diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /kernel/time/tick-broadcast.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/time/tick-broadcast.c')
-rw-r--r-- | kernel/time/tick-broadcast.c | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c new file mode 100644 index 000000000..a9530e866 --- /dev/null +++ b/kernel/time/tick-broadcast.c @@ -0,0 +1,1015 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file contains functions which emulate a local clock-event + * device via a broadcast event source. + * + * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> + * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar + * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner + */ +#include <linux/cpu.h> +#include <linux/err.h> +#include <linux/hrtimer.h> +#include <linux/interrupt.h> +#include <linux/percpu.h> +#include <linux/profile.h> +#include <linux/sched.h> +#include <linux/smp.h> +#include <linux/module.h> + +#include "tick-internal.h" + +/* + * Broadcast support for broken x86 hardware, where the local apic + * timer stops in C3 state. + */ + +static struct tick_device tick_broadcast_device; +static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; +static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; +static cpumask_var_t tmpmask __cpumask_var_read_mostly; +static int tick_broadcast_forced; + +static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); + +#ifdef CONFIG_TICK_ONESHOT +static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); +static void tick_broadcast_clear_oneshot(int cpu); +static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); +# ifdef CONFIG_HOTPLUG_CPU +static void tick_broadcast_oneshot_offline(unsigned int cpu); +# endif +#else +static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } +static inline void tick_broadcast_clear_oneshot(int cpu) { } +static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } +# ifdef CONFIG_HOTPLUG_CPU +static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { } +# endif +#endif + +/* + * Debugging: see timer_list.c + */ +struct tick_device *tick_get_broadcast_device(void) +{ + return &tick_broadcast_device; +} + +struct cpumask *tick_get_broadcast_mask(void) +{ + return tick_broadcast_mask; +} + +/* + * Start the device in periodic mode + */ +static void tick_broadcast_start_periodic(struct clock_event_device *bc) +{ + if (bc) + tick_setup_periodic(bc, 1); +} + +/* + * Check, if the device can be utilized as broadcast device: + */ +static bool tick_check_broadcast_device(struct clock_event_device *curdev, + struct clock_event_device *newdev) +{ + if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || + (newdev->features & CLOCK_EVT_FEAT_PERCPU) || + (newdev->features & CLOCK_EVT_FEAT_C3STOP)) + return false; + + if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && + !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) + return false; + + return !curdev || newdev->rating > curdev->rating; +} + +/* + * Conditionally install/replace broadcast device + */ +void tick_install_broadcast_device(struct clock_event_device *dev) +{ + struct clock_event_device *cur = tick_broadcast_device.evtdev; + + if (!tick_check_broadcast_device(cur, dev)) + return; + + if (!try_module_get(dev->owner)) + return; + + clockevents_exchange_device(cur, dev); + if (cur) + cur->event_handler = clockevents_handle_noop; + tick_broadcast_device.evtdev = dev; + if (!cpumask_empty(tick_broadcast_mask)) + tick_broadcast_start_periodic(dev); + /* + * Inform all cpus about this. We might be in a situation + * where we did not switch to oneshot mode because the per cpu + * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack + * of a oneshot capable broadcast device. Without that + * notification the systems stays stuck in periodic mode + * forever. + */ + if (dev->features & CLOCK_EVT_FEAT_ONESHOT) + tick_clock_notify(); +} + +/* + * Check, if the device is the broadcast device + */ +int tick_is_broadcast_device(struct clock_event_device *dev) +{ + return (dev && tick_broadcast_device.evtdev == dev); +} + +int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) +{ + int ret = -ENODEV; + + if (tick_is_broadcast_device(dev)) { + raw_spin_lock(&tick_broadcast_lock); + ret = __clockevents_update_freq(dev, freq); + raw_spin_unlock(&tick_broadcast_lock); + } + return ret; +} + + +static void err_broadcast(const struct cpumask *mask) +{ + pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); +} + +static void tick_device_setup_broadcast_func(struct clock_event_device *dev) +{ + if (!dev->broadcast) + dev->broadcast = tick_broadcast; + if (!dev->broadcast) { + pr_warn_once("%s depends on broadcast, but no broadcast function available\n", + dev->name); + dev->broadcast = err_broadcast; + } +} + +/* + * Check, if the device is disfunctional and a place holder, which + * needs to be handled by the broadcast device. + */ +int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) +{ + struct clock_event_device *bc = tick_broadcast_device.evtdev; + unsigned long flags; + int ret = 0; + + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + + /* + * Devices might be registered with both periodic and oneshot + * mode disabled. This signals, that the device needs to be + * operated from the broadcast device and is a placeholder for + * the cpu local device. + */ + if (!tick_device_is_functional(dev)) { + dev->event_handler = tick_handle_periodic; + tick_device_setup_broadcast_func(dev); + cpumask_set_cpu(cpu, tick_broadcast_mask); + if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) + tick_broadcast_start_periodic(bc); + else + tick_broadcast_setup_oneshot(bc); + ret = 1; + } else { + /* + * Clear the broadcast bit for this cpu if the + * device is not power state affected. + */ + if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) + cpumask_clear_cpu(cpu, tick_broadcast_mask); + else + tick_device_setup_broadcast_func(dev); + + /* + * Clear the broadcast bit if the CPU is not in + * periodic broadcast on state. + */ + if (!cpumask_test_cpu(cpu, tick_broadcast_on)) + cpumask_clear_cpu(cpu, tick_broadcast_mask); + + switch (tick_broadcast_device.mode) { + case TICKDEV_MODE_ONESHOT: + /* + * If the system is in oneshot mode we can + * unconditionally clear the oneshot mask bit, + * because the CPU is running and therefore + * not in an idle state which causes the power + * state affected device to stop. Let the + * caller initialize the device. + */ + tick_broadcast_clear_oneshot(cpu); + ret = 0; + break; + + case TICKDEV_MODE_PERIODIC: + /* + * If the system is in periodic mode, check + * whether the broadcast device can be + * switched off now. + */ + if (cpumask_empty(tick_broadcast_mask) && bc) + clockevents_shutdown(bc); + /* + * If we kept the cpu in the broadcast mask, + * tell the caller to leave the per cpu device + * in shutdown state. The periodic interrupt + * is delivered by the broadcast device, if + * the broadcast device exists and is not + * hrtimer based. + */ + if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) + ret = cpumask_test_cpu(cpu, tick_broadcast_mask); + break; + default: + break; + } + } + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); + return ret; +} + +#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST +int tick_receive_broadcast(void) +{ + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); + struct clock_event_device *evt = td->evtdev; + + if (!evt) + return -ENODEV; + + if (!evt->event_handler) + return -EINVAL; + + evt->event_handler(evt); + return 0; +} +#endif + +/* + * Broadcast the event to the cpus, which are set in the mask (mangled). + */ +static bool tick_do_broadcast(struct cpumask *mask) +{ + int cpu = smp_processor_id(); + struct tick_device *td; + bool local = false; + + /* + * Check, if the current cpu is in the mask + */ + if (cpumask_test_cpu(cpu, mask)) { + struct clock_event_device *bc = tick_broadcast_device.evtdev; + + cpumask_clear_cpu(cpu, mask); + /* + * We only run the local handler, if the broadcast + * device is not hrtimer based. Otherwise we run into + * a hrtimer recursion. + * + * local timer_interrupt() + * local_handler() + * expire_hrtimers() + * bc_handler() + * local_handler() + * expire_hrtimers() + */ + local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); + } + + if (!cpumask_empty(mask)) { + /* + * It might be necessary to actually check whether the devices + * have different broadcast functions. For now, just use the + * one of the first device. This works as long as we have this + * misfeature only on x86 (lapic) + */ + td = &per_cpu(tick_cpu_device, cpumask_first(mask)); + td->evtdev->broadcast(mask); + } + return local; +} + +/* + * Periodic broadcast: + * - invoke the broadcast handlers + */ +static bool tick_do_periodic_broadcast(void) +{ + cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); + return tick_do_broadcast(tmpmask); +} + +/* + * Event handler for periodic broadcast ticks + */ +static void tick_handle_periodic_broadcast(struct clock_event_device *dev) +{ + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); + bool bc_local; + + raw_spin_lock(&tick_broadcast_lock); + + /* Handle spurious interrupts gracefully */ + if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { + raw_spin_unlock(&tick_broadcast_lock); + return; + } + + bc_local = tick_do_periodic_broadcast(); + + if (clockevent_state_oneshot(dev)) { + ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC); + + clockevents_program_event(dev, next, true); + } + raw_spin_unlock(&tick_broadcast_lock); + + /* + * We run the handler of the local cpu after dropping + * tick_broadcast_lock because the handler might deadlock when + * trying to switch to oneshot mode. + */ + if (bc_local) + td->evtdev->event_handler(td->evtdev); +} + +/** + * tick_broadcast_control - Enable/disable or force broadcast mode + * @mode: The selected broadcast mode + * + * Called when the system enters a state where affected tick devices + * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. + */ +void tick_broadcast_control(enum tick_broadcast_mode mode) +{ + struct clock_event_device *bc, *dev; + struct tick_device *td; + int cpu, bc_stopped; + unsigned long flags; + + /* Protects also the local clockevent device. */ + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + td = this_cpu_ptr(&tick_cpu_device); + dev = td->evtdev; + + /* + * Is the device not affected by the powerstate ? + */ + if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) + goto out; + + if (!tick_device_is_functional(dev)) + goto out; + + cpu = smp_processor_id(); + bc = tick_broadcast_device.evtdev; + bc_stopped = cpumask_empty(tick_broadcast_mask); + + switch (mode) { + case TICK_BROADCAST_FORCE: + tick_broadcast_forced = 1; + fallthrough; + case TICK_BROADCAST_ON: + cpumask_set_cpu(cpu, tick_broadcast_on); + if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { + /* + * Only shutdown the cpu local device, if: + * + * - the broadcast device exists + * - the broadcast device is not a hrtimer based one + * - the broadcast device is in periodic mode to + * avoid a hickup during switch to oneshot mode + */ + if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && + tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) + clockevents_shutdown(dev); + } + break; + + case TICK_BROADCAST_OFF: + if (tick_broadcast_forced) + break; + cpumask_clear_cpu(cpu, tick_broadcast_on); + if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { + if (tick_broadcast_device.mode == + TICKDEV_MODE_PERIODIC) + tick_setup_periodic(dev, 0); + } + break; + } + + if (bc) { + if (cpumask_empty(tick_broadcast_mask)) { + if (!bc_stopped) + clockevents_shutdown(bc); + } else if (bc_stopped) { + if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) + tick_broadcast_start_periodic(bc); + else + tick_broadcast_setup_oneshot(bc); + } + } +out: + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); +} +EXPORT_SYMBOL_GPL(tick_broadcast_control); + +/* + * Set the periodic handler depending on broadcast on/off + */ +void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) +{ + if (!broadcast) + dev->event_handler = tick_handle_periodic; + else + dev->event_handler = tick_handle_periodic_broadcast; +} + +#ifdef CONFIG_HOTPLUG_CPU +static void tick_shutdown_broadcast(void) +{ + struct clock_event_device *bc = tick_broadcast_device.evtdev; + + if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { + if (bc && cpumask_empty(tick_broadcast_mask)) + clockevents_shutdown(bc); + } +} + +/* + * Remove a CPU from broadcasting + */ +void tick_broadcast_offline(unsigned int cpu) +{ + raw_spin_lock(&tick_broadcast_lock); + cpumask_clear_cpu(cpu, tick_broadcast_mask); + cpumask_clear_cpu(cpu, tick_broadcast_on); + tick_broadcast_oneshot_offline(cpu); + tick_shutdown_broadcast(); + raw_spin_unlock(&tick_broadcast_lock); +} + +#endif + +void tick_suspend_broadcast(void) +{ + struct clock_event_device *bc; + unsigned long flags; + + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + + bc = tick_broadcast_device.evtdev; + if (bc) + clockevents_shutdown(bc); + + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); +} + +/* + * This is called from tick_resume_local() on a resuming CPU. That's + * called from the core resume function, tick_unfreeze() and the magic XEN + * resume hackery. + * + * In none of these cases the broadcast device mode can change and the + * bit of the resuming CPU in the broadcast mask is safe as well. + */ +bool tick_resume_check_broadcast(void) +{ + if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) + return false; + else + return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); +} + +void tick_resume_broadcast(void) +{ + struct clock_event_device *bc; + unsigned long flags; + + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + + bc = tick_broadcast_device.evtdev; + + if (bc) { + clockevents_tick_resume(bc); + + switch (tick_broadcast_device.mode) { + case TICKDEV_MODE_PERIODIC: + if (!cpumask_empty(tick_broadcast_mask)) + tick_broadcast_start_periodic(bc); + break; + case TICKDEV_MODE_ONESHOT: + if (!cpumask_empty(tick_broadcast_mask)) + tick_resume_broadcast_oneshot(bc); + break; + } + } + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); +} + +#ifdef CONFIG_TICK_ONESHOT + +static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; +static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; +static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; + +/* + * Exposed for debugging: see timer_list.c + */ +struct cpumask *tick_get_broadcast_oneshot_mask(void) +{ + return tick_broadcast_oneshot_mask; +} + +/* + * Called before going idle with interrupts disabled. Checks whether a + * broadcast event from the other core is about to happen. We detected + * that in tick_broadcast_oneshot_control(). The callsite can use this + * to avoid a deep idle transition as we are about to get the + * broadcast IPI right away. + */ +int tick_check_broadcast_expired(void) +{ + return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); +} + +/* + * Set broadcast interrupt affinity + */ +static void tick_broadcast_set_affinity(struct clock_event_device *bc, + const struct cpumask *cpumask) +{ + if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) + return; + + if (cpumask_equal(bc->cpumask, cpumask)) + return; + + bc->cpumask = cpumask; + irq_set_affinity(bc->irq, bc->cpumask); +} + +static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, + ktime_t expires) +{ + if (!clockevent_state_oneshot(bc)) + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); + + clockevents_program_event(bc, expires, 1); + tick_broadcast_set_affinity(bc, cpumask_of(cpu)); +} + +static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) +{ + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); +} + +/* + * Called from irq_enter() when idle was interrupted to reenable the + * per cpu device. + */ +void tick_check_oneshot_broadcast_this_cpu(void) +{ + if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); + + /* + * We might be in the middle of switching over from + * periodic to oneshot. If the CPU has not yet + * switched over, leave the device alone. + */ + if (td->mode == TICKDEV_MODE_ONESHOT) { + clockevents_switch_state(td->evtdev, + CLOCK_EVT_STATE_ONESHOT); + } + } +} + +/* + * Handle oneshot mode broadcasting + */ +static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) +{ + struct tick_device *td; + ktime_t now, next_event; + int cpu, next_cpu = 0; + bool bc_local; + + raw_spin_lock(&tick_broadcast_lock); + dev->next_event = KTIME_MAX; + next_event = KTIME_MAX; + cpumask_clear(tmpmask); + now = ktime_get(); + /* Find all expired events */ + for_each_cpu(cpu, tick_broadcast_oneshot_mask) { + /* + * Required for !SMP because for_each_cpu() reports + * unconditionally CPU0 as set on UP kernels. + */ + if (!IS_ENABLED(CONFIG_SMP) && + cpumask_empty(tick_broadcast_oneshot_mask)) + break; + + td = &per_cpu(tick_cpu_device, cpu); + if (td->evtdev->next_event <= now) { + cpumask_set_cpu(cpu, tmpmask); + /* + * Mark the remote cpu in the pending mask, so + * it can avoid reprogramming the cpu local + * timer in tick_broadcast_oneshot_control(). + */ + cpumask_set_cpu(cpu, tick_broadcast_pending_mask); + } else if (td->evtdev->next_event < next_event) { + next_event = td->evtdev->next_event; + next_cpu = cpu; + } + } + + /* + * Remove the current cpu from the pending mask. The event is + * delivered immediately in tick_do_broadcast() ! + */ + cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); + + /* Take care of enforced broadcast requests */ + cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); + cpumask_clear(tick_broadcast_force_mask); + + /* + * Sanity check. Catch the case where we try to broadcast to + * offline cpus. + */ + if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) + cpumask_and(tmpmask, tmpmask, cpu_online_mask); + + /* + * Wakeup the cpus which have an expired event. + */ + bc_local = tick_do_broadcast(tmpmask); + + /* + * Two reasons for reprogram: + * + * - The global event did not expire any CPU local + * events. This happens in dyntick mode, as the maximum PIT + * delta is quite small. + * + * - There are pending events on sleeping CPUs which were not + * in the event mask + */ + if (next_event != KTIME_MAX) + tick_broadcast_set_event(dev, next_cpu, next_event); + + raw_spin_unlock(&tick_broadcast_lock); + + if (bc_local) { + td = this_cpu_ptr(&tick_cpu_device); + td->evtdev->event_handler(td->evtdev); + } +} + +static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) +{ + if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) + return 0; + if (bc->next_event == KTIME_MAX) + return 0; + return bc->bound_on == cpu ? -EBUSY : 0; +} + +static void broadcast_shutdown_local(struct clock_event_device *bc, + struct clock_event_device *dev) +{ + /* + * For hrtimer based broadcasting we cannot shutdown the cpu + * local device if our own event is the first one to expire or + * if we own the broadcast timer. + */ + if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { + if (broadcast_needs_cpu(bc, smp_processor_id())) + return; + if (dev->next_event < bc->next_event) + return; + } + clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); +} + +int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) +{ + struct clock_event_device *bc, *dev; + int cpu, ret = 0; + ktime_t now; + + /* + * If there is no broadcast device, tell the caller not to go + * into deep idle. + */ + if (!tick_broadcast_device.evtdev) + return -EBUSY; + + dev = this_cpu_ptr(&tick_cpu_device)->evtdev; + + raw_spin_lock(&tick_broadcast_lock); + bc = tick_broadcast_device.evtdev; + cpu = smp_processor_id(); + + if (state == TICK_BROADCAST_ENTER) { + /* + * If the current CPU owns the hrtimer broadcast + * mechanism, it cannot go deep idle and we do not add + * the CPU to the broadcast mask. We don't have to go + * through the EXIT path as the local timer is not + * shutdown. + */ + ret = broadcast_needs_cpu(bc, cpu); + if (ret) + goto out; + + /* + * If the broadcast device is in periodic mode, we + * return. + */ + if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { + /* If it is a hrtimer based broadcast, return busy */ + if (bc->features & CLOCK_EVT_FEAT_HRTIMER) + ret = -EBUSY; + goto out; + } + + if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { + WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); + + /* Conditionally shut down the local timer. */ + broadcast_shutdown_local(bc, dev); + + /* + * We only reprogram the broadcast timer if we + * did not mark ourself in the force mask and + * if the cpu local event is earlier than the + * broadcast event. If the current CPU is in + * the force mask, then we are going to be + * woken by the IPI right away; we return + * busy, so the CPU does not try to go deep + * idle. + */ + if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { + ret = -EBUSY; + } else if (dev->next_event < bc->next_event) { + tick_broadcast_set_event(bc, cpu, dev->next_event); + /* + * In case of hrtimer broadcasts the + * programming might have moved the + * timer to this cpu. If yes, remove + * us from the broadcast mask and + * return busy. + */ + ret = broadcast_needs_cpu(bc, cpu); + if (ret) { + cpumask_clear_cpu(cpu, + tick_broadcast_oneshot_mask); + } + } + } + } else { + if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { + clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); + /* + * The cpu which was handling the broadcast + * timer marked this cpu in the broadcast + * pending mask and fired the broadcast + * IPI. So we are going to handle the expired + * event anyway via the broadcast IPI + * handler. No need to reprogram the timer + * with an already expired event. + */ + if (cpumask_test_and_clear_cpu(cpu, + tick_broadcast_pending_mask)) + goto out; + + /* + * Bail out if there is no next event. + */ + if (dev->next_event == KTIME_MAX) + goto out; + /* + * If the pending bit is not set, then we are + * either the CPU handling the broadcast + * interrupt or we got woken by something else. + * + * We are no longer in the broadcast mask, so + * if the cpu local expiry time is already + * reached, we would reprogram the cpu local + * timer with an already expired event. + * + * This can lead to a ping-pong when we return + * to idle and therefore rearm the broadcast + * timer before the cpu local timer was able + * to fire. This happens because the forced + * reprogramming makes sure that the event + * will happen in the future and depending on + * the min_delta setting this might be far + * enough out that the ping-pong starts. + * + * If the cpu local next_event has expired + * then we know that the broadcast timer + * next_event has expired as well and + * broadcast is about to be handled. So we + * avoid reprogramming and enforce that the + * broadcast handler, which did not run yet, + * will invoke the cpu local handler. + * + * We cannot call the handler directly from + * here, because we might be in a NOHZ phase + * and we did not go through the irq_enter() + * nohz fixups. + */ + now = ktime_get(); + if (dev->next_event <= now) { + cpumask_set_cpu(cpu, tick_broadcast_force_mask); + goto out; + } + /* + * We got woken by something else. Reprogram + * the cpu local timer device. + */ + tick_program_event(dev->next_event, 1); + } + } +out: + raw_spin_unlock(&tick_broadcast_lock); + return ret; +} + +/* + * Reset the one shot broadcast for a cpu + * + * Called with tick_broadcast_lock held + */ +static void tick_broadcast_clear_oneshot(int cpu) +{ + cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); + cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); +} + +static void tick_broadcast_init_next_event(struct cpumask *mask, + ktime_t expires) +{ + struct tick_device *td; + int cpu; + + for_each_cpu(cpu, mask) { + td = &per_cpu(tick_cpu_device, cpu); + if (td->evtdev) + td->evtdev->next_event = expires; + } +} + +/** + * tick_broadcast_setup_oneshot - setup the broadcast device + */ +static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) +{ + int cpu = smp_processor_id(); + + if (!bc) + return; + + /* Set it up only once ! */ + if (bc->event_handler != tick_handle_oneshot_broadcast) { + int was_periodic = clockevent_state_periodic(bc); + + bc->event_handler = tick_handle_oneshot_broadcast; + + /* + * We must be careful here. There might be other CPUs + * waiting for periodic broadcast. We need to set the + * oneshot_mask bits for those and program the + * broadcast device to fire. + */ + cpumask_copy(tmpmask, tick_broadcast_mask); + cpumask_clear_cpu(cpu, tmpmask); + cpumask_or(tick_broadcast_oneshot_mask, + tick_broadcast_oneshot_mask, tmpmask); + + if (was_periodic && !cpumask_empty(tmpmask)) { + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); + tick_broadcast_init_next_event(tmpmask, + tick_next_period); + tick_broadcast_set_event(bc, cpu, tick_next_period); + } else + bc->next_event = KTIME_MAX; + } else { + /* + * The first cpu which switches to oneshot mode sets + * the bit for all other cpus which are in the general + * (periodic) broadcast mask. So the bit is set and + * would prevent the first broadcast enter after this + * to program the bc device. + */ + tick_broadcast_clear_oneshot(cpu); + } +} + +/* + * Select oneshot operating mode for the broadcast device + */ +void tick_broadcast_switch_to_oneshot(void) +{ + struct clock_event_device *bc; + unsigned long flags; + + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + + tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; + bc = tick_broadcast_device.evtdev; + if (bc) + tick_broadcast_setup_oneshot(bc); + + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); +} + +#ifdef CONFIG_HOTPLUG_CPU +void hotplug_cpu__broadcast_tick_pull(int deadcpu) +{ + struct clock_event_device *bc; + unsigned long flags; + + raw_spin_lock_irqsave(&tick_broadcast_lock, flags); + bc = tick_broadcast_device.evtdev; + + if (bc && broadcast_needs_cpu(bc, deadcpu)) { + /* This moves the broadcast assignment to this CPU: */ + clockevents_program_event(bc, bc->next_event, 1); + } + raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); +} + +/* + * Remove a dying CPU from broadcasting + */ +static void tick_broadcast_oneshot_offline(unsigned int cpu) +{ + /* + * Clear the broadcast masks for the dead cpu, but do not stop + * the broadcast device! + */ + cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); + cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); + cpumask_clear_cpu(cpu, tick_broadcast_force_mask); +} +#endif + +/* + * Check, whether the broadcast device is in one shot mode + */ +int tick_broadcast_oneshot_active(void) +{ + return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; +} + +/* + * Check whether the broadcast device supports oneshot. + */ +bool tick_broadcast_oneshot_available(void) +{ + struct clock_event_device *bc = tick_broadcast_device.evtdev; + + return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; +} + +#else +int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) +{ + struct clock_event_device *bc = tick_broadcast_device.evtdev; + + if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) + return -EBUSY; + + return 0; +} +#endif + +void __init tick_broadcast_init(void) +{ + zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); + zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); + zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); +#ifdef CONFIG_TICK_ONESHOT + zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); + zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); + zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); +#endif +} |