diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /kernel/time/ntp.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/time/ntp.c')
-rw-r--r-- | kernel/time/ntp.c | 1047 |
1 files changed, 1047 insertions, 0 deletions
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c new file mode 100644 index 000000000..069ca78fb --- /dev/null +++ b/kernel/time/ntp.c @@ -0,0 +1,1047 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NTP state machine interfaces and logic. + * + * This code was mainly moved from kernel/timer.c and kernel/time.c + * Please see those files for relevant copyright info and historical + * changelogs. + */ +#include <linux/capability.h> +#include <linux/clocksource.h> +#include <linux/workqueue.h> +#include <linux/hrtimer.h> +#include <linux/jiffies.h> +#include <linux/math64.h> +#include <linux/timex.h> +#include <linux/time.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/rtc.h> +#include <linux/audit.h> + +#include "ntp_internal.h" +#include "timekeeping_internal.h" + + +/* + * NTP timekeeping variables: + * + * Note: All of the NTP state is protected by the timekeeping locks. + */ + + +/* USER_HZ period (usecs): */ +unsigned long tick_usec = USER_TICK_USEC; + +/* SHIFTED_HZ period (nsecs): */ +unsigned long tick_nsec; + +static u64 tick_length; +static u64 tick_length_base; + +#define SECS_PER_DAY 86400 +#define MAX_TICKADJ 500LL /* usecs */ +#define MAX_TICKADJ_SCALED \ + (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) +#define MAX_TAI_OFFSET 100000 + +/* + * phase-lock loop variables + */ + +/* + * clock synchronization status + * + * (TIME_ERROR prevents overwriting the CMOS clock) + */ +static int time_state = TIME_OK; + +/* clock status bits: */ +static int time_status = STA_UNSYNC; + +/* time adjustment (nsecs): */ +static s64 time_offset; + +/* pll time constant: */ +static long time_constant = 2; + +/* maximum error (usecs): */ +static long time_maxerror = NTP_PHASE_LIMIT; + +/* estimated error (usecs): */ +static long time_esterror = NTP_PHASE_LIMIT; + +/* frequency offset (scaled nsecs/secs): */ +static s64 time_freq; + +/* time at last adjustment (secs): */ +static time64_t time_reftime; + +static long time_adjust; + +/* constant (boot-param configurable) NTP tick adjustment (upscaled) */ +static s64 ntp_tick_adj; + +/* second value of the next pending leapsecond, or TIME64_MAX if no leap */ +static time64_t ntp_next_leap_sec = TIME64_MAX; + +#ifdef CONFIG_NTP_PPS + +/* + * The following variables are used when a pulse-per-second (PPS) signal + * is available. They establish the engineering parameters of the clock + * discipline loop when controlled by the PPS signal. + */ +#define PPS_VALID 10 /* PPS signal watchdog max (s) */ +#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ +#define PPS_INTMIN 2 /* min freq interval (s) (shift) */ +#define PPS_INTMAX 8 /* max freq interval (s) (shift) */ +#define PPS_INTCOUNT 4 /* number of consecutive good intervals to + increase pps_shift or consecutive bad + intervals to decrease it */ +#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ + +static int pps_valid; /* signal watchdog counter */ +static long pps_tf[3]; /* phase median filter */ +static long pps_jitter; /* current jitter (ns) */ +static struct timespec64 pps_fbase; /* beginning of the last freq interval */ +static int pps_shift; /* current interval duration (s) (shift) */ +static int pps_intcnt; /* interval counter */ +static s64 pps_freq; /* frequency offset (scaled ns/s) */ +static long pps_stabil; /* current stability (scaled ns/s) */ + +/* + * PPS signal quality monitors + */ +static long pps_calcnt; /* calibration intervals */ +static long pps_jitcnt; /* jitter limit exceeded */ +static long pps_stbcnt; /* stability limit exceeded */ +static long pps_errcnt; /* calibration errors */ + + +/* PPS kernel consumer compensates the whole phase error immediately. + * Otherwise, reduce the offset by a fixed factor times the time constant. + */ +static inline s64 ntp_offset_chunk(s64 offset) +{ + if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) + return offset; + else + return shift_right(offset, SHIFT_PLL + time_constant); +} + +static inline void pps_reset_freq_interval(void) +{ + /* the PPS calibration interval may end + surprisingly early */ + pps_shift = PPS_INTMIN; + pps_intcnt = 0; +} + +/** + * pps_clear - Clears the PPS state variables + */ +static inline void pps_clear(void) +{ + pps_reset_freq_interval(); + pps_tf[0] = 0; + pps_tf[1] = 0; + pps_tf[2] = 0; + pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; + pps_freq = 0; +} + +/* Decrease pps_valid to indicate that another second has passed since + * the last PPS signal. When it reaches 0, indicate that PPS signal is + * missing. + */ +static inline void pps_dec_valid(void) +{ + if (pps_valid > 0) + pps_valid--; + else { + time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | + STA_PPSWANDER | STA_PPSERROR); + pps_clear(); + } +} + +static inline void pps_set_freq(s64 freq) +{ + pps_freq = freq; +} + +static inline int is_error_status(int status) +{ + return (status & (STA_UNSYNC|STA_CLOCKERR)) + /* PPS signal lost when either PPS time or + * PPS frequency synchronization requested + */ + || ((status & (STA_PPSFREQ|STA_PPSTIME)) + && !(status & STA_PPSSIGNAL)) + /* PPS jitter exceeded when + * PPS time synchronization requested */ + || ((status & (STA_PPSTIME|STA_PPSJITTER)) + == (STA_PPSTIME|STA_PPSJITTER)) + /* PPS wander exceeded or calibration error when + * PPS frequency synchronization requested + */ + || ((status & STA_PPSFREQ) + && (status & (STA_PPSWANDER|STA_PPSERROR))); +} + +static inline void pps_fill_timex(struct __kernel_timex *txc) +{ + txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * + PPM_SCALE_INV, NTP_SCALE_SHIFT); + txc->jitter = pps_jitter; + if (!(time_status & STA_NANO)) + txc->jitter = pps_jitter / NSEC_PER_USEC; + txc->shift = pps_shift; + txc->stabil = pps_stabil; + txc->jitcnt = pps_jitcnt; + txc->calcnt = pps_calcnt; + txc->errcnt = pps_errcnt; + txc->stbcnt = pps_stbcnt; +} + +#else /* !CONFIG_NTP_PPS */ + +static inline s64 ntp_offset_chunk(s64 offset) +{ + return shift_right(offset, SHIFT_PLL + time_constant); +} + +static inline void pps_reset_freq_interval(void) {} +static inline void pps_clear(void) {} +static inline void pps_dec_valid(void) {} +static inline void pps_set_freq(s64 freq) {} + +static inline int is_error_status(int status) +{ + return status & (STA_UNSYNC|STA_CLOCKERR); +} + +static inline void pps_fill_timex(struct __kernel_timex *txc) +{ + /* PPS is not implemented, so these are zero */ + txc->ppsfreq = 0; + txc->jitter = 0; + txc->shift = 0; + txc->stabil = 0; + txc->jitcnt = 0; + txc->calcnt = 0; + txc->errcnt = 0; + txc->stbcnt = 0; +} + +#endif /* CONFIG_NTP_PPS */ + + +/** + * ntp_synced - Returns 1 if the NTP status is not UNSYNC + * + */ +static inline int ntp_synced(void) +{ + return !(time_status & STA_UNSYNC); +} + + +/* + * NTP methods: + */ + +/* + * Update (tick_length, tick_length_base, tick_nsec), based + * on (tick_usec, ntp_tick_adj, time_freq): + */ +static void ntp_update_frequency(void) +{ + u64 second_length; + u64 new_base; + + second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) + << NTP_SCALE_SHIFT; + + second_length += ntp_tick_adj; + second_length += time_freq; + + tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; + new_base = div_u64(second_length, NTP_INTERVAL_FREQ); + + /* + * Don't wait for the next second_overflow, apply + * the change to the tick length immediately: + */ + tick_length += new_base - tick_length_base; + tick_length_base = new_base; +} + +static inline s64 ntp_update_offset_fll(s64 offset64, long secs) +{ + time_status &= ~STA_MODE; + + if (secs < MINSEC) + return 0; + + if (!(time_status & STA_FLL) && (secs <= MAXSEC)) + return 0; + + time_status |= STA_MODE; + + return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); +} + +static void ntp_update_offset(long offset) +{ + s64 freq_adj; + s64 offset64; + long secs; + + if (!(time_status & STA_PLL)) + return; + + if (!(time_status & STA_NANO)) { + /* Make sure the multiplication below won't overflow */ + offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); + offset *= NSEC_PER_USEC; + } + + /* + * Scale the phase adjustment and + * clamp to the operating range. + */ + offset = clamp(offset, -MAXPHASE, MAXPHASE); + + /* + * Select how the frequency is to be controlled + * and in which mode (PLL or FLL). + */ + secs = (long)(__ktime_get_real_seconds() - time_reftime); + if (unlikely(time_status & STA_FREQHOLD)) + secs = 0; + + time_reftime = __ktime_get_real_seconds(); + + offset64 = offset; + freq_adj = ntp_update_offset_fll(offset64, secs); + + /* + * Clamp update interval to reduce PLL gain with low + * sampling rate (e.g. intermittent network connection) + * to avoid instability. + */ + if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) + secs = 1 << (SHIFT_PLL + 1 + time_constant); + + freq_adj += (offset64 * secs) << + (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); + + freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); + + time_freq = max(freq_adj, -MAXFREQ_SCALED); + + time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); +} + +/** + * ntp_clear - Clears the NTP state variables + */ +void ntp_clear(void) +{ + time_adjust = 0; /* stop active adjtime() */ + time_status |= STA_UNSYNC; + time_maxerror = NTP_PHASE_LIMIT; + time_esterror = NTP_PHASE_LIMIT; + + ntp_update_frequency(); + + tick_length = tick_length_base; + time_offset = 0; + + ntp_next_leap_sec = TIME64_MAX; + /* Clear PPS state variables */ + pps_clear(); +} + + +u64 ntp_tick_length(void) +{ + return tick_length; +} + +/** + * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t + * + * Provides the time of the next leapsecond against CLOCK_REALTIME in + * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. + */ +ktime_t ntp_get_next_leap(void) +{ + ktime_t ret; + + if ((time_state == TIME_INS) && (time_status & STA_INS)) + return ktime_set(ntp_next_leap_sec, 0); + ret = KTIME_MAX; + return ret; +} + +/* + * this routine handles the overflow of the microsecond field + * + * The tricky bits of code to handle the accurate clock support + * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. + * They were originally developed for SUN and DEC kernels. + * All the kudos should go to Dave for this stuff. + * + * Also handles leap second processing, and returns leap offset + */ +int second_overflow(time64_t secs) +{ + s64 delta; + int leap = 0; + s32 rem; + + /* + * Leap second processing. If in leap-insert state at the end of the + * day, the system clock is set back one second; if in leap-delete + * state, the system clock is set ahead one second. + */ + switch (time_state) { + case TIME_OK: + if (time_status & STA_INS) { + time_state = TIME_INS; + div_s64_rem(secs, SECS_PER_DAY, &rem); + ntp_next_leap_sec = secs + SECS_PER_DAY - rem; + } else if (time_status & STA_DEL) { + time_state = TIME_DEL; + div_s64_rem(secs + 1, SECS_PER_DAY, &rem); + ntp_next_leap_sec = secs + SECS_PER_DAY - rem; + } + break; + case TIME_INS: + if (!(time_status & STA_INS)) { + ntp_next_leap_sec = TIME64_MAX; + time_state = TIME_OK; + } else if (secs == ntp_next_leap_sec) { + leap = -1; + time_state = TIME_OOP; + printk(KERN_NOTICE + "Clock: inserting leap second 23:59:60 UTC\n"); + } + break; + case TIME_DEL: + if (!(time_status & STA_DEL)) { + ntp_next_leap_sec = TIME64_MAX; + time_state = TIME_OK; + } else if (secs == ntp_next_leap_sec) { + leap = 1; + ntp_next_leap_sec = TIME64_MAX; + time_state = TIME_WAIT; + printk(KERN_NOTICE + "Clock: deleting leap second 23:59:59 UTC\n"); + } + break; + case TIME_OOP: + ntp_next_leap_sec = TIME64_MAX; + time_state = TIME_WAIT; + break; + case TIME_WAIT: + if (!(time_status & (STA_INS | STA_DEL))) + time_state = TIME_OK; + break; + } + + + /* Bump the maxerror field */ + time_maxerror += MAXFREQ / NSEC_PER_USEC; + if (time_maxerror > NTP_PHASE_LIMIT) { + time_maxerror = NTP_PHASE_LIMIT; + time_status |= STA_UNSYNC; + } + + /* Compute the phase adjustment for the next second */ + tick_length = tick_length_base; + + delta = ntp_offset_chunk(time_offset); + time_offset -= delta; + tick_length += delta; + + /* Check PPS signal */ + pps_dec_valid(); + + if (!time_adjust) + goto out; + + if (time_adjust > MAX_TICKADJ) { + time_adjust -= MAX_TICKADJ; + tick_length += MAX_TICKADJ_SCALED; + goto out; + } + + if (time_adjust < -MAX_TICKADJ) { + time_adjust += MAX_TICKADJ; + tick_length -= MAX_TICKADJ_SCALED; + goto out; + } + + tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) + << NTP_SCALE_SHIFT; + time_adjust = 0; + +out: + return leap; +} + +static void sync_hw_clock(struct work_struct *work); +static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock); + +static void sched_sync_hw_clock(struct timespec64 now, + unsigned long target_nsec, bool fail) + +{ + struct timespec64 next; + + ktime_get_real_ts64(&next); + if (!fail) + next.tv_sec = 659; + else { + /* + * Try again as soon as possible. Delaying long periods + * decreases the accuracy of the work queue timer. Due to this + * the algorithm is very likely to require a short-sleep retry + * after the above long sleep to synchronize ts_nsec. + */ + next.tv_sec = 0; + } + + /* Compute the needed delay that will get to tv_nsec == target_nsec */ + next.tv_nsec = target_nsec - next.tv_nsec; + if (next.tv_nsec <= 0) + next.tv_nsec += NSEC_PER_SEC; + if (next.tv_nsec >= NSEC_PER_SEC) { + next.tv_sec++; + next.tv_nsec -= NSEC_PER_SEC; + } + + queue_delayed_work(system_power_efficient_wq, &sync_work, + timespec64_to_jiffies(&next)); +} + +static void sync_rtc_clock(void) +{ + unsigned long target_nsec; + struct timespec64 adjust, now; + int rc; + + if (!IS_ENABLED(CONFIG_RTC_SYSTOHC)) + return; + + ktime_get_real_ts64(&now); + + adjust = now; + if (persistent_clock_is_local) + adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); + + /* + * The current RTC in use will provide the target_nsec it wants to be + * called at, and does rtc_tv_nsec_ok internally. + */ + rc = rtc_set_ntp_time(adjust, &target_nsec); + if (rc == -ENODEV) + return; + + sched_sync_hw_clock(now, target_nsec, rc); +} + +#ifdef CONFIG_GENERIC_CMOS_UPDATE +int __weak update_persistent_clock64(struct timespec64 now64) +{ + return -ENODEV; +} +#endif + +static bool sync_cmos_clock(void) +{ + static bool no_cmos; + struct timespec64 now; + struct timespec64 adjust; + int rc = -EPROTO; + long target_nsec = NSEC_PER_SEC / 2; + + if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE)) + return false; + + if (no_cmos) + return false; + + /* + * Historically update_persistent_clock64() has followed x86 + * semantics, which match the MC146818A/etc RTC. This RTC will store + * 'adjust' and then in .5s it will advance once second. + * + * Architectures are strongly encouraged to use rtclib and not + * implement this legacy API. + */ + ktime_get_real_ts64(&now); + if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) { + if (persistent_clock_is_local) + adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); + rc = update_persistent_clock64(adjust); + /* + * The machine does not support update_persistent_clock64 even + * though it defines CONFIG_GENERIC_CMOS_UPDATE. + */ + if (rc == -ENODEV) { + no_cmos = true; + return false; + } + } + + sched_sync_hw_clock(now, target_nsec, rc); + return true; +} + +/* + * If we have an externally synchronized Linux clock, then update RTC clock + * accordingly every ~11 minutes. Generally RTCs can only store second + * precision, but many RTCs will adjust the phase of their second tick to + * match the moment of update. This infrastructure arranges to call to the RTC + * set at the correct moment to phase synchronize the RTC second tick over + * with the kernel clock. + */ +static void sync_hw_clock(struct work_struct *work) +{ + if (!ntp_synced()) + return; + + if (sync_cmos_clock()) + return; + + sync_rtc_clock(); +} + +void ntp_notify_cmos_timer(void) +{ + if (!ntp_synced()) + return; + + if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) || + IS_ENABLED(CONFIG_RTC_SYSTOHC)) + queue_delayed_work(system_power_efficient_wq, &sync_work, 0); +} + +/* + * Propagate a new txc->status value into the NTP state: + */ +static inline void process_adj_status(const struct __kernel_timex *txc) +{ + if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { + time_state = TIME_OK; + time_status = STA_UNSYNC; + ntp_next_leap_sec = TIME64_MAX; + /* restart PPS frequency calibration */ + pps_reset_freq_interval(); + } + + /* + * If we turn on PLL adjustments then reset the + * reference time to current time. + */ + if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) + time_reftime = __ktime_get_real_seconds(); + + /* only set allowed bits */ + time_status &= STA_RONLY; + time_status |= txc->status & ~STA_RONLY; +} + + +static inline void process_adjtimex_modes(const struct __kernel_timex *txc, + s32 *time_tai) +{ + if (txc->modes & ADJ_STATUS) + process_adj_status(txc); + + if (txc->modes & ADJ_NANO) + time_status |= STA_NANO; + + if (txc->modes & ADJ_MICRO) + time_status &= ~STA_NANO; + + if (txc->modes & ADJ_FREQUENCY) { + time_freq = txc->freq * PPM_SCALE; + time_freq = min(time_freq, MAXFREQ_SCALED); + time_freq = max(time_freq, -MAXFREQ_SCALED); + /* update pps_freq */ + pps_set_freq(time_freq); + } + + if (txc->modes & ADJ_MAXERROR) + time_maxerror = txc->maxerror; + + if (txc->modes & ADJ_ESTERROR) + time_esterror = txc->esterror; + + if (txc->modes & ADJ_TIMECONST) { + time_constant = txc->constant; + if (!(time_status & STA_NANO)) + time_constant += 4; + time_constant = min(time_constant, (long)MAXTC); + time_constant = max(time_constant, 0l); + } + + if (txc->modes & ADJ_TAI && + txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET) + *time_tai = txc->constant; + + if (txc->modes & ADJ_OFFSET) + ntp_update_offset(txc->offset); + + if (txc->modes & ADJ_TICK) + tick_usec = txc->tick; + + if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) + ntp_update_frequency(); +} + + +/* + * adjtimex mainly allows reading (and writing, if superuser) of + * kernel time-keeping variables. used by xntpd. + */ +int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts, + s32 *time_tai, struct audit_ntp_data *ad) +{ + int result; + + if (txc->modes & ADJ_ADJTIME) { + long save_adjust = time_adjust; + + if (!(txc->modes & ADJ_OFFSET_READONLY)) { + /* adjtime() is independent from ntp_adjtime() */ + time_adjust = txc->offset; + ntp_update_frequency(); + + audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust); + audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust); + } + txc->offset = save_adjust; + } else { + /* If there are input parameters, then process them: */ + if (txc->modes) { + audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset); + audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq); + audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status); + audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai); + audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec); + + process_adjtimex_modes(txc, time_tai); + + audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset); + audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq); + audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status); + audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai); + audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec); + } + + txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, + NTP_SCALE_SHIFT); + if (!(time_status & STA_NANO)) + txc->offset = (u32)txc->offset / NSEC_PER_USEC; + } + + result = time_state; /* mostly `TIME_OK' */ + /* check for errors */ + if (is_error_status(time_status)) + result = TIME_ERROR; + + txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * + PPM_SCALE_INV, NTP_SCALE_SHIFT); + txc->maxerror = time_maxerror; + txc->esterror = time_esterror; + txc->status = time_status; + txc->constant = time_constant; + txc->precision = 1; + txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; + txc->tick = tick_usec; + txc->tai = *time_tai; + + /* fill PPS status fields */ + pps_fill_timex(txc); + + txc->time.tv_sec = ts->tv_sec; + txc->time.tv_usec = ts->tv_nsec; + if (!(time_status & STA_NANO)) + txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC; + + /* Handle leapsec adjustments */ + if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { + if ((time_state == TIME_INS) && (time_status & STA_INS)) { + result = TIME_OOP; + txc->tai++; + txc->time.tv_sec--; + } + if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { + result = TIME_WAIT; + txc->tai--; + txc->time.tv_sec++; + } + if ((time_state == TIME_OOP) && + (ts->tv_sec == ntp_next_leap_sec)) { + result = TIME_WAIT; + } + } + + return result; +} + +#ifdef CONFIG_NTP_PPS + +/* actually struct pps_normtime is good old struct timespec, but it is + * semantically different (and it is the reason why it was invented): + * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] + * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ +struct pps_normtime { + s64 sec; /* seconds */ + long nsec; /* nanoseconds */ +}; + +/* normalize the timestamp so that nsec is in the + ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ +static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) +{ + struct pps_normtime norm = { + .sec = ts.tv_sec, + .nsec = ts.tv_nsec + }; + + if (norm.nsec > (NSEC_PER_SEC >> 1)) { + norm.nsec -= NSEC_PER_SEC; + norm.sec++; + } + + return norm; +} + +/* get current phase correction and jitter */ +static inline long pps_phase_filter_get(long *jitter) +{ + *jitter = pps_tf[0] - pps_tf[1]; + if (*jitter < 0) + *jitter = -*jitter; + + /* TODO: test various filters */ + return pps_tf[0]; +} + +/* add the sample to the phase filter */ +static inline void pps_phase_filter_add(long err) +{ + pps_tf[2] = pps_tf[1]; + pps_tf[1] = pps_tf[0]; + pps_tf[0] = err; +} + +/* decrease frequency calibration interval length. + * It is halved after four consecutive unstable intervals. + */ +static inline void pps_dec_freq_interval(void) +{ + if (--pps_intcnt <= -PPS_INTCOUNT) { + pps_intcnt = -PPS_INTCOUNT; + if (pps_shift > PPS_INTMIN) { + pps_shift--; + pps_intcnt = 0; + } + } +} + +/* increase frequency calibration interval length. + * It is doubled after four consecutive stable intervals. + */ +static inline void pps_inc_freq_interval(void) +{ + if (++pps_intcnt >= PPS_INTCOUNT) { + pps_intcnt = PPS_INTCOUNT; + if (pps_shift < PPS_INTMAX) { + pps_shift++; + pps_intcnt = 0; + } + } +} + +/* update clock frequency based on MONOTONIC_RAW clock PPS signal + * timestamps + * + * At the end of the calibration interval the difference between the + * first and last MONOTONIC_RAW clock timestamps divided by the length + * of the interval becomes the frequency update. If the interval was + * too long, the data are discarded. + * Returns the difference between old and new frequency values. + */ +static long hardpps_update_freq(struct pps_normtime freq_norm) +{ + long delta, delta_mod; + s64 ftemp; + + /* check if the frequency interval was too long */ + if (freq_norm.sec > (2 << pps_shift)) { + time_status |= STA_PPSERROR; + pps_errcnt++; + pps_dec_freq_interval(); + printk_deferred(KERN_ERR + "hardpps: PPSERROR: interval too long - %lld s\n", + freq_norm.sec); + return 0; + } + + /* here the raw frequency offset and wander (stability) is + * calculated. If the wander is less than the wander threshold + * the interval is increased; otherwise it is decreased. + */ + ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, + freq_norm.sec); + delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); + pps_freq = ftemp; + if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { + printk_deferred(KERN_WARNING + "hardpps: PPSWANDER: change=%ld\n", delta); + time_status |= STA_PPSWANDER; + pps_stbcnt++; + pps_dec_freq_interval(); + } else { /* good sample */ + pps_inc_freq_interval(); + } + + /* the stability metric is calculated as the average of recent + * frequency changes, but is used only for performance + * monitoring + */ + delta_mod = delta; + if (delta_mod < 0) + delta_mod = -delta_mod; + pps_stabil += (div_s64(((s64)delta_mod) << + (NTP_SCALE_SHIFT - SHIFT_USEC), + NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; + + /* if enabled, the system clock frequency is updated */ + if ((time_status & STA_PPSFREQ) != 0 && + (time_status & STA_FREQHOLD) == 0) { + time_freq = pps_freq; + ntp_update_frequency(); + } + + return delta; +} + +/* correct REALTIME clock phase error against PPS signal */ +static void hardpps_update_phase(long error) +{ + long correction = -error; + long jitter; + + /* add the sample to the median filter */ + pps_phase_filter_add(correction); + correction = pps_phase_filter_get(&jitter); + + /* Nominal jitter is due to PPS signal noise. If it exceeds the + * threshold, the sample is discarded; otherwise, if so enabled, + * the time offset is updated. + */ + if (jitter > (pps_jitter << PPS_POPCORN)) { + printk_deferred(KERN_WARNING + "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", + jitter, (pps_jitter << PPS_POPCORN)); + time_status |= STA_PPSJITTER; + pps_jitcnt++; + } else if (time_status & STA_PPSTIME) { + /* correct the time using the phase offset */ + time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, + NTP_INTERVAL_FREQ); + /* cancel running adjtime() */ + time_adjust = 0; + } + /* update jitter */ + pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; +} + +/* + * __hardpps() - discipline CPU clock oscillator to external PPS signal + * + * This routine is called at each PPS signal arrival in order to + * discipline the CPU clock oscillator to the PPS signal. It takes two + * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former + * is used to correct clock phase error and the latter is used to + * correct the frequency. + * + * This code is based on David Mills's reference nanokernel + * implementation. It was mostly rewritten but keeps the same idea. + */ +void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) +{ + struct pps_normtime pts_norm, freq_norm; + + pts_norm = pps_normalize_ts(*phase_ts); + + /* clear the error bits, they will be set again if needed */ + time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); + + /* indicate signal presence */ + time_status |= STA_PPSSIGNAL; + pps_valid = PPS_VALID; + + /* when called for the first time, + * just start the frequency interval */ + if (unlikely(pps_fbase.tv_sec == 0)) { + pps_fbase = *raw_ts; + return; + } + + /* ok, now we have a base for frequency calculation */ + freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); + + /* check that the signal is in the range + * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ + if ((freq_norm.sec == 0) || + (freq_norm.nsec > MAXFREQ * freq_norm.sec) || + (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { + time_status |= STA_PPSJITTER; + /* restart the frequency calibration interval */ + pps_fbase = *raw_ts; + printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); + return; + } + + /* signal is ok */ + + /* check if the current frequency interval is finished */ + if (freq_norm.sec >= (1 << pps_shift)) { + pps_calcnt++; + /* restart the frequency calibration interval */ + pps_fbase = *raw_ts; + hardpps_update_freq(freq_norm); + } + + hardpps_update_phase(pts_norm.nsec); + +} +#endif /* CONFIG_NTP_PPS */ + +static int __init ntp_tick_adj_setup(char *str) +{ + int rc = kstrtos64(str, 0, &ntp_tick_adj); + if (rc) + return rc; + + ntp_tick_adj <<= NTP_SCALE_SHIFT; + return 1; +} + +__setup("ntp_tick_adj=", ntp_tick_adj_setup); + +void __init ntp_init(void) +{ + ntp_clear(); +} |