
+ * instruction -> ...
+ */
+ pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
+
+ /*
+ * If the instruction failed on the error pfn, it can not be fixed,
+ * report the error to userspace.
+ */
+ if (is_error_noslot_pfn(pfn))
+ return false;
+
+ kvm_release_pfn_clean(pfn);
+
+ /* The instructions are well-emulated on direct mmu. */
+ if (vcpu->arch.mmu->direct_map) {
+ unsigned int indirect_shadow_pages;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ if (indirect_shadow_pages)
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ return true;
+ }
+
+ /*
+ * if emulation was due to access to shadowed page table
+ * and it failed try to unshadow page and re-enter the
+ * guest to let CPU execute the instruction.
+ */
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ /*
+ * If the access faults on its page table, it can not
+ * be fixed by unprotecting shadow page and it should
+ * be reported to userspace.
+ */
+ return !write_fault_to_shadow_pgtable;
+}
+
+static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
+ gpa_t cr2_or_gpa, int emulation_type)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
+
+ last_retry_eip = vcpu->arch.last_retry_eip;
+ last_retry_addr = vcpu->arch.last_retry_addr;
+
+ /*
+ * If the emulation is caused by #PF and it is non-page_table
+ * writing instruction, it means the VM-EXIT is caused by shadow
+ * page protected, we can zap the shadow page and retry this
+ * instruction directly.
+ *
+ * Note: if the guest uses a non-page-table modifying instruction
+ * on the PDE that points to the instruction, then we will unmap
+ * the instruction and go to an infinite loop. So, we cache the
+ * last retried eip and the last fault address, if we meet the eip
+ * and the address again, we can break out of the potential infinite
+ * loop.
+ */
+ vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
+
+ if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
+ return false;
+
+ if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
+ WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
+ return false;
+
+ if (x86_page_table_writing_insn(ctxt))
+ return false;
+
+ if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
+ return false;
+
+ vcpu->arch.last_retry_eip = ctxt->eip;
+ vcpu->arch.last_retry_addr = cr2_or_gpa;
+
+ if (!vcpu->arch.mmu->direct_map)
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
+
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ return true;
+}
+
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
+static int complete_emulated_pio(struct kvm_vcpu *vcpu);
+
+static void kvm_smm_changed(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
+ /* This is a good place to trace that we are exiting SMM. */
+ trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
+
+ /* Process a latched INIT or SMI, if any. */
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ }
+
+ kvm_mmu_reset_context(vcpu);
+}
+
+static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
+ unsigned long *db)
+{
+ u32 dr6 = 0;
+ int i;
+ u32 enable, rwlen;
+
+ enable = dr7;
+ rwlen = dr7 >> 16;
+ for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
+ if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
+ dr6 |= (1 << i);
+ return dr6;
+}
+
+static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
+ kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ return 0;
+ }
+ kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
+ return 1;
+}
+
+int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
+ int r;
+
+ r = kvm_x86_ops.skip_emulated_instruction(vcpu);
+ if (unlikely(!r))
+ return 0;
+
+ /*
+ * rflags is the old, "raw" value of the flags. The new value has
+ * not been saved yet.
+ *
+ * This is correct even for TF set by the guest, because "the
+ * processor will not generate this exception after the instruction
+ * that sets the TF flag".
+ */
+ if (unlikely(rflags & X86_EFLAGS_TF))
+ r = kvm_vcpu_do_singlestep(vcpu);
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
+
+static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
+{
+ if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
+ (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
+ struct kvm_run *kvm_run = vcpu->run;
+ unsigned long eip = kvm_get_linear_rip(vcpu);
+ u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.guest_debug_dr7,
+ vcpu->arch.eff_db);
+
+ if (dr6 != 0) {
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
+ kvm_run->debug.arch.pc = eip;
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ *r = 0;
+ return true;
+ }
+ }
+
+ if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
+ !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
+ unsigned long eip = kvm_get_linear_rip(vcpu);
+ u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.dr7,
+ vcpu->arch.db);
+
+ if (dr6 != 0) {
+ kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
+ *r = 1;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
+{
+ switch (ctxt->opcode_len) {
+ case 1:
+ switch (ctxt->b) {
+ case 0xe4: /* IN */
+ case 0xe5:
+ case 0xec:
+ case 0xed:
+ case 0xe6: /* OUT */
+ case 0xe7:
+ case 0xee:
+ case 0xef:
+ case 0x6c: /* INS */
+ case 0x6d:
+ case 0x6e: /* OUTS */
+ case 0x6f:
+ return true;
+ }
+ break;
+ case 2:
+ switch (ctxt->b) {
+ case 0x33: /* RDPMC */
+ return true;
+ }
+ break;
+ }
+
+ return false;
+}
+
+/*
+ * Decode an instruction for emulation. The caller is responsible for handling
+ * code breakpoints. Note, manually detecting code breakpoints is unnecessary
+ * (and wrong) when emulating on an intercepted fault-like exception[*], as
+ * code breakpoints have higher priority and thus have already been done by
+ * hardware.
+ *
+ * [*] Except #MC, which is higher priority, but KVM should never emulate in
+ * response to a machine check.
+ */
+int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
+ void *insn, int insn_len)
+{
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ int r;
+
+ init_emulate_ctxt(vcpu);
+
+ ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
+
+ r = x86_decode_insn(ctxt, insn, insn_len);
+
+ trace_kvm_emulate_insn_start(vcpu);
+ ++vcpu->stat.insn_emulation;
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
+
+int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ int emulation_type, void *insn, int insn_len)
+{
+ int r;
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ bool writeback = true;
+ bool write_fault_to_spt;
+
+ if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
+ return 1;
+
+ vcpu->arch.l1tf_flush_l1d = true;
+
+ /*
+ * Clear write_fault_to_shadow_pgtable here to ensure it is
+ * never reused.
+ */
+ write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
+ vcpu->arch.write_fault_to_shadow_pgtable = false;
+
+ if (!(emulation_type & EMULTYPE_NO_DECODE)) {
+ kvm_clear_exception_queue(vcpu);
+
+ /*
+ * Return immediately if RIP hits a code breakpoint, such #DBs
+ * are fault-like and are higher priority than any faults on
+ * the code fetch itself.
+ */
+ if (!(emulation_type & EMULTYPE_SKIP) &&
+ kvm_vcpu_check_code_breakpoint(vcpu, &r))
+ return r;
+
+ r = x86_decode_emulated_instruction(vcpu, emulation_type,
+ insn, insn_len);
+ if (r != EMULATION_OK) {
+ if ((emulation_type & EMULTYPE_TRAP_UD) ||
+ (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+ if (reexecute_instruction(vcpu, cr2_or_gpa,
+ write_fault_to_spt,
+ emulation_type))
+ return 1;
+
+ if (ctxt->have_exception &&
+ !(emulation_type & EMULTYPE_SKIP)) {
+ /*
+ * #UD should result in just EMULATION_FAILED, and trap-like
+ * exception should not be encountered during decode.
+ */
+ WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
+ exception_type(ctxt->exception.vector) == EXCPT_TRAP);
+ inject_emulated_exception(vcpu);
+ return 1;
+ }
+ return handle_emulation_failure(vcpu, emulation_type);
+ }
+ }
+
+ if ((emulation_type & EMULTYPE_VMWARE_GP) &&
+ !is_vmware_backdoor_opcode(ctxt)) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+
+ /*
+ * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
+ * for kvm_skip_emulated_instruction(). The caller is responsible for
+ * updating interruptibility state and injecting single-step #DBs.
+ */
+ if (emulation_type & EMULTYPE_SKIP) {
+ kvm_rip_write(vcpu, ctxt->_eip);
+ if (ctxt->eflags & X86_EFLAGS_RF)
+ kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
+ return 1;
+ }
+
+ if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
+ return 1;
+
+ /* this is needed for vmware backdoor interface to work since it
+ changes registers values during IO operation */
+ if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+ emulator_invalidate_register_cache(ctxt);
+ }
+
+restart:
+ if (emulation_type & EMULTYPE_PF) {
+ /* Save the faulting GPA (cr2) in the address field */
+ ctxt->exception.address = cr2_or_gpa;
+
+ /* With shadow page tables, cr2 contains a GVA or nGPA. */
+ if (vcpu->arch.mmu->direct_map) {
+ ctxt->gpa_available = true;
+ ctxt->gpa_val = cr2_or_gpa;
+ }
+ } else {
+ /* Sanitize the address out of an abundance of paranoia. */
+ ctxt->exception.address = 0;
+ }
+
+ r = x86_emulate_insn(ctxt);
+
+ if (r == EMULATION_INTERCEPTED)
+ return 1;
+
+ if (r == EMULATION_FAILED) {
+ if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
+ emulation_type))
+ return 1;
+
+ return handle_emulation_failure(vcpu, emulation_type);
+ }
+
+ if (ctxt->have_exception) {
+ r = 1;
+ if (inject_emulated_exception(vcpu))
+ return r;
+ } else if (vcpu->arch.pio.count) {
+ if (!vcpu->arch.pio.in) {
+ /* FIXME: return into emulator if single-stepping. */
+ vcpu->arch.pio.count = 0;
+ } else {
+ writeback = false;
+ vcpu->arch.complete_userspace_io = complete_emulated_pio;
+ }
+ r = 0;
+ } else if (vcpu->mmio_needed) {
+ ++vcpu->stat.mmio_exits;
+
+ if (!vcpu->mmio_is_write)
+ writeback = false;
+ r = 0;
+ vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+ } else if (r == EMULATION_RESTART)
+ goto restart;
+ else
+ r = 1;
+
+ if (writeback) {
+ unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
+ toggle_interruptibility(vcpu, ctxt->interruptibility);
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+
+ /*
+ * Note, EXCPT_DB is assumed to be fault-like as the emulator
+ * only supports code breakpoints and general detect #DB, both
+ * of which are fault-like.
+ */
+ if (!ctxt->have_exception ||
+ exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
+ kvm_rip_write(vcpu, ctxt->eip);
+ if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
+ r = kvm_vcpu_do_singlestep(vcpu);
+ if (kvm_x86_ops.update_emulated_instruction)
+ kvm_x86_ops.update_emulated_instruction(vcpu);
+ __kvm_set_rflags(vcpu, ctxt->eflags);
+ }
+
+ /*
+ * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
+ * do nothing, and it will be requested again as soon as
+ * the shadow expires. But we still need to check here,
+ * because POPF has no interrupt shadow.
+ */
+ if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ } else
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
+
+ return r;
+}
+
+int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
+{
+ return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
+
+int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
+ void *insn, int insn_len)
+{
+ return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
+
+static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pio.count = 0;
+ return 1;
+}
+
+static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pio.count = 0;
+
+ if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
+ return 1;
+
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
+ unsigned short port)
+{
+ unsigned long val = kvm_rax_read(vcpu);
+ int ret = emulator_pio_out(vcpu, size, port, &val, 1);
+
+ if (ret)
+ return ret;
+
+ /*
+ * Workaround userspace that relies on old KVM behavior of %rip being
+ * incremented prior to exiting to userspace to handle "OUT 0x7e".
+ */
+ if (port == 0x7e &&
+ kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
+ vcpu->arch.complete_userspace_io =
+ complete_fast_pio_out_port_0x7e;
+ kvm_skip_emulated_instruction(vcpu);
+ } else {
+ vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
+ vcpu->arch.complete_userspace_io = complete_fast_pio_out;
+ }
+ return 0;
+}
+
+static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
+{
+ unsigned long val;
+
+ /* We should only ever be called with arch.pio.count equal to 1 */
+ BUG_ON(vcpu->arch.pio.count != 1);
+
+ if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
+ vcpu->arch.pio.count = 0;
+ return 1;
+ }
+
+ /* For size less than 4 we merge, else we zero extend */
+ val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
+
+ /*
+ * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
+ * the copy and tracing
+ */
+ emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
+ kvm_rax_write(vcpu, val);
+
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
+ unsigned short port)
+{
+ unsigned long val;
+ int ret;
+
+ /* For size less than 4 we merge, else we zero extend */
+ val = (size < 4) ? kvm_rax_read(vcpu) : 0;
+
+ ret = emulator_pio_in(vcpu, size, port, &val, 1);
+ if (ret) {
+ kvm_rax_write(vcpu, val);
+ return ret;
+ }
+
+ vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
+ vcpu->arch.complete_userspace_io = complete_fast_pio_in;
+
+ return 0;
+}
+
+int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
+{
+ int ret;
+
+ if (in)
+ ret = kvm_fast_pio_in(vcpu, size, port);
+ else
+ ret = kvm_fast_pio_out(vcpu, size, port);
+ return ret && kvm_skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_fast_pio);
+
+static int kvmclock_cpu_down_prep(unsigned int cpu)
+{
+ __this_cpu_write(cpu_tsc_khz, 0);
+ return 0;
+}
+
+static void tsc_khz_changed(void *data)
+{
+ struct cpufreq_freqs *freq = data;
+ unsigned long khz = 0;
+
+ if (data)
+ khz = freq->new;
+ else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ khz = cpufreq_quick_get(raw_smp_processor_id());
+ if (!khz)
+ khz = tsc_khz;
+ __this_cpu_write(cpu_tsc_khz, khz);
+}
+
+#ifdef CONFIG_X86_64
+static void kvm_hyperv_tsc_notifier(void)
+{
+ struct kvm *kvm;
+ struct kvm_vcpu *vcpu;
+ int cpu;
+
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list)
+ kvm_make_mclock_inprogress_request(kvm);
+
+ hyperv_stop_tsc_emulation();
+
+ /* TSC frequency always matches when on Hyper-V */
+ for_each_present_cpu(cpu)
+ per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
+ kvm_max_guest_tsc_khz = tsc_khz;
+
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ struct kvm_arch *ka = &kvm->arch;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm_for_each_vcpu(cpu, vcpu, kvm)
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+ kvm_for_each_vcpu(cpu, vcpu, kvm)
+ kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
+
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+ }
+ mutex_unlock(&kvm_lock);
+}
+#endif
+
+static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
+{
+ struct kvm *kvm;
+ struct kvm_vcpu *vcpu;
+ int i, send_ipi = 0;
+
+ /*
+ * We allow guests to temporarily run on slowing clocks,
+ * provided we notify them after, or to run on accelerating
+ * clocks, provided we notify them before. Thus time never
+ * goes backwards.
+ *
+ * However, we have a problem. We can't atomically update
+ * the frequency of a given CPU from this function; it is
+ * merely a notifier, which can be called from any CPU.
+ * Changing the TSC frequency at arbitrary points in time
+ * requires a recomputation of local variables related to
+ * the TSC for each VCPU. We must flag these local variables
+ * to be updated and be sure the update takes place with the
+ * new frequency before any guests proceed.
+ *
+ * Unfortunately, the combination of hotplug CPU and frequency
+ * change creates an intractable locking scenario; the order
+ * of when these callouts happen is undefined with respect to
+ * CPU hotplug, and they can race with each other. As such,
+ * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
+ * undefined; you can actually have a CPU frequency change take
+ * place in between the computation of X and the setting of the
+ * variable. To protect against this problem, all updates of
+ * the per_cpu tsc_khz variable are done in an interrupt
+ * protected IPI, and all callers wishing to update the value
+ * must wait for a synchronous IPI to complete (which is trivial
+ * if the caller is on the CPU already). This establishes the
+ * necessary total order on variable updates.
+ *
+ * Note that because a guest time update may take place
+ * anytime after the setting of the VCPU's request bit, the
+ * correct TSC value must be set before the request. However,
+ * to ensure the update actually makes it to any guest which
+ * starts running in hardware virtualization between the set
+ * and the acquisition of the spinlock, we must also ping the
+ * CPU after setting the request bit.
+ *
+ */
+
+ smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
+
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->cpu != cpu)
+ continue;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ if (vcpu->cpu != raw_smp_processor_id())
+ send_ipi = 1;
+ }
+ }
+ mutex_unlock(&kvm_lock);
+
+ if (freq->old < freq->new && send_ipi) {
+ /*
+ * We upscale the frequency. Must make the guest
+ * doesn't see old kvmclock values while running with
+ * the new frequency, otherwise we risk the guest sees
+ * time go backwards.
+ *
+ * In case we update the frequency for another cpu
+ * (which might be in guest context) send an interrupt
+ * to kick the cpu out of guest context. Next time
+ * guest context is entered kvmclock will be updated,
+ * so the guest will not see stale values.
+ */
+ smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
+ }
+}
+
+static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+ void *data)
+{
+ struct cpufreq_freqs *freq = data;
+ int cpu;
+
+ if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
+ return 0;
+ if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
+ return 0;
+
+ for_each_cpu(cpu, freq->policy->cpus)
+ __kvmclock_cpufreq_notifier(freq, cpu);
+
+ return 0;
+}
+
+static struct notifier_block kvmclock_cpufreq_notifier_block = {
+ .notifier_call = kvmclock_cpufreq_notifier
+};
+
+static int kvmclock_cpu_online(unsigned int cpu)
+{
+ tsc_khz_changed(NULL);
+ return 0;
+}
+
+static void kvm_timer_init(void)
+{
+ max_tsc_khz = tsc_khz;
+
+ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+#ifdef CONFIG_CPU_FREQ
+ struct cpufreq_policy *policy;
+ int cpu;
+
+ cpu = get_cpu();
+ policy = cpufreq_cpu_get(cpu);
+ if (policy) {
+ if (policy->cpuinfo.max_freq)
+ max_tsc_khz = policy->cpuinfo.max_freq;
+ cpufreq_cpu_put(policy);
+ }
+ put_cpu();
+#endif
+ cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ }
+
+ cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
+ kvmclock_cpu_online, kvmclock_cpu_down_prep);
+}
+
+DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
+EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
+
+int kvm_is_in_guest(void)
+{
+ return __this_cpu_read(current_vcpu) != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+ int user_mode = 3;
+
+ if (__this_cpu_read(current_vcpu))
+ user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
+
+ return user_mode != 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+ unsigned long ip = 0;
+
+ if (__this_cpu_read(current_vcpu))
+ ip = kvm_rip_read(__this_cpu_read(current_vcpu));
+
+ return ip;
+}
+
+static void kvm_handle_intel_pt_intr(void)
+{
+ struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
+
+ kvm_make_request(KVM_REQ_PMI, vcpu);
+ __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
+ (unsigned long *)&vcpu->arch.pmu.global_status);
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .is_in_guest = kvm_is_in_guest,
+ .is_user_mode = kvm_is_user_mode,
+ .get_guest_ip = kvm_get_guest_ip,
+ .handle_intel_pt_intr = NULL,
+};
+
+#ifdef CONFIG_X86_64
+static void pvclock_gtod_update_fn(struct work_struct *work)
+{
+ struct kvm *kvm;
+
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list)
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+ atomic_set(&kvm_guest_has_master_clock, 0);
+ mutex_unlock(&kvm_lock);
+}
+
+static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
+
+/*
+ * Indirection to move queue_work() out of the tk_core.seq write held
+ * region to prevent possible deadlocks against time accessors which
+ * are invoked with work related locks held.
+ */
+static void pvclock_irq_work_fn(struct irq_work *w)
+{
+ queue_work(system_long_wq, &pvclock_gtod_work);
+}
+
+static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
+
+/*
+ * Notification about pvclock gtod data update.
+ */
+static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
+ void *priv)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ struct timekeeper *tk = priv;
+
+ update_pvclock_gtod(tk);
+
+ /*
+ * Disable master clock if host does not trust, or does not use,
+ * TSC based clocksource. Delegate queue_work() to irq_work as
+ * this is invoked with tk_core.seq write held.
+ */
+ if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
+ atomic_read(&kvm_guest_has_master_clock) != 0)
+ irq_work_queue(&pvclock_irq_work);
+ return 0;
+}
+
+static struct notifier_block pvclock_gtod_notifier = {
+ .notifier_call = pvclock_gtod_notify,
+};
+#endif
+
+int kvm_arch_init(void *opaque)
+{
+ struct kvm_x86_init_ops *ops = opaque;
+ int r;
+
+ if (kvm_x86_ops.hardware_enable) {
+ printk(KERN_ERR "kvm: already loaded the other module\n");
+ r = -EEXIST;
+ goto out;
+ }
+
+ if (!ops->cpu_has_kvm_support()) {
+ pr_err_ratelimited("kvm: no hardware support\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+ if (ops->disabled_by_bios()) {
+ pr_err_ratelimited("kvm: disabled by bios\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+
+ /*
+ * KVM explicitly assumes that the guest has an FPU and
+ * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
+ * vCPU's FPU state as a fxregs_state struct.
+ */
+ if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
+ printk(KERN_ERR "kvm: inadequate fpu\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+
+ r = -ENOMEM;
+ x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
+ __alignof__(struct fpu), SLAB_ACCOUNT,
+ NULL);
+ if (!x86_fpu_cache) {
+ printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
+ goto out;
+ }
+
+ x86_emulator_cache = kvm_alloc_emulator_cache();
+ if (!x86_emulator_cache) {
+ pr_err("kvm: failed to allocate cache for x86 emulator\n");
+ goto out_free_x86_fpu_cache;
+ }
+
+ user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
+ if (!user_return_msrs) {
+ printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
+ goto out_free_x86_emulator_cache;
+ }
+
+ r = kvm_mmu_vendor_module_init();
+ if (r)
+ goto out_free_percpu;
+
+ kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
+ PT_DIRTY_MASK, PT64_NX_MASK, 0,
+ PT_PRESENT_MASK, 0, sme_me_mask);
+ kvm_timer_init();
+
+ if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
+ kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
+ perf_register_guest_info_callbacks(&kvm_guest_cbs);
+
+ if (boot_cpu_has(X86_FEATURE_XSAVE)) {
+ host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
+ supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
+ }
+
+ kvm_lapic_init();
+ if (pi_inject_timer == -1)
+ pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
+#ifdef CONFIG_X86_64
+ pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
+
+ if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
+ set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
+#endif
+
+ return 0;
+
+out_free_percpu:
+ free_percpu(user_return_msrs);
+out_free_x86_emulator_cache:
+ kmem_cache_destroy(x86_emulator_cache);
+out_free_x86_fpu_cache:
+ kmem_cache_destroy(x86_fpu_cache);
+out:
+ return r;
+}
+
+void kvm_arch_exit(void)
+{
+#ifdef CONFIG_X86_64
+ if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
+ clear_hv_tscchange_cb();
+#endif
+ kvm_lapic_exit();
+ perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+ kvm_guest_cbs.handle_intel_pt_intr = NULL;
+
+ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
+#ifdef CONFIG_X86_64
+ pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
+ irq_work_sync(&pvclock_irq_work);
+ cancel_work_sync(&pvclock_gtod_work);
+#endif
+ kvm_x86_ops.hardware_enable = NULL;
+ kvm_mmu_vendor_module_exit();
+ free_percpu(user_return_msrs);
+ kmem_cache_destroy(x86_emulator_cache);
+ kmem_cache_destroy(x86_fpu_cache);
+}
+
+int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.halt_exits;
+ if (lapic_in_kernel(vcpu)) {
+ vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
+ return 1;
+ } else {
+ vcpu->run->exit_reason = KVM_EXIT_HLT;
+ return 0;
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
+
+int kvm_emulate_halt(struct kvm_vcpu *vcpu)
+{
+ int ret = kvm_skip_emulated_instruction(vcpu);
+ /*
+ * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
+ * KVM_EXIT_DEBUG here.
+ */
+ return kvm_vcpu_halt(vcpu) && ret;
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_halt);
+
+#ifdef CONFIG_X86_64
+static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
+ unsigned long clock_type)
+{
+ struct kvm_clock_pairing clock_pairing;
+ struct timespec64 ts;
+ u64 cycle;
+ int ret;
+
+ if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
+ return -KVM_EOPNOTSUPP;
+
+ if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
+ return -KVM_EOPNOTSUPP;
+
+ clock_pairing.sec = ts.tv_sec;
+ clock_pairing.nsec = ts.tv_nsec;
+ clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
+ clock_pairing.flags = 0;
+ memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
+
+ ret = 0;
+ if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
+ sizeof(struct kvm_clock_pairing)))
+ ret = -KVM_EFAULT;
+
+ return ret;
+}
+#endif
+
+/*
+ * kvm_pv_kick_cpu_op: Kick a vcpu.
+ *
+ * @apicid - apicid of vcpu to be kicked.
+ */
+static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
+{
+ /*
+ * All other fields are unused for APIC_DM_REMRD, but may be consumed by
+ * common code, e.g. for tracing. Defer initialization to the compiler.
+ */
+ struct kvm_lapic_irq lapic_irq = {
+ .delivery_mode = APIC_DM_REMRD,
+ .dest_mode = APIC_DEST_PHYSICAL,
+ .shorthand = APIC_DEST_NOSHORT,
+ .dest_id = apicid,
+ };
+
+ kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
+}
+
+bool kvm_apicv_activated(struct kvm *kvm)
+{
+ return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
+}
+EXPORT_SYMBOL_GPL(kvm_apicv_activated);
+
+void kvm_apicv_init(struct kvm *kvm, bool enable)
+{
+ if (enable)
+ clear_bit(APICV_INHIBIT_REASON_DISABLE,
+ &kvm->arch.apicv_inhibit_reasons);
+ else
+ set_bit(APICV_INHIBIT_REASON_DISABLE,
+ &kvm->arch.apicv_inhibit_reasons);
+}
+EXPORT_SYMBOL_GPL(kvm_apicv_init);
+
+static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
+{
+ struct kvm_vcpu *target = NULL;
+ struct kvm_apic_map *map;
+
+ rcu_read_lock();
+ map = rcu_dereference(kvm->arch.apic_map);
+
+ if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
+ target = map->phys_map[dest_id]->vcpu;
+
+ rcu_read_unlock();
+
+ if (target && READ_ONCE(target->ready))
+ kvm_vcpu_yield_to(target);
+}
+
+int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
+{
+ unsigned long nr, a0, a1, a2, a3, ret;
+ int op_64_bit;
+
+ if (kvm_hv_hypercall_enabled(vcpu->kvm))
+ return kvm_hv_hypercall(vcpu);
+
+ nr = kvm_rax_read(vcpu);
+ a0 = kvm_rbx_read(vcpu);
+ a1 = kvm_rcx_read(vcpu);
+ a2 = kvm_rdx_read(vcpu);
+ a3 = kvm_rsi_read(vcpu);
+
+ trace_kvm_hypercall(nr, a0, a1, a2, a3);
+
+ op_64_bit = is_64_bit_mode(vcpu);
+ if (!op_64_bit) {
+ nr &= 0xFFFFFFFF;
+ a0 &= 0xFFFFFFFF;
+ a1 &= 0xFFFFFFFF;
+ a2 &= 0xFFFFFFFF;
+ a3 &= 0xFFFFFFFF;
+ }
+
+ if (kvm_x86_ops.get_cpl(vcpu) != 0) {
+ ret = -KVM_EPERM;
+ goto out;
+ }
+
+ ret = -KVM_ENOSYS;
+
+ switch (nr) {
+ case KVM_HC_VAPIC_POLL_IRQ:
+ ret = 0;
+ break;
+ case KVM_HC_KICK_CPU:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
+ break;
+
+ kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
+ kvm_sched_yield(vcpu->kvm, a1);
+ ret = 0;
+ break;
+#ifdef CONFIG_X86_64
+ case KVM_HC_CLOCK_PAIRING:
+ ret = kvm_pv_clock_pairing(vcpu, a0, a1);
+ break;
+#endif
+ case KVM_HC_SEND_IPI:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
+ break;
+
+ ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
+ break;
+ case KVM_HC_SCHED_YIELD:
+ if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
+ break;
+
+ kvm_sched_yield(vcpu->kvm, a0);
+ ret = 0;
+ break;
+ default:
+ ret = -KVM_ENOSYS;
+ break;
+ }
+out:
+ if (!op_64_bit)
+ ret = (u32)ret;
+ kvm_rax_write(vcpu, ret);
+
+ ++vcpu->stat.hypercalls;
+ return kvm_skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ char instruction[3];
+ unsigned long rip = kvm_rip_read(vcpu);
+
+ kvm_x86_ops.patch_hypercall(vcpu, instruction);
+
+ return emulator_write_emulated(ctxt, rip, instruction, 3,
+ &ctxt->exception);
+}
+
+static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
+{
+ return vcpu->run->request_interrupt_window &&
+ likely(!pic_in_kernel(vcpu->kvm));
+}
+
+static void post_kvm_run_save(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+
+ kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
+ kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
+ kvm_run->cr8 = kvm_get_cr8(vcpu);
+ kvm_run->apic_base = kvm_get_apic_base(vcpu);
+ kvm_run->ready_for_interrupt_injection =
+ pic_in_kernel(vcpu->kvm) ||
+ kvm_vcpu_ready_for_interrupt_injection(vcpu);
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu)
+{
+ int max_irr, tpr;
+
+ if (!kvm_x86_ops.update_cr8_intercept)
+ return;
+
+ if (!lapic_in_kernel(vcpu))
+ return;
+
+ if (vcpu->arch.apicv_active)
+ return;
+
+ if (!vcpu->arch.apic->vapic_addr)
+ max_irr = kvm_lapic_find_highest_irr(vcpu);
+ else
+ max_irr = -1;
+
+ if (max_irr != -1)
+ max_irr >>= 4;
+
+ tpr = kvm_lapic_get_cr8(vcpu);
+
+ kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
+}
+
+static void kvm_inject_exception(struct kvm_vcpu *vcpu)
+{
+ trace_kvm_inj_exception(vcpu->arch.exception.nr,
+ vcpu->arch.exception.has_error_code,
+ vcpu->arch.exception.error_code,
+ vcpu->arch.exception.injected);
+
+ if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
+ vcpu->arch.exception.error_code = false;
+ kvm_x86_ops.queue_exception(vcpu);
+}
+
+static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
+{
+ int r;
+ bool can_inject = true;
+
+ /* try to reinject previous events if any */
+
+ if (vcpu->arch.exception.injected) {
+ kvm_inject_exception(vcpu);
+ can_inject = false;
+ }
+ /*
+ * Do not inject an NMI or interrupt if there is a pending
+ * exception. Exceptions and interrupts are recognized at
+ * instruction boundaries, i.e. the start of an instruction.
+ * Trap-like exceptions, e.g. #DB, have higher priority than
+ * NMIs and interrupts, i.e. traps are recognized before an
+ * NMI/interrupt that's pending on the same instruction.
+ * Fault-like exceptions, e.g. #GP and #PF, are the lowest
+ * priority, but are only generated (pended) during instruction
+ * execution, i.e. a pending fault-like exception means the
+ * fault occurred on the *previous* instruction and must be
+ * serviced prior to recognizing any new events in order to
+ * fully complete the previous instruction.
+ */
+ else if (!vcpu->arch.exception.pending) {
+ if (vcpu->arch.nmi_injected) {
+ kvm_x86_ops.set_nmi(vcpu);
+ can_inject = false;
+ } else if (vcpu->arch.interrupt.injected) {
+ kvm_x86_ops.set_irq(vcpu);
+ can_inject = false;
+ }
+ }
+
+ WARN_ON_ONCE(vcpu->arch.exception.injected &&
+ vcpu->arch.exception.pending);
+
+ /*
+ * Call check_nested_events() even if we reinjected a previous event
+ * in order for caller to determine if it should require immediate-exit
+ * from L2 to L1 due to pending L1 events which require exit
+ * from L2 to L1.
+ */
+ if (is_guest_mode(vcpu)) {
+ r = kvm_x86_ops.nested_ops->check_events(vcpu);
+ if (r < 0)
+ goto busy;
+ }
+
+ /* try to inject new event if pending */
+ if (vcpu->arch.exception.pending) {
+ /*
+ * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
+ * value pushed on the stack. Trap-like exception and all #DBs
+ * leave RF as-is (KVM follows Intel's behavior in this regard;
+ * AMD states that code breakpoint #DBs excplitly clear RF=0).
+ *
+ * Note, most versions of Intel's SDM and AMD's APM incorrectly
+ * describe the behavior of General Detect #DBs, which are
+ * fault-like. They do _not_ set RF, a la code breakpoints.
+ */
+ if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
+ __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
+ X86_EFLAGS_RF);
+
+ if (vcpu->arch.exception.nr == DB_VECTOR) {
+ kvm_deliver_exception_payload(vcpu);
+ if (vcpu->arch.dr7 & DR7_GD) {
+ vcpu->arch.dr7 &= ~DR7_GD;
+ kvm_update_dr7(vcpu);
+ }
+ }
+
+ kvm_inject_exception(vcpu);
+
+ vcpu->arch.exception.pending = false;
+ vcpu->arch.exception.injected = true;
+
+ can_inject = false;
+ }
+
+ /*
+ * Finally, inject interrupt events. If an event cannot be injected
+ * due to architectural conditions (e.g. IF=0) a window-open exit
+ * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
+ * and can architecturally be injected, but we cannot do it right now:
+ * an interrupt could have arrived just now and we have to inject it
+ * as a vmexit, or there could already an event in the queue, which is
+ * indicated by can_inject. In that case we request an immediate exit
+ * in order to make progress and get back here for another iteration.
+ * The kvm_x86_ops hooks communicate this by returning -EBUSY.
+ */
+ if (vcpu->arch.smi_pending) {
+ r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
+ if (r < 0)
+ goto busy;
+ if (r) {
+ vcpu->arch.smi_pending = false;
+ ++vcpu->arch.smi_count;
+ enter_smm(vcpu);
+ can_inject = false;
+ } else
+ kvm_x86_ops.enable_smi_window(vcpu);
+ }
+
+ if (vcpu->arch.nmi_pending) {
+ r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
+ if (r < 0)
+ goto busy;
+ if (r) {
+ --vcpu->arch.nmi_pending;
+ vcpu->arch.nmi_injected = true;
+ kvm_x86_ops.set_nmi(vcpu);
+ can_inject = false;
+ WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
+ }
+ if (vcpu->arch.nmi_pending)
+ kvm_x86_ops.enable_nmi_window(vcpu);
+ }
+
+ if (kvm_cpu_has_injectable_intr(vcpu)) {
+ r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
+ if (r < 0)
+ goto busy;
+ if (r) {
+ kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
+ kvm_x86_ops.set_irq(vcpu);
+ WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
+ }
+ if (kvm_cpu_has_injectable_intr(vcpu))
+ kvm_x86_ops.enable_irq_window(vcpu);
+ }
+
+ if (is_guest_mode(vcpu) &&
+ kvm_x86_ops.nested_ops->hv_timer_pending &&
+ kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
+ *req_immediate_exit = true;
+
+ WARN_ON(vcpu->arch.exception.pending);
+ return;
+
+busy:
+ *req_immediate_exit = true;
+ return;
+}
+
+static void process_nmi(struct kvm_vcpu *vcpu)
+{
+ unsigned limit = 2;
+
+ /*
+ * x86 is limited to one NMI running, and one NMI pending after it.
+ * If an NMI is already in progress, limit further NMIs to just one.
+ * Otherwise, allow two (and we'll inject the first one immediately).
+ */
+ if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
+ limit = 1;
+
+ vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
+ vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+
+static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
+{
+ u32 flags = 0;
+ flags |= seg->g << 23;
+ flags |= seg->db << 22;
+ flags |= seg->l << 21;
+ flags |= seg->avl << 20;
+ flags |= seg->present << 15;
+ flags |= seg->dpl << 13;
+ flags |= seg->s << 12;
+ flags |= seg->type << 8;
+ return flags;
+}
+
+static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
+{
+ struct kvm_segment seg;
+ int offset;
+
+ kvm_get_segment(vcpu, &seg, n);
+ put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
+
+ if (n < 3)
+ offset = 0x7f84 + n * 12;
+ else
+ offset = 0x7f2c + (n - 3) * 12;
+
+ put_smstate(u32, buf, offset + 8, seg.base);
+ put_smstate(u32, buf, offset + 4, seg.limit);
+ put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
+}
+
+#ifdef CONFIG_X86_64
+static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
+{
+ struct kvm_segment seg;
+ int offset;
+ u16 flags;
+
+ kvm_get_segment(vcpu, &seg, n);
+ offset = 0x7e00 + n * 16;
+
+ flags = enter_smm_get_segment_flags(&seg) >> 8;
+ put_smstate(u16, buf, offset, seg.selector);
+ put_smstate(u16, buf, offset + 2, flags);
+ put_smstate(u32, buf, offset + 4, seg.limit);
+ put_smstate(u64, buf, offset + 8, seg.base);
+}
+#endif
+
+static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
+{
+ struct desc_ptr dt;
+ struct kvm_segment seg;
+ unsigned long val;
+ int i;
+
+ put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
+ put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
+ put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
+ put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
+
+ for (i = 0; i < 8; i++)
+ put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
+
+ kvm_get_dr(vcpu, 6, &val);
+ put_smstate(u32, buf, 0x7fcc, (u32)val);
+ kvm_get_dr(vcpu, 7, &val);
+ put_smstate(u32, buf, 0x7fc8, (u32)val);
+
+ kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
+ put_smstate(u32, buf, 0x7fc4, seg.selector);
+ put_smstate(u32, buf, 0x7f64, seg.base);
+ put_smstate(u32, buf, 0x7f60, seg.limit);
+ put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
+
+ kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
+ put_smstate(u32, buf, 0x7fc0, seg.selector);
+ put_smstate(u32, buf, 0x7f80, seg.base);
+ put_smstate(u32, buf, 0x7f7c, seg.limit);
+ put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
+
+ kvm_x86_ops.get_gdt(vcpu, &dt);
+ put_smstate(u32, buf, 0x7f74, dt.address);
+ put_smstate(u32, buf, 0x7f70, dt.size);
+
+ kvm_x86_ops.get_idt(vcpu, &dt);
+ put_smstate(u32, buf, 0x7f58, dt.address);
+ put_smstate(u32, buf, 0x7f54, dt.size);
+
+ for (i = 0; i < 6; i++)
+ enter_smm_save_seg_32(vcpu, buf, i);
+
+ put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
+
+ /* revision id */
+ put_smstate(u32, buf, 0x7efc, 0x00020000);
+ put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
+}
+
+#ifdef CONFIG_X86_64
+static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
+{
+ struct desc_ptr dt;
+ struct kvm_segment seg;
+ unsigned long val;
+ int i;
+
+ for (i = 0; i < 16; i++)
+ put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
+
+ put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
+ put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
+
+ kvm_get_dr(vcpu, 6, &val);
+ put_smstate(u64, buf, 0x7f68, val);
+ kvm_get_dr(vcpu, 7, &val);
+ put_smstate(u64, buf, 0x7f60, val);
+
+ put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
+ put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
+ put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
+
+ put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
+
+ /* revision id */
+ put_smstate(u32, buf, 0x7efc, 0x00020064);
+
+ put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
+
+ kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
+ put_smstate(u16, buf, 0x7e90, seg.selector);
+ put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
+ put_smstate(u32, buf, 0x7e94, seg.limit);
+ put_smstate(u64, buf, 0x7e98, seg.base);
+
+ kvm_x86_ops.get_idt(vcpu, &dt);
+ put_smstate(u32, buf, 0x7e84, dt.size);
+ put_smstate(u64, buf, 0x7e88, dt.address);
+
+ kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
+ put_smstate(u16, buf, 0x7e70, seg.selector);
+ put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
+ put_smstate(u32, buf, 0x7e74, seg.limit);
+ put_smstate(u64, buf, 0x7e78, seg.base);
+
+ kvm_x86_ops.get_gdt(vcpu, &dt);
+ put_smstate(u32, buf, 0x7e64, dt.size);
+ put_smstate(u64, buf, 0x7e68, dt.address);
+
+ for (i = 0; i < 6; i++)
+ enter_smm_save_seg_64(vcpu, buf, i);
+}
+#endif
+
+static void enter_smm(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs, ds;
+ struct desc_ptr dt;
+ char buf[512];
+ u32 cr0;
+
+ trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
+ memset(buf, 0, 512);
+#ifdef CONFIG_X86_64
+ if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ enter_smm_save_state_64(vcpu, buf);
+ else
+#endif
+ enter_smm_save_state_32(vcpu, buf);
+
+ /*
+ * Give pre_enter_smm() a chance to make ISA-specific changes to the
+ * vCPU state (e.g. leave guest mode) after we've saved the state into
+ * the SMM state-save area.
+ */
+ kvm_x86_ops.pre_enter_smm(vcpu, buf);
+
+ vcpu->arch.hflags |= HF_SMM_MASK;
+ kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
+
+ if (kvm_x86_ops.get_nmi_mask(vcpu))
+ vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
+ else
+ kvm_x86_ops.set_nmi_mask(vcpu, true);
+
+ kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ kvm_rip_write(vcpu, 0x8000);
+
+ cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
+ kvm_x86_ops.set_cr0(vcpu, cr0);
+ vcpu->arch.cr0 = cr0;
+
+ kvm_x86_ops.set_cr4(vcpu, 0);
+
+ /* Undocumented: IDT limit is set to zero on entry to SMM. */
+ dt.address = dt.size = 0;
+ kvm_x86_ops.set_idt(vcpu, &dt);
+
+ __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+
+ cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
+ cs.base = vcpu->arch.smbase;
+
+ ds.selector = 0;
+ ds.base = 0;
+
+ cs.limit = ds.limit = 0xffffffff;
+ cs.type = ds.type = 0x3;
+ cs.dpl = ds.dpl = 0;
+ cs.db = ds.db = 0;
+ cs.s = ds.s = 1;
+ cs.l = ds.l = 0;
+ cs.g = ds.g = 1;
+ cs.avl = ds.avl = 0;
+ cs.present = ds.present = 1;
+ cs.unusable = ds.unusable = 0;
+ cs.padding = ds.padding = 0;
+
+ kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
+ kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
+ kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
+ kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
+ kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
+ kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
+
+#ifdef CONFIG_X86_64
+ if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ kvm_x86_ops.set_efer(vcpu, 0);
+#endif
+
+ kvm_update_cpuid_runtime(vcpu);
+ kvm_mmu_reset_context(vcpu);
+}
+
+static void process_smi(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.smi_pending = true;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+
+void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
+ unsigned long *vcpu_bitmap)
+{
+ cpumask_var_t cpus;
+
+ zalloc_cpumask_var(&cpus, GFP_ATOMIC);
+
+ kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
+ NULL, vcpu_bitmap, cpus);
+
+ free_cpumask_var(cpus);
+}
+
+void kvm_make_scan_ioapic_request(struct kvm *kvm)
+{
+ kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
+}
+
+void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
+{
+ if (!lapic_in_kernel(vcpu))
+ return;
+
+ vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
+ kvm_apic_update_apicv(vcpu);
+ kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
+
+/*
+ * NOTE: Do not hold any lock prior to calling this.
+ *
+ * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
+ * locked, because it calls __x86_set_memory_region() which does
+ * synchronize_srcu(&kvm->srcu).
+ */
+void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
+{
+ struct kvm_vcpu *except;
+ unsigned long old, new, expected;
+
+ if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
+ !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
+ return;
+
+ old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
+ do {
+ expected = new = old;
+ if (activate)
+ __clear_bit(bit, &new);
+ else
+ __set_bit(bit, &new);
+ if (new == old)
+ break;
+ old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
+ } while (old != expected);
+
+ if (!!old == !!new)
+ return;
+
+ trace_kvm_apicv_update_request(activate, bit);
+ if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
+ kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
+
+ /*
+ * Sending request to update APICV for all other vcpus,
+ * while update the calling vcpu immediately instead of
+ * waiting for another #VMEXIT to handle the request.
+ */
+ except = kvm_get_running_vcpu();
+ kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
+ except);
+ if (except)
+ kvm_vcpu_update_apicv(except);
+}
+EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
+
+static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_apic_present(vcpu))
+ return;
+
+ bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
+
+ if (irqchip_split(vcpu->kvm))
+ kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
+ else {
+ if (vcpu->arch.apicv_active)
+ kvm_x86_ops.sync_pir_to_irr(vcpu);
+ if (ioapic_in_kernel(vcpu->kvm))
+ kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
+ }
+
+ if (is_guest_mode(vcpu))
+ vcpu->arch.load_eoi_exitmap_pending = true;
+ else
+ kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
+}
+
+static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
+{
+ u64 eoi_exit_bitmap[4];
+
+ if (!kvm_apic_hw_enabled(vcpu->arch.apic))
+ return;
+
+ bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
+ vcpu_to_synic(vcpu)->vec_bitmap, 256);
+ kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
+}
+
+void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
+ unsigned long start, unsigned long end)
+{
+ unsigned long apic_address;
+
+ /*
+ * The physical address of apic access page is stored in the VMCS.
+ * Update it when it becomes invalid.
+ */
+ apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (start <= apic_address && apic_address < end)
+ kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
+}
+
+void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
+{
+ if (kvm_x86_ops.guest_memory_reclaimed)
+ kvm_x86_ops.guest_memory_reclaimed(kvm);
+}
+
+void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
+{
+ if (!lapic_in_kernel(vcpu))
+ return;
+
+ if (!kvm_x86_ops.set_apic_access_page_addr)
+ return;
+
+ kvm_x86_ops.set_apic_access_page_addr(vcpu);
+}
+
+void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
+{
+ smp_send_reschedule(vcpu->cpu);
+}
+EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
+
+/*
+ * Returns 1 to let vcpu_run() continue the guest execution loop without
+ * exiting to the userspace. Otherwise, the value will be returned to the
+ * userspace.
+ */
+static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
+{
+ int r;
+ bool req_int_win =
+ dm_request_for_irq_injection(vcpu) &&
+ kvm_cpu_accept_dm_intr(vcpu);
+ fastpath_t exit_fastpath;
+
+ bool req_immediate_exit = false;
+
+ if (kvm_request_pending(vcpu)) {
+ if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
+ if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
+ r = 0;
+ goto out;
+ }
+ }
+ if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
+ kvm_mmu_unload(vcpu);
+ if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
+ __kvm_migrate_timers(vcpu);
+ if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
+ kvm_gen_update_masterclock(vcpu->kvm);
+ if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
+ kvm_gen_kvmclock_update(vcpu);
+ if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
+ r = kvm_guest_time_update(vcpu);
+ if (unlikely(r))
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
+ kvm_mmu_sync_roots(vcpu);
+ if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
+ kvm_mmu_load_pgd(vcpu);
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
+ kvm_vcpu_flush_tlb_all(vcpu);
+
+ /* Flushing all ASIDs flushes the current ASID... */
+ kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
+ }
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
+ kvm_vcpu_flush_tlb_current(vcpu);
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
+ kvm_vcpu_flush_tlb_guest(vcpu);
+
+ if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+ vcpu->mmio_needed = 0;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
+ /* Page is swapped out. Do synthetic halt */
+ vcpu->arch.apf.halted = true;
+ r = 1;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
+ record_steal_time(vcpu);
+ if (kvm_check_request(KVM_REQ_SMI, vcpu))
+ process_smi(vcpu);
+ if (kvm_check_request(KVM_REQ_NMI, vcpu))
+ process_nmi(vcpu);
+ if (kvm_check_request(KVM_REQ_PMU, vcpu))
+ kvm_pmu_handle_event(vcpu);
+ if (kvm_check_request(KVM_REQ_PMI, vcpu))
+ kvm_pmu_deliver_pmi(vcpu);
+ if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
+ BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
+ if (test_bit(vcpu->arch.pending_ioapic_eoi,
+ vcpu->arch.ioapic_handled_vectors)) {
+ vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
+ vcpu->run->eoi.vector =
+ vcpu->arch.pending_ioapic_eoi;
+ r = 0;
+ goto out;
+ }
+ }
+ if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
+ vcpu_scan_ioapic(vcpu);
+ if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
+ vcpu_load_eoi_exitmap(vcpu);
+ if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
+ kvm_vcpu_reload_apic_access_page(vcpu);
+ if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+ vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+ vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_HYPERV;
+ vcpu->run->hyperv = vcpu->arch.hyperv.exit;
+ r = 0;
+ goto out;
+ }
+
+ /*
+ * KVM_REQ_HV_STIMER has to be processed after
+ * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
+ * depend on the guest clock being up-to-date
+ */
+ if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
+ kvm_hv_process_stimers(vcpu);
+ if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
+ kvm_vcpu_update_apicv(vcpu);
+ if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
+ kvm_check_async_pf_completion(vcpu);
+ if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
+ kvm_x86_ops.msr_filter_changed(vcpu);
+ }
+
+ if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
+ ++vcpu->stat.req_event;
+ kvm_apic_accept_events(vcpu);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
+ r = 1;
+ goto out;
+ }
+
+ inject_pending_event(vcpu, &req_immediate_exit);
+ if (req_int_win)
+ kvm_x86_ops.enable_irq_window(vcpu);
+
+ if (kvm_lapic_enabled(vcpu)) {
+ update_cr8_intercept(vcpu);
+ kvm_lapic_sync_to_vapic(vcpu);
+ }
+ }
+
+ r = kvm_mmu_reload(vcpu);
+ if (unlikely(r)) {
+ goto cancel_injection;
+ }
+
+ preempt_disable();
+
+ kvm_x86_ops.prepare_guest_switch(vcpu);
+
+ /*
+ * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
+ * IPI are then delayed after guest entry, which ensures that they
+ * result in virtual interrupt delivery.
+ */
+ local_irq_disable();
+ vcpu->mode = IN_GUEST_MODE;
+
+ srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+
+ /*
+ * 1) We should set ->mode before checking ->requests. Please see
+ * the comment in kvm_vcpu_exiting_guest_mode().
+ *
+ * 2) For APICv, we should set ->mode before checking PID.ON. This
+ * pairs with the memory barrier implicit in pi_test_and_set_on
+ * (see vmx_deliver_posted_interrupt).
+ *
+ * 3) This also orders the write to mode from any reads to the page
+ * tables done while the VCPU is running. Please see the comment
+ * in kvm_flush_remote_tlbs.
+ */
+ smp_mb__after_srcu_read_unlock();
+
+ /*
+ * This handles the case where a posted interrupt was
+ * notified with kvm_vcpu_kick.
+ */
+ if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
+ kvm_x86_ops.sync_pir_to_irr(vcpu);
+
+ if (kvm_vcpu_exit_request(vcpu)) {
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ smp_wmb();
+ local_irq_enable();
+ preempt_enable();
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = 1;
+ goto cancel_injection;
+ }
+
+ if (req_immediate_exit) {
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_x86_ops.request_immediate_exit(vcpu);
+ }
+
+ trace_kvm_entry(vcpu);
+
+ fpregs_assert_state_consistent();
+ if (test_thread_flag(TIF_NEED_FPU_LOAD))
+ switch_fpu_return();
+
+ if (unlikely(vcpu->arch.switch_db_regs)) {
+ set_debugreg(0, 7);
+ set_debugreg(vcpu->arch.eff_db[0], 0);
+ set_debugreg(vcpu->arch.eff_db[1], 1);
+ set_debugreg(vcpu->arch.eff_db[2], 2);
+ set_debugreg(vcpu->arch.eff_db[3], 3);
+ set_debugreg(vcpu->arch.dr6, 6);
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
+ } else if (unlikely(hw_breakpoint_active())) {
+ set_debugreg(0, 7);
+ }
+
+ exit_fastpath = kvm_x86_ops.run(vcpu);
+
+ /*
+ * Do this here before restoring debug registers on the host. And
+ * since we do this before handling the vmexit, a DR access vmexit
+ * can (a) read the correct value of the debug registers, (b) set
+ * KVM_DEBUGREG_WONT_EXIT again.
+ */
+ if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
+ WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
+ kvm_x86_ops.sync_dirty_debug_regs(vcpu);
+ kvm_update_dr0123(vcpu);
+ kvm_update_dr7(vcpu);
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
+ }
+
+ /*
+ * If the guest has used debug registers, at least dr7
+ * will be disabled while returning to the host.
+ * If we don't have active breakpoints in the host, we don't
+ * care about the messed up debug address registers. But if
+ * we have some of them active, restore the old state.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_restore();
+
+ vcpu->arch.last_vmentry_cpu = vcpu->cpu;
+ vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ smp_wmb();
+
+ kvm_x86_ops.handle_exit_irqoff(vcpu);
+
+ /*
+ * Consume any pending interrupts, including the possible source of
+ * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
+ * An instruction is required after local_irq_enable() to fully unblock
+ * interrupts on processors that implement an interrupt shadow, the
+ * stat.exits increment will do nicely.
+ */
+ kvm_before_interrupt(vcpu);
+ local_irq_enable();
+ ++vcpu->stat.exits;
+ local_irq_disable();
+ kvm_after_interrupt(vcpu);
+
+ /*
+ * Wait until after servicing IRQs to account guest time so that any
+ * ticks that occurred while running the guest are properly accounted
+ * to the guest. Waiting until IRQs are enabled degrades the accuracy
+ * of accounting via context tracking, but the loss of accuracy is
+ * acceptable for all known use cases.
+ */
+ vtime_account_guest_exit();
+
+ if (lapic_in_kernel(vcpu)) {
+ s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
+ if (delta != S64_MIN) {
+ trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
+ vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
+ }
+ }
+
+ local_irq_enable();
+ preempt_enable();
+
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ /*
+ * Profile KVM exit RIPs:
+ */
+ if (unlikely(prof_on == KVM_PROFILING)) {
+ unsigned long rip = kvm_rip_read(vcpu);
+ profile_hit(KVM_PROFILING, (void *)rip);
+ }
+
+ if (unlikely(vcpu->arch.tsc_always_catchup))
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+ if (vcpu->arch.apic_attention)
+ kvm_lapic_sync_from_vapic(vcpu);
+
+ r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
+ return r;
+
+cancel_injection:
+ if (req_immediate_exit)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_x86_ops.cancel_injection(vcpu);
+ if (unlikely(vcpu->arch.apic_attention))
+ kvm_lapic_sync_from_vapic(vcpu);
+out:
+ return r;
+}
+
+static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
+{
+ if (!kvm_arch_vcpu_runnable(vcpu) &&
+ (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+ kvm_vcpu_block(vcpu);
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ if (kvm_x86_ops.post_block)
+ kvm_x86_ops.post_block(vcpu);
+
+ if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
+ return 1;
+ }
+
+ kvm_apic_accept_events(vcpu);
+ switch(vcpu->arch.mp_state) {
+ case KVM_MP_STATE_HALTED:
+ vcpu->arch.pv.pv_unhalted = false;
+ vcpu->arch.mp_state =
+ KVM_MP_STATE_RUNNABLE;
+ fallthrough;
+ case KVM_MP_STATE_RUNNABLE:
+ vcpu->arch.apf.halted = false;
+ break;
+ case KVM_MP_STATE_INIT_RECEIVED:
+ break;
+ default:
+ return -EINTR;
+ }
+ return 1;
+}
+
+static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu))
+ kvm_x86_ops.nested_ops->check_events(vcpu);
+
+ return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
+ !vcpu->arch.apf.halted);
+}
+
+static int vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int r;
+ struct kvm *kvm = vcpu->kvm;
+
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+ vcpu->arch.l1tf_flush_l1d = true;
+
+ for (;;) {
+ /*
+ * If another guest vCPU requests a PV TLB flush in the middle
+ * of instruction emulation, the rest of the emulation could
+ * use a stale page translation. Assume that any code after
+ * this point can start executing an instruction.
+ */
+ vcpu->arch.at_instruction_boundary = false;
+ if (kvm_vcpu_running(vcpu)) {
+ r = vcpu_enter_guest(vcpu);
+ } else {
+ r = vcpu_block(kvm, vcpu);
+ }
+
+ if (r <= 0)
+ break;
+
+ kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
+ if (kvm_cpu_has_pending_timer(vcpu))
+ kvm_inject_pending_timer_irqs(vcpu);
+
+ if (dm_request_for_irq_injection(vcpu) &&
+ kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
+ r = 0;
+ vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
+ ++vcpu->stat.request_irq_exits;
+ break;
+ }
+
+ if (__xfer_to_guest_mode_work_pending()) {
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+ r = xfer_to_guest_mode_handle_work(vcpu);
+ if (r)
+ return r;
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+ }
+ }
+
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+
+ return r;
+}
+
+static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
+ srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+ return r;
+}
+
+static int complete_emulated_pio(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(!vcpu->arch.pio.count);
+
+ return complete_emulated_io(vcpu);
+}
+
+/*
+ * Implements the following, as a state machine:
+ *
+ * read:
+ * for each fragment
+ * for each mmio piece in the fragment
+ * write gpa, len
+ * exit
+ * copy data
+ * execute insn
+ *
+ * write:
+ * for each fragment
+ * for each mmio piece in the fragment
+ * write gpa, len
+ * copy data
+ * exit
+ */
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ struct kvm_mmio_fragment *frag;
+ unsigned len;
+
+ BUG_ON(!vcpu->mmio_needed);
+
+ /* Complete previous fragment */
+ frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
+ len = min(8u, frag->len);
+ if (!vcpu->mmio_is_write)
+ memcpy(frag->data, run->mmio.data, len);
+
+ if (frag->len <= 8) {
+ /* Switch to the next fragment. */
+ frag++;
+ vcpu->mmio_cur_fragment++;
+ } else {
+ /* Go forward to the next mmio piece. */
+ frag->data += len;
+ frag->gpa += len;
+ frag->len -= len;
+ }
+
+ if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
+ vcpu->mmio_needed = 0;
+
+ /* FIXME: return into emulator if single-stepping. */
+ if (vcpu->mmio_is_write)
+ return 1;
+ vcpu->mmio_read_completed = 1;
+ return complete_emulated_io(vcpu);
+ }
+
+ run->exit_reason = KVM_EXIT_MMIO;
+ run->mmio.phys_addr = frag->gpa;
+ if (vcpu->mmio_is_write)
+ memcpy(run->mmio.data, frag->data, min(8u, frag->len));
+ run->mmio.len = min(8u, frag->len);
+ run->mmio.is_write = vcpu->mmio_is_write;
+ vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+ return 0;
+}
+
+static void kvm_save_current_fpu(struct fpu *fpu)
+{
+ /*
+ * If the target FPU state is not resident in the CPU registers, just
+ * memcpy() from current, else save CPU state directly to the target.
+ */
+ if (test_thread_flag(TIF_NEED_FPU_LOAD))
+ memcpy(&fpu->state, &current->thread.fpu.state,
+ fpu_kernel_xstate_size);
+ else
+ copy_fpregs_to_fpstate(fpu);
+}
+
+/* Swap (qemu) user FPU context for the guest FPU context. */
+static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
+{
+ fpregs_lock();
+
+ kvm_save_current_fpu(vcpu->arch.user_fpu);
+
+ /* PKRU is separately restored in kvm_x86_ops.run. */
+ __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
+ ~XFEATURE_MASK_PKRU);
+
+ fpregs_mark_activate();
+ fpregs_unlock();
+
+ trace_kvm_fpu(1);
+}
+
+/* When vcpu_run ends, restore user space FPU context. */
+static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
+{
+ fpregs_lock();
+
+ kvm_save_current_fpu(vcpu->arch.guest_fpu);
+
+ copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
+
+ fpregs_mark_activate();
+ fpregs_unlock();
+
+ ++vcpu->stat.fpu_reload;
+ trace_kvm_fpu(0);
+}
+
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+ int r;
+
+ vcpu_load(vcpu);
+ kvm_sigset_activate(vcpu);
+ kvm_load_guest_fpu(vcpu);
+
+ if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
+ if (kvm_run->immediate_exit) {
+ r = -EINTR;
+ goto out;
+ }
+ kvm_vcpu_block(vcpu);
+ kvm_apic_accept_events(vcpu);
+ kvm_clear_request(KVM_REQ_UNHALT, vcpu);
+ r = -EAGAIN;
+ if (signal_pending(current)) {
+ r = -EINTR;
+ kvm_run->exit_reason = KVM_EXIT_INTR;
+ ++vcpu->stat.signal_exits;
+ }
+ goto out;
+ }
+
+ if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
+ r = -EINVAL;
+ goto out;
+ }
+
+ if (kvm_run->kvm_dirty_regs) {
+ r = sync_regs(vcpu);
+ if (r != 0)
+ goto out;
+ }
+
+ /* re-sync apic's tpr */
+ if (!lapic_in_kernel(vcpu)) {
+ if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
+ r = -EINVAL;
+ goto out;
+ }
+ }
+
+ if (unlikely(vcpu->arch.complete_userspace_io)) {
+ int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
+ vcpu->arch.complete_userspace_io = NULL;
+ r = cui(vcpu);
+ if (r <= 0)
+ goto out;
+ } else
+ WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
+
+ if (kvm_run->immediate_exit)
+ r = -EINTR;
+ else
+ r = vcpu_run(vcpu);
+
+out:
+ kvm_put_guest_fpu(vcpu);
+ if (kvm_run->kvm_valid_regs)
+ store_regs(vcpu);
+ post_kvm_run_save(vcpu);
+ kvm_sigset_deactivate(vcpu);
+
+ vcpu_put(vcpu);
+ return r;
+}
+
+static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
+ /*
+ * We are here if userspace calls get_regs() in the middle of
+ * instruction emulation. Registers state needs to be copied
+ * back from emulation context to vcpu. Userspace shouldn't do
+ * that usually, but some bad designed PV devices (vmware
+ * backdoor interface) need this to work
+ */
+ emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+ }
+ regs->rax = kvm_rax_read(vcpu);
+ regs->rbx = kvm_rbx_read(vcpu);
+ regs->rcx = kvm_rcx_read(vcpu);
+ regs->rdx = kvm_rdx_read(vcpu);
+ regs->rsi = kvm_rsi_read(vcpu);
+ regs->rdi = kvm_rdi_read(vcpu);
+ regs->rsp = kvm_rsp_read(vcpu);
+ regs->rbp = kvm_rbp_read(vcpu);
+#ifdef CONFIG_X86_64
+ regs->r8 = kvm_r8_read(vcpu);
+ regs->r9 = kvm_r9_read(vcpu);
+ regs->r10 = kvm_r10_read(vcpu);
+ regs->r11 = kvm_r11_read(vcpu);
+ regs->r12 = kvm_r12_read(vcpu);
+ regs->r13 = kvm_r13_read(vcpu);
+ regs->r14 = kvm_r14_read(vcpu);
+ regs->r15 = kvm_r15_read(vcpu);
+#endif
+
+ regs->rip = kvm_rip_read(vcpu);
+ regs->rflags = kvm_get_rflags(vcpu);
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ vcpu_load(vcpu);
+ __get_regs(vcpu, regs);
+ vcpu_put(vcpu);
+ return 0;
+}
+
+static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+
+ kvm_rax_write(vcpu, regs->rax);
+ kvm_rbx_write(vcpu, regs->rbx);
+ kvm_rcx_write(vcpu, regs->rcx);
+ kvm_rdx_write(vcpu, regs->rdx);
+ kvm_rsi_write(vcpu, regs->rsi);
+ kvm_rdi_write(vcpu, regs->rdi);
+ kvm_rsp_write(vcpu, regs->rsp);
+ kvm_rbp_write(vcpu, regs->rbp);
+#ifdef CONFIG_X86_64
+ kvm_r8_write(vcpu, regs->r8);
+ kvm_r9_write(vcpu, regs->r9);
+ kvm_r10_write(vcpu, regs->r10);
+ kvm_r11_write(vcpu, regs->r11);
+ kvm_r12_write(vcpu, regs->r12);
+ kvm_r13_write(vcpu, regs->r13);
+ kvm_r14_write(vcpu, regs->r14);
+ kvm_r15_write(vcpu, regs->r15);
+#endif
+
+ kvm_rip_write(vcpu, regs->rip);
+ kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
+
+ vcpu->arch.exception.pending = false;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ vcpu_load(vcpu);
+ __set_regs(vcpu, regs);
+ vcpu_put(vcpu);
+ return 0;
+}
+
+void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ struct kvm_segment cs;
+
+ kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ *db = cs.db;
+ *l = cs.l;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
+
+static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ struct desc_ptr dt;
+
+ kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+ kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+ kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+ kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+ kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+ kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+ kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+ kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+ kvm_x86_ops.get_idt(vcpu, &dt);
+ sregs->idt.limit = dt.size;
+ sregs->idt.base = dt.address;
+ kvm_x86_ops.get_gdt(vcpu, &dt);
+ sregs->gdt.limit = dt.size;
+ sregs->gdt.base = dt.address;
+
+ sregs->cr0 = kvm_read_cr0(vcpu);
+ sregs->cr2 = vcpu->arch.cr2;
+ sregs->cr3 = kvm_read_cr3(vcpu);
+ sregs->cr4 = kvm_read_cr4(vcpu);
+ sregs->cr8 = kvm_get_cr8(vcpu);
+ sregs->efer = vcpu->arch.efer;
+ sregs->apic_base = kvm_get_apic_base(vcpu);
+
+ memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
+
+ if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
+ set_bit(vcpu->arch.interrupt.nr,
+ (unsigned long *)sregs->interrupt_bitmap);
+}
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ vcpu_load(vcpu);
+ __get_sregs(vcpu, sregs);
+ vcpu_put(vcpu);
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ vcpu_load(vcpu);
+ if (kvm_mpx_supported())
+ kvm_load_guest_fpu(vcpu);
+
+ kvm_apic_accept_events(vcpu);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
+ vcpu->arch.pv.pv_unhalted)
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ mp_state->mp_state = vcpu->arch.mp_state;
+
+ if (kvm_mpx_supported())
+ kvm_put_guest_fpu(vcpu);
+ vcpu_put(vcpu);
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ int ret = -EINVAL;
+
+ vcpu_load(vcpu);
+
+ if (!lapic_in_kernel(vcpu) &&
+ mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
+ goto out;
+
+ /*
+ * KVM_MP_STATE_INIT_RECEIVED means the processor is in
+ * INIT state; latched init should be reported using
+ * KVM_SET_VCPU_EVENTS, so reject it here.
+ */
+ if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
+ (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
+ mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
+ goto out;
+
+ if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
+ vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+ set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
+ } else
+ vcpu->arch.mp_state = mp_state->mp_state;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ ret = 0;
+out:
+ vcpu_put(vcpu);
+ return ret;
+}
+
+int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
+ int reason, bool has_error_code, u32 error_code)
+{
+ struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
+ int ret;
+
+ init_emulate_ctxt(vcpu);
+
+ ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
+ has_error_code, error_code);
+ if (ret) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
+ return 1;
+}
+EXPORT_SYMBOL_GPL(kvm_task_switch);
+
+static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
+ /*
+ * When EFER.LME and CR0.PG are set, the processor is in
+ * 64-bit mode (though maybe in a 32-bit code segment).
+ * CR4.PAE and EFER.LMA must be set.
+ */
+ if (!(sregs->cr4 & X86_CR4_PAE)
+ || !(sregs->efer & EFER_LMA))
+ return -EINVAL;
+ if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
+ return -EINVAL;
+ } else {
+ /*
+ * Not in 64-bit mode: EFER.LMA is clear and the code
+ * segment cannot be 64-bit.
+ */
+ if (sregs->efer & EFER_LMA || sregs->cs.l)
+ return -EINVAL;
+ }
+
+ return kvm_valid_cr4(vcpu, sregs->cr4);
+}
+
+static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ struct msr_data apic_base_msr;
+ int mmu_reset_needed = 0;
+ int cpuid_update_needed = 0;
+ int pending_vec, max_bits, idx;
+ struct desc_ptr dt;
+ int ret = -EINVAL;
+
+ if (kvm_valid_sregs(vcpu, sregs))
+ goto out;
+
+ apic_base_msr.data = sregs->apic_base;
+ apic_base_msr.host_initiated = true;
+ if (kvm_set_apic_base(vcpu, &apic_base_msr))
+ goto out;
+
+ dt.size = sregs->idt.limit;
+ dt.address = sregs->idt.base;
+ kvm_x86_ops.set_idt(vcpu, &dt);
+ dt.size = sregs->gdt.limit;
+ dt.address = sregs->gdt.base;
+ kvm_x86_ops.set_gdt(vcpu, &dt);
+
+ vcpu->arch.cr2 = sregs->cr2;
+ mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
+ vcpu->arch.cr3 = sregs->cr3;
+ kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
+
+ kvm_set_cr8(vcpu, sregs->cr8);
+
+ mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
+ kvm_x86_ops.set_efer(vcpu, sregs->efer);
+
+ mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
+ kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
+ vcpu->arch.cr0 = sregs->cr0;
+
+ mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
+ cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
+ (X86_CR4_OSXSAVE | X86_CR4_PKE));
+ kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
+ if (cpuid_update_needed)
+ kvm_update_cpuid_runtime(vcpu);
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ if (is_pae_paging(vcpu)) {
+ load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
+ mmu_reset_needed = 1;
+ }
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ if (mmu_reset_needed)
+ kvm_mmu_reset_context(vcpu);
+
+ max_bits = KVM_NR_INTERRUPTS;
+ pending_vec = find_first_bit(
+ (const unsigned long *)sregs->interrupt_bitmap, max_bits);
+ if (pending_vec < max_bits) {
+ kvm_queue_interrupt(vcpu, pending_vec, false);
+ pr_debug("Set back pending irq %d\n", pending_vec);
+ }
+
+ kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+ kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+ kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+ kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+ kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+ kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+ kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+ kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+ update_cr8_intercept(vcpu);
+
+ /* Older userspace won't unhalt the vcpu on reset. */
+ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
+ sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
+ !is_protmode(vcpu))
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ ret = 0;
+out:
+ return ret;
+}
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int ret;
+
+ vcpu_load(vcpu);
+ ret = __set_sregs(vcpu, sregs);
+ vcpu_put(vcpu);
+ return ret;
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ unsigned long rflags;
+ int i, r;
+
+ vcpu_load(vcpu);
+
+ if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
+ r = -EBUSY;
+ if (vcpu->arch.exception.pending)
+ goto out;
+ if (dbg->control & KVM_GUESTDBG_INJECT_DB)
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ else
+ kvm_queue_exception(vcpu, BP_VECTOR);
+ }
+
+ /*
+ * Read rflags as long as potentially injected trace flags are still
+ * filtered out.
+ */
+ rflags = kvm_get_rflags(vcpu);
+
+ vcpu->guest_debug = dbg->control;
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
+ vcpu->guest_debug = 0;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+ for (i = 0; i < KVM_NR_DB_REGS; ++i)
+ vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
+ vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
+ } else {
+ for (i = 0; i < KVM_NR_DB_REGS; i++)
+ vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+ }
+ kvm_update_dr7(vcpu);
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
+ get_segment_base(vcpu, VCPU_SREG_CS);
+
+ /*
+ * Trigger an rflags update that will inject or remove the trace
+ * flags.
+ */
+ kvm_set_rflags(vcpu, rflags);
+
+ kvm_x86_ops.update_exception_bitmap(vcpu);
+
+ r = 0;
+
+out:
+ vcpu_put(vcpu);
+ return r;
+}
+
+/*
+ * Translate a guest virtual address to a guest physical address.
+ */
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ unsigned long vaddr = tr->linear_address;
+ gpa_t gpa;
+ int idx;
+
+ vcpu_load(vcpu);
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ tr->physical_address = gpa;
+ tr->valid = gpa != UNMAPPED_GVA;
+ tr->writeable = 1;
+ tr->usermode = 0;
+
+ vcpu_put(vcpu);
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ struct fxregs_state *fxsave;
+
+ vcpu_load(vcpu);
+
+ fxsave = &vcpu->arch.guest_fpu->state.fxsave;
+ memcpy(fpu->fpr, fxsave->st_space, 128);
+ fpu->fcw = fxsave->cwd;
+ fpu->fsw = fxsave->swd;
+ fpu->ftwx = fxsave->twd;
+ fpu->last_opcode = fxsave->fop;
+ fpu->last_ip = fxsave->rip;
+ fpu->last_dp = fxsave->rdp;
+ memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
+
+ vcpu_put(vcpu);
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ struct fxregs_state *fxsave;
+
+ vcpu_load(vcpu);
+
+ fxsave = &vcpu->arch.guest_fpu->state.fxsave;
+
+ memcpy(fxsave->st_space, fpu->fpr, 128);
+ fxsave->cwd = fpu->fcw;
+ fxsave->swd = fpu->fsw;
+ fxsave->twd = fpu->ftwx;
+ fxsave->fop = fpu->last_opcode;
+ fxsave->rip = fpu->last_ip;
+ fxsave->rdp = fpu->last_dp;
+ memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
+
+ vcpu_put(vcpu);
+ return 0;
+}
+
+static void store_regs(struct kvm_vcpu *vcpu)
+{
+ BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
+
+ if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
+ __get_regs(vcpu, &vcpu->run->s.regs.regs);
+
+ if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
+ __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
+
+ if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
+ kvm_vcpu_ioctl_x86_get_vcpu_events(
+ vcpu, &vcpu->run->s.regs.events);
+}
+
+static int sync_regs(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
+ return -EINVAL;
+
+ if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
+ __set_regs(vcpu, &vcpu->run->s.regs.regs);
+ vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
+ }
+ if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
+ if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
+ return -EINVAL;
+ vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
+ }
+ if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
+ if (kvm_vcpu_ioctl_x86_set_vcpu_events(
+ vcpu, &vcpu->run->s.regs.events))
+ return -EINVAL;
+ vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
+ }
+
+ return 0;
+}
+
+static void fx_init(struct kvm_vcpu *vcpu)
+{
+ fpstate_init(&vcpu->arch.guest_fpu->state);
+ if (boot_cpu_has(X86_FEATURE_XSAVES))
+ vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
+ host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+ /*
+ * Ensure guest xcr0 is valid for loading
+ */
+ vcpu->arch.xcr0 = XFEATURE_MASK_FP;
+
+ vcpu->arch.cr0 |= X86_CR0_ET;
+}
+
+int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+{
+ if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
+ pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
+ "guest TSC will not be reliable\n");
+
+ return 0;
+}
+
+int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ struct page *page;
+ int r;
+
+ if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
+
+ kvm_set_tsc_khz(vcpu, max_tsc_khz);
+
+ r = kvm_mmu_create(vcpu);
+ if (r < 0)
+ return r;
+
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
+ if (r < 0)
+ goto fail_mmu_destroy;
+ if (kvm_apicv_activated(vcpu->kvm))
+ vcpu->arch.apicv_active = true;
+ } else
+ static_key_slow_inc(&kvm_no_apic_vcpu);
+
+ r = -ENOMEM;
+
+ page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (!page)
+ goto fail_free_lapic;
+ vcpu->arch.pio_data = page_address(page);
+
+ vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
+ GFP_KERNEL_ACCOUNT);
+ if (!vcpu->arch.mce_banks)
+ goto fail_free_pio_data;
+ vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
+
+ if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
+ GFP_KERNEL_ACCOUNT))
+ goto fail_free_mce_banks;
+
+ if (!alloc_emulate_ctxt(vcpu))
+ goto free_wbinvd_dirty_mask;
+
+ vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
+ GFP_KERNEL_ACCOUNT);
+ if (!vcpu->arch.user_fpu) {
+ pr_err("kvm: failed to allocate userspace's fpu\n");
+ goto free_emulate_ctxt;
+ }
+
+ vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
+ GFP_KERNEL_ACCOUNT);
+ if (!vcpu->arch.guest_fpu) {
+ pr_err("kvm: failed to allocate vcpu's fpu\n");
+ goto free_user_fpu;
+ }
+ fx_init(vcpu);
+
+ vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+ vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
+
+ vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
+
+ kvm_async_pf_hash_reset(vcpu);
+ kvm_pmu_init(vcpu);
+
+ vcpu->arch.pending_external_vector = -1;
+ vcpu->arch.preempted_in_kernel = false;
+
+ kvm_hv_vcpu_init(vcpu);
+
+ r = kvm_x86_ops.vcpu_create(vcpu);
+ if (r)
+ goto free_guest_fpu;
+
+ vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
+ vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
+ kvm_vcpu_mtrr_init(vcpu);
+ vcpu_load(vcpu);
+ kvm_vcpu_reset(vcpu, false);
+ kvm_init_mmu(vcpu, false);
+ vcpu_put(vcpu);
+ return 0;
+
+free_guest_fpu:
+ kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
+free_user_fpu:
+ kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
+free_emulate_ctxt:
+ kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
+free_wbinvd_dirty_mask:
+ free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+fail_free_mce_banks:
+ kfree(vcpu->arch.mce_banks);
+fail_free_pio_data:
+ free_page((unsigned long)vcpu->arch.pio_data);
+fail_free_lapic:
+ kvm_free_lapic(vcpu);
+fail_mmu_destroy:
+ kvm_mmu_destroy(vcpu);
+ return r;
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ kvm_hv_vcpu_postcreate(vcpu);
+
+ if (mutex_lock_killable(&vcpu->mutex))
+ return;
+ vcpu_load(vcpu);
+ kvm_synchronize_tsc(vcpu, 0);
+ vcpu_put(vcpu);
+
+ /* poll control enabled by default */
+ vcpu->arch.msr_kvm_poll_control = 1;
+
+ mutex_unlock(&vcpu->mutex);
+
+ if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
+ schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+ KVMCLOCK_SYNC_PERIOD);
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ int idx;
+
+ kvmclock_reset(vcpu);
+
+ kvm_x86_ops.vcpu_free(vcpu);
+
+ kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
+ free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+ kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
+ kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
+
+ kvm_hv_vcpu_uninit(vcpu);
+ kvm_pmu_destroy(vcpu);
+ kfree(vcpu->arch.mce_banks);
+ kvm_free_lapic(vcpu);
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ kvm_mmu_destroy(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ free_page((unsigned long)vcpu->arch.pio_data);
+ kvfree(vcpu->arch.cpuid_entries);
+ if (!lapic_in_kernel(vcpu))
+ static_key_slow_dec(&kvm_no_apic_vcpu);
+}
+
+void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+ kvm_lapic_reset(vcpu, init_event);
+
+ vcpu->arch.hflags = 0;
+
+ vcpu->arch.smi_pending = 0;
+ vcpu->arch.smi_count = 0;
+ atomic_set(&vcpu->arch.nmi_queued, 0);
+ vcpu->arch.nmi_pending = 0;
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_interrupt_queue(vcpu);
+ kvm_clear_exception_queue(vcpu);
+
+ memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
+ kvm_update_dr0123(vcpu);
+ vcpu->arch.dr6 = DR6_INIT;
+ vcpu->arch.dr7 = DR7_FIXED_1;
+ kvm_update_dr7(vcpu);
+
+ vcpu->arch.cr2 = 0;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ vcpu->arch.apf.msr_en_val = 0;
+ vcpu->arch.apf.msr_int_val = 0;
+ vcpu->arch.st.msr_val = 0;
+
+ kvmclock_reset(vcpu);
+
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ vcpu->arch.apf.halted = false;
+
+ if (kvm_mpx_supported()) {
+ void *mpx_state_buffer;
+
+ /*
+ * To avoid have the INIT path from kvm_apic_has_events() that be
+ * called with loaded FPU and does not let userspace fix the state.
+ */
+ if (init_event)
+ kvm_put_guest_fpu(vcpu);
+ mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
+ XFEATURE_BNDREGS);
+ if (mpx_state_buffer)
+ memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
+ mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
+ XFEATURE_BNDCSR);
+ if (mpx_state_buffer)
+ memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
+ if (init_event)
+ kvm_load_guest_fpu(vcpu);
+ }
+
+ if (!init_event) {
+ kvm_pmu_reset(vcpu);
+ vcpu->arch.smbase = 0x30000;
+
+ vcpu->arch.msr_misc_features_enables = 0;
+
+ vcpu->arch.xcr0 = XFEATURE_MASK_FP;
+ }
+
+ memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
+ vcpu->arch.regs_avail = ~0;
+ vcpu->arch.regs_dirty = ~0;
+
+ vcpu->arch.ia32_xss = 0;
+
+ kvm_x86_ops.vcpu_reset(vcpu, init_event);
+}
+
+void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
+{
+ struct kvm_segment cs;
+
+ kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ cs.selector = vector << 8;
+ cs.base = vector << 12;
+ kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
+ kvm_rip_write(vcpu, 0);
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ struct kvm *kvm;
+ struct kvm_vcpu *vcpu;
+ int i;
+ int ret;
+ u64 local_tsc;
+ u64 max_tsc = 0;
+ bool stable, backwards_tsc = false;
+
+ kvm_user_return_msr_cpu_online();
+ ret = kvm_x86_ops.hardware_enable();
+ if (ret != 0)
+ return ret;
+
+ local_tsc = rdtsc();
+ stable = !kvm_check_tsc_unstable();
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!stable && vcpu->cpu == smp_processor_id())
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ if (stable && vcpu->arch.last_host_tsc > local_tsc) {
+ backwards_tsc = true;
+ if (vcpu->arch.last_host_tsc > max_tsc)
+ max_tsc = vcpu->arch.last_host_tsc;
+ }
+ }
+ }
+
+ /*
+ * Sometimes, even reliable TSCs go backwards. This happens on
+ * platforms that reset TSC during suspend or hibernate actions, but
+ * maintain synchronization. We must compensate. Fortunately, we can
+ * detect that condition here, which happens early in CPU bringup,
+ * before any KVM threads can be running. Unfortunately, we can't
+ * bring the TSCs fully up to date with real time, as we aren't yet far
+ * enough into CPU bringup that we know how much real time has actually
+ * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
+ * variables that haven't been updated yet.
+ *
+ * So we simply find the maximum observed TSC above, then record the
+ * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
+ * the adjustment will be applied. Note that we accumulate
+ * adjustments, in case multiple suspend cycles happen before some VCPU
+ * gets a chance to run again. In the event that no KVM threads get a
+ * chance to run, we will miss the entire elapsed period, as we'll have
+ * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
+ * loose cycle time. This isn't too big a deal, since the loss will be
+ * uniform across all VCPUs (not to mention the scenario is extremely
+ * unlikely). It is possible that a second hibernate recovery happens
+ * much faster than a first, causing the observed TSC here to be
+ * smaller; this would require additional padding adjustment, which is
+ * why we set last_host_tsc to the local tsc observed here.
+ *
+ * N.B. - this code below runs only on platforms with reliable TSC,
+ * as that is the only way backwards_tsc is set above. Also note
+ * that this runs for ALL vcpus, which is not a bug; all VCPUs should
+ * have the same delta_cyc adjustment applied if backwards_tsc
+ * is detected. Note further, this adjustment is only done once,
+ * as we reset last_host_tsc on all VCPUs to stop this from being
+ * called multiple times (one for each physical CPU bringup).
+ *
+ * Platforms with unreliable TSCs don't have to deal with this, they
+ * will be compensated by the logic in vcpu_load, which sets the TSC to
+ * catchup mode. This will catchup all VCPUs to real time, but cannot
+ * guarantee that they stay in perfect synchronization.
+ */
+ if (backwards_tsc) {
+ u64 delta_cyc = max_tsc - local_tsc;
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm->arch.backwards_tsc_observed = true;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu->arch.tsc_offset_adjustment += delta_cyc;
+ vcpu->arch.last_host_tsc = local_tsc;
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+ }
+
+ /*
+ * We have to disable TSC offset matching.. if you were
+ * booting a VM while issuing an S4 host suspend....
+ * you may have some problem. Solving this issue is
+ * left as an exercise to the reader.
+ */
+ kvm->arch.last_tsc_nsec = 0;
+ kvm->arch.last_tsc_write = 0;
+ }
+
+ }
+ return 0;
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ kvm_x86_ops.hardware_disable();
+ drop_user_return_notifiers();
+}
+
+int kvm_arch_hardware_setup(void *opaque)
+{
+ struct kvm_x86_init_ops *ops = opaque;
+ int r;
+
+ rdmsrl_safe(MSR_EFER, &host_efer);
+
+ if (boot_cpu_has(X86_FEATURE_XSAVES))
+ rdmsrl(MSR_IA32_XSS, host_xss);
+
+ r = ops->hardware_setup();
+ if (r != 0)
+ return r;
+
+ memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
+
+ if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
+ supported_xss = 0;
+
+#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
+ cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
+#undef __kvm_cpu_cap_has
+
+ if (kvm_has_tsc_control) {
+ /*
+ * Make sure the user can only configure tsc_khz values that
+ * fit into a signed integer.
+ * A min value is not calculated because it will always
+ * be 1 on all machines.
+ */
+ u64 max = min(0x7fffffffULL,
+ __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
+ kvm_max_guest_tsc_khz = max;
+
+ kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
+ }
+
+ kvm_init_msr_list();
+ return 0;
+}
+
+void kvm_arch_hardware_unsetup(void)
+{
+ kvm_x86_ops.hardware_unsetup();
+}
+
+int kvm_arch_check_processor_compat(void *opaque)
+{
+ struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
+ struct kvm_x86_init_ops *ops = opaque;
+
+ WARN_ON(!irqs_disabled());
+
+ if (__cr4_reserved_bits(cpu_has, c) !=
+ __cr4_reserved_bits(cpu_has, &boot_cpu_data))
+ return -EIO;
+
+ return ops->check_processor_compatibility();
+}
+
+bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
+{
+ return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
+
+bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
+{
+ return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
+}
+
+struct static_key kvm_no_apic_vcpu __read_mostly;
+EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
+
+void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+
+ vcpu->arch.l1tf_flush_l1d = true;
+ if (pmu->version && unlikely(pmu->event_count)) {
+ pmu->need_cleanup = true;
+ kvm_make_request(KVM_REQ_PMU, vcpu);
+ }
+ kvm_x86_ops.sched_in(vcpu, cpu);
+}
+
+void kvm_arch_free_vm(struct kvm *kvm)
+{
+ kfree(kvm->arch.hyperv.hv_pa_pg);
+ vfree(kvm);
+}
+
+
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret;
+
+ if (type)
+ return -EINVAL;
+
+ ret = kvm_page_track_init(kvm);
+ if (ret)
+ return ret;
+
+ INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
+ INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
+ INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
+ INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
+ atomic_set(&kvm->arch.noncoherent_dma_count, 0);
+
+ /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
+ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
+ /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
+ set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
+ &kvm->arch.irq_sources_bitmap);
+
+ raw_spin_lock_init(&kvm->arch.tsc_write_lock);
+ mutex_init(&kvm->arch.apic_map_lock);
+ spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
+
+ kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm->arch.guest_can_read_msr_platform_info = true;
+
+ INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
+ INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
+
+ kvm_hv_init_vm(kvm);
+ kvm_mmu_init_vm(kvm);
+
+ return kvm_x86_ops.vm_init(kvm);
+}
+
+int kvm_arch_post_init_vm(struct kvm *kvm)
+{
+ return kvm_mmu_post_init_vm(kvm);
+}
+
+static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
+{
+ vcpu_load(vcpu);
+ kvm_mmu_unload(vcpu);
+ vcpu_put(vcpu);
+}
+
+static void kvm_free_vcpus(struct kvm *kvm)
+{
+ unsigned int i;
+ struct kvm_vcpu *vcpu;
+
+ /*
+ * Unpin any mmu pages first.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_unload_vcpu_mmu(vcpu);
+ }
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vcpu_destroy(vcpu);
+
+ mutex_lock(&kvm->lock);
+ for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
+ kvm->vcpus[i] = NULL;
+
+ atomic_set(&kvm->online_vcpus, 0);
+ mutex_unlock(&kvm->lock);
+}
+
+void kvm_arch_sync_events(struct kvm *kvm)
+{
+ cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
+ cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
+ kvm_free_pit(kvm);
+}
+
+int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
+{
+ int i, r;
+ unsigned long hva, old_npages;
+ struct kvm_memslots *slots = kvm_memslots(kvm);
+ struct kvm_memory_slot *slot;
+
+ /* Called with kvm->slots_lock held. */
+ if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
+ return -EINVAL;
+
+ slot = id_to_memslot(slots, id);
+ if (size) {
+ if (slot && slot->npages)
+ return -EEXIST;
+
+ /*
+ * MAP_SHARED to prevent internal slot pages from being moved
+ * by fork()/COW.
+ */
+ hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANONYMOUS, 0);
+ if (IS_ERR((void *)hva))
+ return PTR_ERR((void *)hva);
+ } else {
+ if (!slot || !slot->npages)
+ return 0;
+
+ old_npages = slot->npages;
+ hva = 0;
+ }
+
+ for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+ struct kvm_userspace_memory_region m;
+
+ m.slot = id | (i << 16);
+ m.flags = 0;
+ m.guest_phys_addr = gpa;
+ m.userspace_addr = hva;
+ m.memory_size = size;
+ r = __kvm_set_memory_region(kvm, &m);
+ if (r < 0)
+ return r;
+ }
+
+ if (!size)
+ vm_munmap(hva, old_npages * PAGE_SIZE);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__x86_set_memory_region);
+
+void kvm_arch_pre_destroy_vm(struct kvm *kvm)
+{
+ kvm_mmu_pre_destroy_vm(kvm);
+}
+
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ if (current->mm == kvm->mm) {
+ /*
+ * Free memory regions allocated on behalf of userspace,
+ * unless the the memory map has changed due to process exit
+ * or fd copying.
+ */
+ mutex_lock(&kvm->slots_lock);
+ __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+ 0, 0);
+ __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+ 0, 0);
+ __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
+ mutex_unlock(&kvm->slots_lock);
+ }
+ if (kvm_x86_ops.vm_destroy)
+ kvm_x86_ops.vm_destroy(kvm);
+ kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
+ kvm_pic_destroy(kvm);
+ kvm_ioapic_destroy(kvm);
+ kvm_free_vcpus(kvm);
+ kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
+ kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
+ kvm_mmu_uninit_vm(kvm);
+ kvm_page_track_cleanup(kvm);
+ kvm_hv_destroy_vm(kvm);
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ int i;
+
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ kvfree(slot->arch.rmap[i]);
+ slot->arch.rmap[i] = NULL;
+
+ if (i == 0)
+ continue;
+
+ kvfree(slot->arch.lpage_info[i - 1]);
+ slot->arch.lpage_info[i - 1] = NULL;
+ }
+
+ kvm_page_track_free_memslot(slot);
+}
+
+static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
+ unsigned long npages)
+{
+ int i;
+
+ /*
+ * Clear out the previous array pointers for the KVM_MR_MOVE case. The
+ * old arrays will be freed by __kvm_set_memory_region() if installing
+ * the new memslot is successful.
+ */
+ memset(&slot->arch, 0, sizeof(slot->arch));
+
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ struct kvm_lpage_info *linfo;
+ unsigned long ugfn;
+ int lpages;
+ int level = i + 1;
+
+ lpages = gfn_to_index(slot->base_gfn + npages - 1,
+ slot->base_gfn, level) + 1;
+
+ slot->arch.rmap[i] =
+ kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
+ GFP_KERNEL_ACCOUNT);
+ if (!slot->arch.rmap[i])
+ goto out_free;
+ if (i == 0)
+ continue;
+
+ linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
+ if (!linfo)
+ goto out_free;
+
+ slot->arch.lpage_info[i - 1] = linfo;
+
+ if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
+ linfo[0].disallow_lpage = 1;
+ if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
+ linfo[lpages - 1].disallow_lpage = 1;
+ ugfn = slot->userspace_addr >> PAGE_SHIFT;
+ /*
+ * If the gfn and userspace address are not aligned wrt each
+ * other, disable large page support for this slot.
+ */
+ if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
+ unsigned long j;
+
+ for (j = 0; j < lpages; ++j)
+ linfo[j].disallow_lpage = 1;
+ }
+ }
+
+ if (kvm_page_track_create_memslot(slot, npages))
+ goto out_free;
+
+ return 0;
+
+out_free:
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ kvfree(slot->arch.rmap[i]);
+ slot->arch.rmap[i] = NULL;
+ if (i == 0)
+ continue;
+
+ kvfree(slot->arch.lpage_info[i - 1]);
+ slot->arch.lpage_info[i - 1] = NULL;
+ }
+ return -ENOMEM;
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ /*
+ * memslots->generation has been incremented.
+ * mmio generation may have reached its maximum value.
+ */
+ kvm_mmu_invalidate_mmio_sptes(kvm, gen);
+
+ /* Force re-initialization of steal_time cache */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vcpu_kick(vcpu);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ const struct kvm_userspace_memory_region *mem,
+ enum kvm_mr_change change)
+{
+ if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
+ return kvm_alloc_memslot_metadata(memslot,
+ mem->memory_size >> PAGE_SHIFT);
+ return 0;
+}
+
+static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ /*
+ * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
+ * See comments below.
+ */
+ if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
+ return;
+
+ /*
+ * Dirty logging tracks sptes in 4k granularity, meaning that large
+ * sptes have to be split. If live migration is successful, the guest
+ * in the source machine will be destroyed and large sptes will be
+ * created in the destination. However, if the guest continues to run
+ * in the source machine (for example if live migration fails), small
+ * sptes will remain around and cause bad performance.
+ *
+ * Scan sptes if dirty logging has been stopped, dropping those
+ * which can be collapsed into a single large-page spte. Later
+ * page faults will create the large-page sptes.
+ *
+ * There is no need to do this in any of the following cases:
+ * CREATE: No dirty mappings will already exist.
+ * MOVE/DELETE: The old mappings will already have been cleaned up by
+ * kvm_arch_flush_shadow_memslot()
+ */
+ if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
+ !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
+ kvm_mmu_zap_collapsible_sptes(kvm, new);
+
+ /*
+ * Enable or disable dirty logging for the slot.
+ *
+ * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
+ * slot have been zapped so no dirty logging updates are needed for
+ * the old slot.
+ * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
+ * any mappings that might be created in it will consume the
+ * properties of the new slot and do not need to be updated here.
+ *
+ * When PML is enabled, the kvm_x86_ops dirty logging hooks are
+ * called to enable/disable dirty logging.
+ *
+ * When disabling dirty logging with PML enabled, the D-bit is set
+ * for sptes in the slot in order to prevent unnecessary GPA
+ * logging in the PML buffer (and potential PML buffer full VMEXIT).
+ * This guarantees leaving PML enabled for the guest's lifetime
+ * won't have any additional overhead from PML when the guest is
+ * running with dirty logging disabled.
+ *
+ * When enabling dirty logging, large sptes are write-protected
+ * so they can be split on first write. New large sptes cannot
+ * be created for this slot until the end of the logging.
+ * See the comments in fast_page_fault().
+ * For small sptes, nothing is done if the dirty log is in the
+ * initial-all-set state. Otherwise, depending on whether pml
+ * is enabled the D-bit or the W-bit will be cleared.
+ */
+ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ if (kvm_x86_ops.slot_enable_log_dirty) {
+ kvm_x86_ops.slot_enable_log_dirty(kvm, new);
+ } else {
+ int level =
+ kvm_dirty_log_manual_protect_and_init_set(kvm) ?
+ PG_LEVEL_2M : PG_LEVEL_4K;
+
+ /*
+ * If we're with initial-all-set, we don't need
+ * to write protect any small page because
+ * they're reported as dirty already. However
+ * we still need to write-protect huge pages
+ * so that the page split can happen lazily on
+ * the first write to the huge page.
+ */
+ kvm_mmu_slot_remove_write_access(kvm, new, level);
+ }
+ } else {
+ if (kvm_x86_ops.slot_disable_log_dirty)
+ kvm_x86_ops.slot_disable_log_dirty(kvm, new);
+ }
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ const struct kvm_userspace_memory_region *mem,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ if (!kvm->arch.n_requested_mmu_pages)
+ kvm_mmu_change_mmu_pages(kvm,
+ kvm_mmu_calculate_default_mmu_pages(kvm));
+
+ /*
+ * FIXME: const-ify all uses of struct kvm_memory_slot.
+ */
+ kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
+
+ /* Free the arrays associated with the old memslot. */
+ if (change == KVM_MR_MOVE)
+ kvm_arch_free_memslot(kvm, old);
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ kvm_mmu_zap_all(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_page_track_flush_slot(kvm, slot);
+}
+
+static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+ return (is_guest_mode(vcpu) &&
+ kvm_x86_ops.guest_apic_has_interrupt &&
+ kvm_x86_ops.guest_apic_has_interrupt(vcpu));
+}
+
+static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
+{
+ if (!list_empty_careful(&vcpu->async_pf.done))
+ return true;
+
+ if (kvm_apic_has_events(vcpu))
+ return true;
+
+ if (vcpu->arch.pv.pv_unhalted)
+ return true;
+
+ if (vcpu->arch.exception.pending)
+ return true;
+
+ if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
+ (vcpu->arch.nmi_pending &&
+ kvm_x86_ops.nmi_allowed(vcpu, false)))
+ return true;
+
+ if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
+ (vcpu->arch.smi_pending &&
+ kvm_x86_ops.smi_allowed(vcpu, false)))
+ return true;
+
+ if (kvm_arch_interrupt_allowed(vcpu) &&
+ (kvm_cpu_has_interrupt(vcpu) ||
+ kvm_guest_apic_has_interrupt(vcpu)))
+ return true;
+
+ if (kvm_hv_has_stimer_pending(vcpu))
+ return true;
+
+ if (is_guest_mode(vcpu) &&
+ kvm_x86_ops.nested_ops->hv_timer_pending &&
+ kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
+ return true;
+
+ return false;
+}
+
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
+}
+
+bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
+{
+ if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
+ return true;
+
+ if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
+ kvm_test_request(KVM_REQ_SMI, vcpu) ||
+ kvm_test_request(KVM_REQ_EVENT, vcpu))
+ return true;
+
+ if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
+ return true;
+
+ return false;
+}
+
+bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.preempted_in_kernel;
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+ return kvm_x86_ops.interrupt_allowed(vcpu, false);
+}
+
+unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
+{
+ if (is_64_bit_mode(vcpu))
+ return kvm_rip_read(vcpu);
+ return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
+ kvm_rip_read(vcpu));
+}
+EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
+
+bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
+{
+ return kvm_get_linear_rip(vcpu) == linear_rip;
+}
+EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
+
+unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
+{
+ unsigned long rflags;
+
+ rflags = kvm_x86_ops.get_rflags(vcpu);
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ rflags &= ~X86_EFLAGS_TF;
+ return rflags;
+}
+EXPORT_SYMBOL_GPL(kvm_get_rflags);
+
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
+ kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
+ rflags |= X86_EFLAGS_TF;
+ kvm_x86_ops.set_rflags(vcpu, rflags);
+}
+
+void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ __kvm_set_rflags(vcpu, rflags);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_set_rflags);
+
+void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
+{
+ int r;
+
+ if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
+ work->wakeup_all)
+ return;
+
+ r = kvm_mmu_reload(vcpu);
+ if (unlikely(r))
+ return;
+
+ if (!vcpu->arch.mmu->direct_map &&
+ work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
+ return;
+
+ kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
+}
+
+static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
+{
+ BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
+
+ return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
+}
+
+static inline u32 kvm_async_pf_next_probe(u32 key)
+{
+ return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
+}
+
+static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ u32 key = kvm_async_pf_hash_fn(gfn);
+
+ while (vcpu->arch.apf.gfns[key] != ~0)
+ key = kvm_async_pf_next_probe(key);
+
+ vcpu->arch.apf.gfns[key] = gfn;
+}
+
+static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ int i;
+ u32 key = kvm_async_pf_hash_fn(gfn);
+
+ for (i = 0; i < ASYNC_PF_PER_VCPU &&
+ (vcpu->arch.apf.gfns[key] != gfn &&
+ vcpu->arch.apf.gfns[key] != ~0); i++)
+ key = kvm_async_pf_next_probe(key);
+
+ return key;
+}
+
+bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
+}
+
+static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ u32 i, j, k;
+
+ i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
+
+ if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
+ return;
+
+ while (true) {
+ vcpu->arch.apf.gfns[i] = ~0;
+ do {
+ j = kvm_async_pf_next_probe(j);
+ if (vcpu->arch.apf.gfns[j] == ~0)
+ return;
+ k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
+ /*
+ * k lies cyclically in ]i,j]
+ * | i.k.j |
+ * |....j i.k.| or |.k..j i...|
+ */
+ } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
+ vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
+ i = j;
+ }
+}
+
+static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
+{
+ u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
+
+ return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
+ sizeof(reason));
+}
+
+static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
+{
+ unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
+
+ return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
+ &token, offset, sizeof(token));
+}
+
+static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
+{
+ unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
+ u32 val;
+
+ if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
+ &val, offset, sizeof(val)))
+ return false;
+
+ return !val;
+}
+
+static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
+ return false;
+
+ if (!kvm_pv_async_pf_enabled(vcpu) ||
+ (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
+ return false;
+
+ return true;
+}
+
+bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!lapic_in_kernel(vcpu) ||
+ kvm_event_needs_reinjection(vcpu) ||
+ vcpu->arch.exception.pending))
+ return false;
+
+ if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
+ return false;
+
+ /*
+ * If interrupts are off we cannot even use an artificial
+ * halt state.
+ */
+ return kvm_arch_interrupt_allowed(vcpu);
+}
+
+bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
+ struct kvm_async_pf *work)
+{
+ struct x86_exception fault;
+
+ trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
+ kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
+
+ if (kvm_can_deliver_async_pf(vcpu) &&
+ !apf_put_user_notpresent(vcpu)) {
+ fault.vector = PF_VECTOR;
+ fault.error_code_valid = true;
+ fault.error_code = 0;
+ fault.nested_page_fault = false;
+ fault.address = work->arch.token;
+ fault.async_page_fault = true;
+ kvm_inject_page_fault(vcpu, &fault);
+ return true;
+ } else {
+ /*
+ * It is not possible to deliver a paravirtualized asynchronous
+ * page fault, but putting the guest in an artificial halt state
+ * can be beneficial nevertheless: if an interrupt arrives, we
+ * can deliver it timely and perhaps the guest will schedule
+ * another process. When the instruction that triggered a page
+ * fault is retried, hopefully the page will be ready in the host.
+ */
+ kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+ return false;
+ }
+}
+
+void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
+ struct kvm_async_pf *work)
+{
+ struct kvm_lapic_irq irq = {
+ .delivery_mode = APIC_DM_FIXED,
+ .vector = vcpu->arch.apf.vec
+ };
+
+ if (work->wakeup_all)
+ work->arch.token = ~0; /* broadcast wakeup */
+ else
+ kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
+ trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
+
+ if ((work->wakeup_all || work->notpresent_injected) &&
+ kvm_pv_async_pf_enabled(vcpu) &&
+ !apf_put_user_ready(vcpu, work->arch.token)) {
+ vcpu->arch.apf.pageready_pending = true;
+ kvm_apic_set_irq(vcpu, &irq, NULL);
+ }
+
+ vcpu->arch.apf.halted = false;
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+}
+
+void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
+{
+ kvm_make_request(KVM_REQ_APF_READY, vcpu);
+ if (!vcpu->arch.apf.pageready_pending)
+ kvm_vcpu_kick(vcpu);
+}
+
+bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_pv_async_pf_enabled(vcpu))
+ return true;
+ else
+ return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
+}
+
+void kvm_arch_start_assignment(struct kvm *kvm)
+{
+ atomic_inc(&kvm->arch.assigned_device_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
+
+void kvm_arch_end_assignment(struct kvm *kvm)
+{
+ atomic_dec(&kvm->arch.assigned_device_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
+
+bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
+{
+ return arch_atomic_read(&kvm->arch.assigned_device_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
+
+void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
+{
+ atomic_inc(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
+
+void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
+{
+ atomic_dec(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
+
+bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
+{
+ return atomic_read(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
+
+bool kvm_arch_has_irq_bypass(void)
+{
+ return true;
+}
+
+int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+ int ret;
+
+ irqfd->producer = prod;
+ kvm_arch_start_assignment(irqfd->kvm);
+ ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
+ prod->irq, irqfd->gsi, 1);
+
+ if (ret)
+ kvm_arch_end_assignment(irqfd->kvm);
+
+ return ret;
+}
+
+void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ int ret;
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ WARN_ON(irqfd->producer != prod);
+ irqfd->producer = NULL;
+
+ /*
+ * When producer of consumer is unregistered, we change back to
+ * remapped mode, so we can re-use the current implementation
+ * when the irq is masked/disabled or the consumer side (KVM
+ * int this case doesn't want to receive the interrupts.
+ */
+ ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
+ if (ret)
+ printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
+ " fails: %d\n", irqfd->consumer.token, ret);
+
+ kvm_arch_end_assignment(irqfd->kvm);
+}
+
+int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
+ uint32_t guest_irq, bool set)
+{
+ return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
+}
+
+bool kvm_vector_hashing_enabled(void)
+{
+ return vector_hashing;
+}
+
+bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
+{
+ return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
+}
+EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
+
+
+int kvm_spec_ctrl_test_value(u64 value)
+{
+ /*
+ * test that setting IA32_SPEC_CTRL to given value
+ * is allowed by the host processor
+ */
+
+ u64 saved_value;
+ unsigned long flags;
+ int ret = 0;
+
+ local_irq_save(flags);
+
+ if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
+ ret = 1;
+ else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
+ ret = 1;
+ else
+ wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
+
+ local_irq_restore(flags);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
+
+void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
+{
+ struct x86_exception fault;
+ u32 access = error_code &
+ (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
+
+ if (!(error_code & PFERR_PRESENT_MASK) ||
+ vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
+ /*
+ * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
+ * tables probably do not match the TLB. Just proceed
+ * with the error code that the processor gave.
+ */
+ fault.vector = PF_VECTOR;
+ fault.error_code_valid = true;
+ fault.error_code = error_code;
+ fault.nested_page_fault = false;
+ fault.address = gva;
+ }
+ vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
+}
+EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
+
+/*
+ * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
+ * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
+ * indicates whether exit to userspace is needed.
+ */
+int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
+ struct x86_exception *e)
+{
+ if (r == X86EMUL_PROPAGATE_FAULT) {
+ kvm_inject_emulated_page_fault(vcpu, e);
+ return 1;
+ }
+
+ /*
+ * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
+ * while handling a VMX instruction KVM could've handled the request
+ * correctly by exiting to userspace and performing I/O but there
+ * doesn't seem to be a real use-case behind such requests, just return
+ * KVM_EXIT_INTERNAL_ERROR for now.
+ */
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
+
+int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
+{
+ bool pcid_enabled;
+ struct x86_exception e;
+ unsigned i;
+ unsigned long roots_to_free = 0;
+ struct {
+ u64 pcid;
+ u64 gla;
+ } operand;
+ int r;
+
+ r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
+ if (r != X86EMUL_CONTINUE)
+ return kvm_handle_memory_failure(vcpu, r, &e);
+
+ if (operand.pcid >> 12 != 0) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+
+ switch (type) {
+ case INVPCID_TYPE_INDIV_ADDR:
+ if ((!pcid_enabled && (operand.pcid != 0)) ||
+ is_noncanonical_address(operand.gla, vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
+ return kvm_skip_emulated_instruction(vcpu);
+
+ case INVPCID_TYPE_SINGLE_CTXT:
+ if (!pcid_enabled && (operand.pcid != 0)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (kvm_get_active_pcid(vcpu) == operand.pcid) {
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
+ }
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
+ == operand.pcid)
+ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+
+ kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
+ /*
+ * If neither the current cr3 nor any of the prev_roots use the
+ * given PCID, then nothing needs to be done here because a
+ * resync will happen anyway before switching to any other CR3.
+ */
+
+ return kvm_skip_emulated_instruction(vcpu);
+
+ case INVPCID_TYPE_ALL_NON_GLOBAL:
+ /*
+ * Currently, KVM doesn't mark global entries in the shadow
+ * page tables, so a non-global flush just degenerates to a
+ * global flush. If needed, we could optimize this later by
+ * keeping track of global entries in shadow page tables.
+ */
+
+ fallthrough;
+ case INVPCID_TYPE_ALL_INCL_GLOBAL:
+ kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+
+ default:
+ BUG(); /* We have already checked above that type <= 3 */
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
+
+static int __init kvm_x86_init(void)
+{
+ kvm_mmu_x86_module_init();
+ return 0;
+}
+module_init(kvm_x86_init);
+
+static void __exit kvm_x86_exit(void)
+{
+ /*
+ * If module_init() is implemented, module_exit() must also be
+ * implemented to allow module unload.
+ */
+}
+module_exit(kvm_x86_exit);